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Striatal dopamine signals reflect perceived 
cue–action–outcome associations in mice

Tobias W. Bernklau1,2, Beatrice Righetti1, Leonie S. Mehrke    1 & 
Simon N. Jacob    1 

Striatal dopamine drives associative learning by acting as a teaching signal. 
Much work has focused on simple learning paradigms, including Pavlovian 
and instrumental learning. However, higher cognition requires that animals 
generate internal concepts of their environment, where sensory stimuli, 
actions and outcomes become flexibly associated. Here, we performed 
fiber photometry dopamine measurements across the striatum of male 
mice as they learned cue–action–outcome associations based on implicit 
and changing task rules. Reinforcement learning models of the behavioral 
and dopamine data showed that rule changes lead to adjustments of 
learned cue–action–outcome associations. After rule changes, mice 
discarded learned associations and reset outcome expectations. Cue- and 
outcome-triggered dopamine signals became uncoupled and dependent 
on the adopted behavioral strategy. As mice learned the new association, 
coupling between cue- and outcome-triggered dopamine signals and task 
performance re-emerged. Our results suggest that dopaminergic reward 
prediction errors reflect an agent’s perceived locus of control.

Forming associations between sensory stimuli in the environment 
and the outcomes of one’s own actions is a foundation of intelligent 
behavior and higher cognition. As one of the major neuromodulators 
in the brain, dopamine drives associative learning by acting as a teach-
ing signal. Phasic activity of midbrain dopamine neurons indicates the 
difference between predicted and actual outcomes and corresponds 
to the reward prediction error (RPE) in reinforcement learning models, 
which is used to update state and action values1,2. This dopaminergic 
teaching signal modulates synaptic plasticity of cortical inputs to the 
striatum, an essential structure for reinforcement learning and a major 
projection target of dopamine neurons3–5. The dopamine RPE hypoth-
esis is supported by a large body of evidence comprising recordings 
of dopamine neuron activity and dopamine release6–9 as well as causal 
optogenetic manipulations10–13. Much work has focused on the dopa-
minergic mechanisms of simple learning paradigms, such as Pavlovian 
or bandit tasks, in which outcome predictions are determined by experi-
mentally manipulated reward magnitudes and probabilities. However, 
higher cognition requires an agent to actively generate concepts of its 
environment, in which sensory cues, actions and outcomes become 

associated. This entails that outcome predictions are conditional on 
one’s own actions and do not passively track the statistics of externally 
controlled outcomes. Yet, despite the well-established role of dopamine 
in other higher cognitive functions14,15, little is known about the role 
of dopamine in the acquisition of these more complex associations.

Fundamental insights into dopaminergic mechanisms of learning 
have typically been revealed in two groups of tasks. First, in Pavlo-
vian or stimulus–outcome learning, phasic dopamine activity shifts 
from responding to the reward early in learning to responding to the 
reward-predicting cue after learning16–20, as predicted by reinforcement 
learning models1,21. In this setting, cue-triggered predictive dopa-
mine signals and outcome-triggered reinforcing dopamine signals are 
determined by externally set reward expectations and are therefore 
strongly coupled to each other in the form of an inverse relationship. 
Second, in instrumental learning, outcomes are action dependent, 
and predictions are conditional on deliberate choices and internal 
representations thereof. In these tasks, learning is mostly defined not 
as the initial acquisition of associations but as adaptations to dynamic 
changes in probabilistic outcome contingencies during well-trained 
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unchanged high accuracy in ‘stay’ conditions (that is, conditions for 
which the correct response was the same under the new rule; 50% of 
trials after the first rule switch) and a substantial drop in accuracy in 
‘switch’ conditions (that is, conditions for which the correct response 
was different under the new rule; 50% of trials after the first rule switch 
and 100% of trials after the second rule switch; Fig. 1g). Given the lower 
success rate, mice reverted to a simple response bias strategy after the 
second rule switch but not after the first rule switch (Fig. 1f, bottom).

Mice use learning stage-dependent decision-making 
strategies
To further characterize the animals’ strategies and detect possible 
additional contributions of trial history, we used logistic regression 
models to predict mouse choices in each trial30–34. We first fitted mod-
els per session using regressors for the response bias, the instruction 
cue and various regressors representing trial history-related effects  
(Fig. 1h). The final model was selected by cross-validation such that 
removing regressors degraded model accuracy, whereas adding or 
replacing trial history-related regressors did not improve model accu-
racy (Fig. 1i). The weight trajectories of the session-based model showed 
changes in strategy across sessions, with weights for the cue regres-
sors progressively diverging from 0 across learning and weights for 
bias and history regressors converging to 0 across learning (Fig. 1j). 
To capture intrasession dynamics, we next used a trial-based model  
(Fig. 1k) with fluctuating weights across trials30. To assess the impor-
tance of regressors across training stages, which we defined as novice 
(below 60% correct trials per session), intermediate (between 60% and 
80% correct trials) and expert (above 80% correct trials overall and 
above 60% correct trials in each condition; Fig. 1d), we examined the 
difference in prediction accuracy between models with and without par-
ticular regressors (Fig. 1l and Extended Data Fig. 2). In the session-based 
model, the bias and trial history regressors lost importance across 
learning and were no longer relevant in expert sessions, whereas the 
cue regressor gained importance and was the only relevant regressor 
in expert sessions (Fig. 1l, top). In the trial-based model, bias and cue 
regressors behaved similar to that in the session-based model, whereas 
the trial history regressor was not relevant, regardless of the training 
stage (Fig. 1l, bottom). Even without a trial history-related regressor, 
the trial-based model performed better than the full session-based 
model, especially in volatile sessions after rule switches but not in 
expert sessions when trial history was irrelevant (Fig. 1m). Together, 
these results suggest that history effects were sufficiently explained 
by fluctuations in response bias, which in the trial-based model were 
captured by fluctuating weights of the intercept across trials.

In summary, across learning, mice transitioned from a response 
bias strategy to an instruction cue strategy, showing that they gradually 
learned that outcomes are contingent on context-dependent actions 
and are not externally determined. As experts, mice solely relied on the 
instruction cue to guide their choices and were unaffected by response 
side biases or trial history.

Cue and outcome dopamine signals evolve differently
To investigate how striatal dopamine signals triggered by the cue and 
outcome evolve during learning, we performed direct fiber photo-
metric dopamine measurements with the fluorescent sensor dLight1.2 
(ref. 35) expressed in the VS (n = 6), DMS (n = 5) and DLS (n = 4), each of 
which have been shown to have distinct functional roles in associative 
learning36 (Fig. 2a). Potential differences in dopaminergic signaling 
across projection targets are best examined by measuring dopamine 
concentrations directly in the target region because they can diverge 
from somatic activity23. Control measurements indicated that move-
ment artifacts were negligible in our head-fixed preparation (Extended 
Data Fig. 3).

Trials elicited robust phasic dopamine responses with differences 
across subregions regarding temporal dynamics and responsiveness 

behavior. For example, in the commonly used bandit task, a classical 
reinforcement learning task, animals learn to select the most valuable 
action from two or more available options22–25. A successful behavioral 
strategy in bandit tasks is to repeat previous actions until changes 
in outcome contingencies are detected. Bandit choices thus do not 
require cue-based decisions but depend on the integration of trial 
outcome history25. Even tasks that include cue-based decisions use 
probabilistic outcome manipulations to drive learning26–29. As Pavlovian 
tasks, probabilistic paradigms produce coupling of dopamine signals 
through externally set variables that impose strict limits on the likeli-
hood of obtaining desired outcomes, with little room for modification 
by one’s own actions.

Here, we addressed the role of dopamine in the acquisition of 
non-probabilistic three-term cue–action–outcome associations, where 
only the animals’ internal representations of the contingencies varied 
across learning of a task rule. We trained head-fixed male mice in an 
auditory decision-making task with implicit rule switches to elicit 
the repeated formation of new associations. We performed direct 
photometric measurements of dopamine in the ventral striatum (VS), 
dorsomedial striatum (DMS) and dorsolateral striatum (DLS) during 
all stages of task acquisition using fiber photometry and constructed 
reinforcement learning models of the behavioral and dopaminergic 
data. We found that rule changes prompted the animals to cut learned 
associations and reset outcome expectations, resulting in dissociations 
of cue- and outcome-triggered dopamine signals that depended on the 
adopted behavioral response strategy. As the animals rediscovered 
the impact of their own actions, reward predictions for the different 
trial events were recoupled, indicating an increased understanding 
of the current task. Our results expand the current understanding of 
the role of dopamine in learning, showing that the extent to which an 
agent is knowingly involved in determining task outcomes is reflected 
in distinct dopaminergic signatures.

Results
Mice learn cue–action–outcome associations
To study the acquisition of three-term cue–action–outcome asso-
ciations, we developed an auditory decision-making task with rule 
switches for head-fixed mice (Fig. 1a–c). Mice learned implicit, uncued 
task rules in a non-probabilistic (that is, deterministic) environment 
by trial and error. After presentation of an auditory noise stimulus 
as an instruction cue, two drinking spouts were moved into reach of 
the tongue, and mice had to lick the left or right spout to retrieve a 
water reward (Fig. 1b). Rewards were only dispensed after a correct lick. 
Whether a trial was correct or false depended on the current task rule, 
which first required animals to follow cue location (left or right), then 
cue frequency (low or high) and finally cue frequency with reversed 
cue–action mapping (Fig. 1c).

Mice gradually learned the task rules across several sessions and 
then relearned when rules were switched after criterion performance 
had been reached (Fig. 1d). In the first sessions of the first task rule, 
mice chose a strategy of licking only at one spout (response bias) before 
they explored the other spout and gradually switched strategy to fol-
low the instruction cue (Fig. 1e). Mice did not have biases with respect 
to the currently non-relevant cue dimension (Extended Data Fig. 1a). 
A linear fit of the learning rate revealed a small, yet significant, differ-
ence between the location rule and the frequency rule (Fig. 1f, top, 
and Extended Data Fig. 1b), suggesting that animals learned to learn. 
Additional nonspecific learning and habituation processes that had an 
impact on the learning rate in the first task rule cannot be excluded. In 
pilot experiments, we found no difference in the number of sessions to 
criterion between the location and frequency rule when both were used 
as first rules in naive animals, indicating that there was no difference 
between the two cue dimensions per se (Extended Data Fig. 1c). Analysis 
of behavioral performance after rule switches showed that animals 
perseverated and initially followed the previous task rule, resulting in 
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to particular events (Fig. 2b). In the VS, all events triggered large dopa-
mine transients. In the DMS, responses to the instruction cue domi-
nated responses to the outcome, whereas the opposite pattern was 

observed in the DLS (Fig. 2c–h). In line with previous reports25,29, we 
found a mild effect of lateralization, with stronger cue-triggered and 
outcome-triggered dopamine signals for choices contralateral to the 
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Fig. 1 | Behavioral task and choice modeling. a, Schematic of the behavioral 
setup (created with Biorender.com and used with permission). b, Task structure; 
rew., reward. c, Conditions and rule switches. d, Fraction of correct trials per 
session for n = 26 animals (gray) and the average across animals (color).  
e, Absolute response bias (resp. bias). f, Top, learning rate (Extended Data Fig. 1b;  
location (Loc.) versus frequency (Freq.), P = 0.026; location versus frequency 
reversed (Freq. rev.), P = 0.342; frequency versus frequency reversed, P = 0.592). 
Bottom, absolute response bias in novice (nov.) sessions and photometry 
sessions only (location versus frequency, P = 1.0 × 10−5; location versus frequency 
reversed, P = 1.0; frequency versus frequency reversed, P = 1.0 × 10−5). Data were 
analyzed by two-sided Wilcoxon signed-rank tests with Bonferroni correction. 
Box plot centers represent the median, box limits represent the upper/lower 
quartiles, whiskers represent 1.5× the interquartile range, and points represent 
outliers. g, Fraction of correct trials for the first 100 trials of the last session 
of the previous task rule and the following rule switch session split by stay 
and switch conditions. h, Logistic regression model. i, Cross-validated (C.-v.) 
prediction accuracy of the full model versus reduced/alternative models, 
photometry sessions only. Data were analyzed by two-sided Wilcoxon signed-

rank tests (n = 26 animals) with a Holm–Bonferroni correction (cue frequency, 
P = 1.1 × 10−4; cue location, P = 1.1 × 10−4; ∆reward rate (∆Rew. rate), P = 1.3 × 10−4; 
reward rate left/right (L/R) instead, P = 1.0; choice history (Choice hist.) instead, 
P = 1.0; win–stay–lose–switch (WSLS) instead, P = 0.017; previous choice (Prev. 
choice) instead, P = 2.6 × 10−4; choice/reward (choice/rew.), P = 0.245; choice/
reward history (choice/rew. hist.), P = 1.0; win–stay–lose–switch, P = 0.654; win–
stay–lose–switch history (WSLS hist.), P = 0.184; cue interaction (cue interact.), 
P = 1.0; cue history (cue hist.), P = 0.209). j, Weight trajectories of session-based 
models across trials (example animal). The dashed gray lines represent session 
boundaries; AU, arbitrary units. k, Same as j for trial-based models. l, Difference 
in cross-validated prediction accuracy (Δacc.) by regressor group (Extended 
Data Fig. 2). m, Cross-validated prediction accuracy of the trial-based cue-only 
model versus the session-based full model; sess., session. Data were analyzed by 
two-sided Wilcoxon signed-rank tests (n = 26 animals) with a Holm–Bonferroni 
correction (all, 5.0 × 10−5; novice, P = 5.0 × 10−5; intermediate (Int.), P = 1.4 × 10−4; 
expert (Exp.), P = 0.062; first frequency (First freq.), P = 1.8 × 10−3; first frequency 
reversed (First freq. rev.), P = 5.2 × 10−5). Error bars represent s.e.m. across 
animals; NS, not significant.
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implanted hemisphere than for choices ipsilateral to the implanted 
hemisphere (Extended Data Fig. 4).

We compared trial-averaged dopamine transients between the 
novice, intermediate and expert training stages (Fig. 2c–h). Dopa-
mine signals triggered by obtained rewards decreased with per-
formance levels across all subregions and task rules (Fig. 2d,f,h), 
in line with dopamine RPEs1. By stark contrast, dopamine signals 
triggered by the instruction cue did not increase accordingly as 
seen in Pavlovian19,37,38 or probabilistic tasks28,29. The absence of a 
hypothesized inverse relationship between cue and outcome dopa-
mine indicated that these signals were not consistently coupled  
across learning.

Predictive dopamine signals depend on behavioral strategy
The lack of increase of cue-triggered dopamine signals across learning 
was most evident in the location and frequency reversed tasks, during 
which animals applied a simple response bias strategy and did not align 
their actions with the instruction cue but instead licked predominantly 
either the left or the right spout (Fig. 1f, bottom). We therefore investi-
gated dopamine signals in early training stages to explore the extent 
to which dopamine signatures reflected how the animals internally 
conceptualized the current task.

VS dopamine signals triggered by the reward dispensing spouts 
built up during pretraining, in which rewards were retrieved from 
the spouts in the absence of instruction cues (Extended Data Fig. 5). 
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Fig. 2 | Dopamine signals across the striatum during task acquisition.  
a, Approximate implant locations of optic fibers for all animals (left) and one 
example animal (right) for three subregions of the striatum (VS, n = 6 animals; 
DMS, n = 5 animals; DLS, n = 4 animals). Left, schematics of coronal sections 
of the mouse brain with approximate fiber placements (gray bars). Right, 
histological example images of dLight fluorescence, overlayed with a mouse 
brain atlas schematic (solid white lines) and approximate fiber placement 
(dashed white lines). b, Top, normalized fluorescence of example trials for all 
subregions aligned to cue and outcome. Bottom, normalized fluorescence 
in example intermediate sessions (first 100 correct trials). False-color plots 
show the fluorescence in each trial (the first trial is on the bottom). White lines 
represent average fluorescence. c, Average normalized dLight fluorescence in the 

VS in correct trials split by performance levels for all task rules. For the location 
task, only late novice sessions were included to account for distinct learning 
stages (see Extended Data Fig. 1b and also Fig. 3a–c for early novice sessions). 
Data are shown as mean ± s.e.m. across sessions. d, Average normalized dLight 
fluorescence peaks in the VS across trial epochs (cue and outcome (out.)) in 
correct trials split by performance levels; data are shown as mean ± s.e.m. across 
sessions and were analyzed by Kruskal–Wallis tests across pooled sessions; 
*P < 0.05; **P < 0.01; ***P < 0.001. See Supplementary Table 1 for exact P values. 
Results were confirmed by linear mixed model analyses with animal as the 
grouping factor (see Supplementary Table 2). e,f, Same as c (e) and d (f) for the 
DMS. g,h, Same as c (g) and d (h) for the DLS.
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This suggests that the presentation of the spouts initially acted as a 
Pavlovian cue. As the animals subsequently entered the location task 
and the sole presentation of the spouts was no longer predictive of 
reward, these spout-triggered dopamine signals quickly decreased 
(Fig. 3a). In parallel, dopamine signals triggered by the cue in cor-
rect trials increased, indicating that the dopamine signal advanced in 
time to the instruction cue (Fig. 3a). Thus, in these trials in which the 
instructed side coincided with an animal’s preference for licking that 
same spout, the instruction cue served as a Pavlovian cue. At the same 
time, there was no change in outcome-triggered dopamine, and task 
performance was still close to chance level (Fig. 3a), corroborating the 
notion that predictive and reinforcing signals were uncoupled when 
a cue–action–outcome association had not yet been formed. This 
effect was comparable in the DMS (Fig. 3b) but was less prominent in 
the DLS (Fig. 3c).

Similarly, in novice sessions in the frequency reversed task, 
mice again adopted a strong response bias strategy (Fig. 1f, bot-
tom) and received rewards mainly from their preferred spout. We 
compared correct and error trials to reveal potential differences in 
cue-triggered dopamine signaling, which would indicate passive 
tracking of what the animals perceived to be externally controlled 
reward rates. Cue-triggered dopamine signals in the VS were larger 
in correct trials than in error trials. This difference decreased across 
learning in conjunction with a decrease in response bias (Fig. 3d). Thus, 
the cue-triggered dopamine signature initially resembled a passive 
Pavlovian-like prediction of rewarded versus unrewarded trials as in 
the early stages of the location task, which vanished once the animals 
abandoned the response bias strategy (see also Fig. 2d). The decrease 
of cue-triggered dopamine across learning was again comparable in 
the DMS (Fig. 3e, see also Fig. 2f) but was absent in the DLS (Fig. 3f), 
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Fig. 3 | Predictive dopamine signals across behavioral strategies. a, Top, 
average normalized dLight fluorescence in the VS in correct trials split by early 
and late novice sessions during the location rule. Data are shown as mean ± s.e.m. 
across sessions. Bottom left, average fraction of correct trials (fraction corr.) 
for early and late novice sessions. Bottom right, average normalized dLight 
fluorescence peaks in trial epochs cue, spouts and outcome (out.) in correct trials 
split by early and late novice sessions (n = 12/12 sessions for early/late). Data were 
analyzed by Kruskal–Wallis tests across pooled sessions (performance (perf.), 
P = 0.021; cue, P = 0.002; spouts, P = 1.4 × 10−4; outcome, P = 0.525). b, Same as a 
for the DMS (n = 10/10 sessions; performance, P = 0.059; cue, P = 0.028; spouts, 
P = 1.6 × 10−4; outcome, P = 1.0). c, Same as a for the DLS (n = 12/12 sessions; 
performance, P = 0.018; cue, P = 0.817; spouts, P = 0.003; outcome, P = 0.033). 
d, dLight fluorescence and response bias across performance levels in the 
frequency reversed task. Top left, average normalized dLight fluorescence in the 

cue epoch in the VS split by error and correct trials. Top right, average normalized 
dLight fluorescence peaks in the cue epoch. Data were analyzed by two-sided 
Wilcoxon rank-sum tests across pooled sessions with a Bonferroni correction 
for multiple comparisons (novice, n = 6 sessions, P = 0.046; intermediate, 
n = 9 sessions, P = 0.566; expert, n = 8 sessions, P = 0.234). Bottom left, average 
absolute response bias. Bottom right, average normalized dLight fluorescence 
peaks in the cue epoch in the VS; the difference between error and correct trials 
across performance levels is shown; DA, dopamine; pref., preference. e, Same 
as d for the DMS (novice, n = 10 sessions, P = 0.021; intermediate, n = 11 sessions, 
P = 0.590; expert, n = 10 sessions, P = 1.0). f, Same as d for the DLS (novice, n = 11 
sessions, P = 0.196; intermediate, n = 14 sessions, P = 0.034; expert, n = 8 sessions, 
P = 1.0). See Supplementary Table 2 for linear mixed model analyses with animal 
as the grouping factor.
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where cue dopamine signals were small relative to outcome dopamine 
signals (Fig. 2h).

Reward predictions are recoupled during learning
Next, we leveraged the fact that the first rule switch produced strong 
performance differences between stay and switch trials due to per-
severative behavior (Fig. 1g). This allowed us to investigate how dif-
ferences in internal outcome expectations (high and low for stay and 
switch trials, respectively) affected dopaminergic reward predictions 
triggered by the different trial events across learning.

Immediately after the first rule switch, the VS cue-triggered 
dopamine signal in stay trials increased relative to that in switch trials  
(Fig. 4a,d, middle), reflecting the difference in behavioral performance. 
Surprisingly, however, the outcome-triggered dopamine signal was 
the same in stay and switch conditions (Fig. 4a,d, middle and bottom, 
respectively) despite the strong behavioral differences. Thus, the 
outcome-triggered dopamine signal increased not only in switch trials, 

in which rewards were now unexpected, but also in stay trials, in which 
mice were able to successfully apply the previous rule and rewards 
should have been well expected. Only in the second session after the rule 
switch did outcome-triggered dopamine signals start to again reflect 
the difference in behavioral performance, that is, outcome dopamine 
signals were smaller in stay trials and larger in switch trials (Fig. 4a,d,  
bottom). As learning progressed and behavioral performance 
increased, the differences in dopamine signals between stay and switch 
trials decreased (Fig. 4d). These findings suggest that after the rule 
switch, mice had reset their outcome expectations. Thus, in novice ses-
sions, the cue–action–outcome association was corrupted, and mice 
had not yet incorporated their actions into the reward prediction. As 
animals acquired the new association, coupling of outcome dopamine 
signals to task performance and cue dopamine was reinstated.

Overall, compared to the VS, these dopamine signatures were 
qualitatively similar in the DMS and DLS. In the DMS, there was a focus 
on the cue dopamine signal with minor differences in the outcome 
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Fig. 4 | Uncoupling and recoupling of cue and outcome dopamine signals 
after rule switch. a–c, Average normalized dLight fluorescence across the VS (a), 
DMS (b) and DLS (c) in correct trials split by stay and switch conditions for the last 
location session (Llast) and first two frequency sessions (F1 and F2). Data are shown 
as mean ± s.e.m. across trials. d, Top left, fraction of correct trials for the last 
location session (Llast), the first three frequency sessions (F1, F2 and F3) and the last 
frequency session (Flast) split by stay and switch conditions. Top right, difference 
between fraction correct in stay and switch conditions. Middle and bottom, 

average normalized dLight fluorescence peaks in trial epochs cue (middle) and 
outcome (bottom) in correct trials split by stay and switch conditions (left) and 
the difference between stay and switch conditions (right). Data are shown as 
mean ± s.e.m. across trials and were analyzed by two-sided Wilcoxon rank-sum 
tests across pooled trials and a Bonferroni correction for multiple comparisons; 
*P < 0.05; **P < 0.01; ***P < 0.001. See Supplementary Table 1 for exact P values 
and Supplementary Table 2 for linear mixed model analyses with animal as the 
grouping factor. e, Same as d for the DMS. f, Same as d for the DLS.
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dopamine signal (Fig. 4b,e), whereas in the DLS, there were no differ-
ences in the cue dopamine signal with a focus on the outcome dopa-
mine signal (Fig. 4c,f).

Negative prediction errors are not scaled with performance
Dopamine ‘dips’ (negative RPEs) during epochs in which rewards 
unexpectedly do not occur are a hallmark of dopaminergic teach-
ing signals1,39 and are thought to be similarly important for guiding 
future behavior as positive RPEs40. We therefore now focused on 
outcomes in error trials to (1) investigate whether negative deflec-
tions in dopamine were present in our task and (2) whether potential 
decreases in dopamine were equally affected by task performance as 
increases in dopamine (Fig. 2c–h). We considered two hypotheses. First, 
outcome-triggered dopamine signals in error trials could be negatively 
shifted parallel to correct trials, that is, increase in amplitude across 
learning. Such a parallel shift, as seen in probabilistic tasks37,39, would 
assume similar internal states for correct and error trials and indicate 
passive tracking of external reward rates. Second, outcome-triggered 
dopamine signals in error trials could mirror those in correct trials, that 
is, decrease in amplitude across learning. This would be in line with the 
concept of belief states41 and comparable to confidence-dependent 
dopamine signals observed in perceptual tasks29.

We found consistent negative dopamine signals in error trials 
without rewards during all task rules and training stages (Fig. 5a–c). 
Negative outcome-triggered dopamine signals in error trials were 
not inversely scaled with task performance. In line with our second 
hypothesis, the amplitude of dopamine dips decreased across learn-
ing, following a mirrored rather than parallel course of the positive 
dopamine peaks. The same signatures were present in all subregions. 
However, the scaling of dopamine dips across learning did not reach 
significance. This might be a consequence of a smaller dynamic range 
of negative deflections in fluorescent dopamine measurements, lead-
ing to an attenuation of the amplitude of dopamine dips. To rule out 
that this experimental limitation did not allow us to detect a parallel 
shift of negative compared to positive signals, we designed a new task 
condition to suppress dopaminergic activity below the levels of the 
original tasks. In a separate group of animals implanted in the VS (n = 4) 
and trained on the location task rule, rewards in expert sessions were 
omitted in 10% of correct trials and administered in 10% of error trials 
(probabilistic sessions; Fig. 5d). Outcome-triggered dopamine signals 
in this group of animals were comparable to the original VS data (Fig. 5e,  
left, compare to Fig. 5a). Importantly, the absence of reward despite 
correct responses triggered larger negative dopamine deflections than 
the absence of reward following incorrect responses, that is, in regular 
unprovoked error trials (Fig. 5e, right, left data points). This effect dis-
appeared with repeated exposure to probabilistic outcomes (Fig. 5e, 
right, middle data points) and re-emerged again after several sessions 
without this outcome manipulation (that is, after several deterministic 
sessions; Fig. 5e, right, right data points).

In summary, these findings showed that despite the reduced 
dynamic range at the signal floor, differences in dopamine signal 
reductions could still be measured. Our results suggest that negative 
dopamine RPEs decreased across learning, arguing that behavioral 
errors had less impact on learning in expert animals. Furthermore, the 
two task variants together demonstrated that negative dopamine RPEs 
depended on whether reward omission was endogenously produced by 
or externally forced upon the animal (deterministic and probabilistic 
sessions, respectively). These results add to the notion that dopamine 
signals do not simply passively track reward rates when they are under 
the control of the animals’ actions, in agreement with evolving belief 
states regarding the nature of the task.

Temporal difference learning captures dopamine signatures
Our results so far indicate that dopamine signals reflect the extent to 
which an animal has incorporated its own actions into a mechanistic 

understanding of its environment. To gain more detailed insights into 
the neural computations underlying the link between an agent’s actions 
and dopamine RPEs, we constructed temporal difference reinforcement 
learning (TDRL) models. We chose generative models of state-action 
value learning to simulate the key behavioral and dopamine signa-
tures observed in the data. In these frameworks, an agent transitions 
through a sequence of states and learns to take appropriate actions 
with the goal of maximizing future reward. We tested on-policy (SARSA, 
state-action-reward-state-action) and off-policy Q-learning algorithms, 
which differ regarding the ability to learn from chosen and not chosen 
actions42–44.

We constructed the task environment such that an agent learns and 
updates Q values that are used to guide choices and predict future out-
comes (Fig. 6a and Extended Data Fig. 6a). Experimental data showed 
that rule switches triggered an adjustment in the animals’ learned 
cue–action–outcome associations, as evidenced by a re-emergence of 
strong outcome dopamine signals across all conditions (Figs. 2 and 4).  
In our model, we therefore reset all Q values representing prediction 
of outcome but not Q values linking cues to actions (QL and QR), which 
guide the choice. With this partial Q value reset, SARSA agents repro-
duced the animals’ behaviors well, capturing gradual learning of task 
rules and, in particular, perseveration following rule switches (Fig. 6b,c).  
Retaining choice-guiding information was crucial because resetting all 
Q values did not achieve this result (Extended Data Fig. 6b,c).

RPEs obtained from this model also reproduced the dopamine 
signatures across learning (Fig. 6d,e), especially with respect to out-
comes across subregions and task rules. Specifically, RPEs triggered 
by the outcome increased after rule switches (Fig. 6d) equally for stay 
and switch trials (Fig. 6e, bottom). RPEs triggered by the cue were 
separated for stay and switch trials directly after the first rule switch 
(Fig. 6e, middle), recapitulating the uncoupling of cue and outcome 
dopamine signals observed in the data (Fig. 4). By contrast, in a model 
without Q value resets, in which the agents retained all learned outcome 
expectations, learning after rule switches was slower (Extended Data 
Fig. 6d,e), and RPEs did not match the dopamine data after the first rule 
switch. Specifically, outcome-triggered RPEs increased only in switch 
trials (Extended Data Fig. 6g) and remained equal when averaged across 
conditions (because there were more correct stay trials; Extended Data 
Fig. 6f, middle). Together, these results indicate that the rule switch 
and concomitant drop in performance caused animals to (partially) 
discard the learned associations, which was advantageous for learning.

We also tested an off-policy Q-learning model. This model 
failed to capture the characteristic uncoupling of cue-triggered and 
outcome-triggered RPEs that was present in the SARSA model with 
partial Q value reset (Extended Data Fig. 6h,i). This difference could be 
due to the deterministic nature of the task with infrequent changes in 
reward contingencies, which prompted animals to learn from chosen 
actions and did not encourage exploration.

Finally, modeled outcome RPEs, in particular the mirrored nega-
tive deflections with decreasing amplitudes across learning (Fig. 6f), 
resembled the relationship between dopamine dips and dopamine 
peaks in the experimental data (Fig. 5a–c). Simulating outcome RPEs 
in probabilistic sessions (Fig. 6g) also recapitulated the observed dif-
ference between endogenously produced and externally forced errors 
in experimentally obtained outcome dopamine signals (Fig. 5e).

Notably, modeled cue-triggered RPEs did not approximate VS and 
DMS cue dopamine signals in novice sessions in the location and fre-
quency reversed task, in which the animals exhibited a strong response 
bias (Fig. 6d, top and bottom, compare to Fig. 2d,f). This was the case 
despite the fact that the response bias was explicitly modeled in the 
action selection process (see Methods), which indirectly affected 
RPEs. This finding corroborates the idea that the Pavlovian-like passive 
outcome predictions in early learning stages with simple response bias 
strategies (Fig. 3d,e) formed a separate mechanism that could not be 
accounted for by state-action value prediction errors. Fittingly, we 
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found that pure state RPEs approximated the increased VS and DMS cue 
response in correct trials in novice sessions with strong response biases 
(Extended Data Fig. 6j). State RPEs did not match the dopamine data in 
the frequency task (Extended Data Fig. 6k), however, where the animals 
actively pursued the previous task rule without strong response biases 
and state-action RPEs explained the data well.

Discussion
We studied dopamine signaling across the striatum as mice learned 
to integrate instruction cues, actions and outcomes in a task where 
reward expectations depended solely on the internal representation 
of the learned association but not on the statistics of externally con-
trolled outcomes (that is, reward magnitudes and probabilities). Our 
findings suggest that dopamine RPEs reflect the animals’ understand-
ing of the task.

Although outcome-triggered dopamine signals scaled with 
behavioral performance and decreased during learning, cue-triggered 
dopamine signals did not increase accordingly (Fig. 2). These results 
are in contrast to previous findings from Pavlovian or probabilis-
tic tasks in which cue and outcome dopamine signals are inversely 

coupled16–20,26–29. The key difference in our study was that outcome 
probabilities were not externally set (with the exception of infrequent 
rule switches) but depended on task performance, which was under 
the control of the animals. However, our results do not contradict 
but complement previous results using other learning paradigms 
by providing evidence for a dopaminergic mechanism of associative 
learning in non-probabilistic environments. Our TDRL model captured 
the main behavioral and dopaminergic signatures of the present task 
(Fig. 6). In particular, modeling suggested an adjustment in the ani-
mals’ learned cue–action–outcome associations after rule switches. 
Indeed, the experimental data showed that outcome-triggered 
dopamine signals re-emerged after introduction of a new task rule 
and did so equally for stay and switch conditions after the first 
rule switch despite strong differences in behavioral performance, 
which should have triggered different RPEs. This disruption after 
rule switches could be modeled by a reset of Q values that was only 
partial and discarded outcome-predictive information but retained 
choice-guiding information. A reset of state-action values in the model 
resembles the discovery of new states, which might be segmented 
by large prediction errors, and has served as a useful explanation of 

Loc. Freq. Freq. rev.

0

3

z 
sc

or
e

0

3

z 
sc

or
e

–1

0

1

0 1,000

z 
sc

or
e

2.0

5.0

z 
sc

or
e

–2.0

–1.5

0

1.0

z 
sc

or
e

–1.5

–0.5

2.0

5.0

z 
sc

or
e

–2.0

–1.5

Nov.
Int.

Exp.

a VS DMS DLS

0 1,000

Time from outcome (ms)

0 1,000

d e

Exposure to
prob. outcome

Error
Correct

VS outcome DA (n = 4)

Corr. but
no rew.

Nov. Int.
Exp

.10% no rew.

Cue or

Spout (target)

Spout (non-target)

Outcome 90% rew.

Lick Correct trial1 s or

Probabilistic session

0

2

z 
sc

or
e

–2

 **

NS

–2.0

–2.5

 **  **

Lo
w

High

Lo
ca

tio
n

0 1,000 0 1,000

Time from outcome (ms)

0 1,000 0 1,000 0 1,000

Time from outcome (ms)

0 1,000

Loc. Freq. Freq. rev. Loc. Freq. Freq. rev.

b c
Error
Correct

 ***

NS NS NS

 ***  ***  ***  ***  *  ***  ***  ***

NS NS NS NS NS NS

Lo
w

Fig. 5 | Dopamine signals following positive and negative outcomes. 
 a, Top, average normalized dLight fluorescence in the outcome epoch in the 
VS during the location (left), frequency (middle) and frequency reversed rule 
(right) split by correct and error trials across performance levels. Data are 
shown as mean ± s.e.m. across sessions. Bottom, average normalized dLight 
fluorescence peaks or valleys in the outcome epoch. Data were analyzed by 
Kruskal–Wallis tests across pooled sessions (location (n = 25/15/12 sessions for 
novice/intermediate/expert): correct P = 5.6 × 10−9 and error P = 0.829; frequency 
(n = 6/9/11 session): correct P = 2.2 × 10−4 and error P = 0.536; frequency reversed 
(n = 6/9/8 sessions): correct P = 4.7 × 10−4 and error P = 0.838). b, Same as a for the 
DMS (location (n = 21/22/10 sessions): correct P = 7.8 × 10−4 and error P = 0.158; 
frequency (n = 5/12/10 sessions): correct P = 1.4 × 10−4 and error P = 0.512; 
frequency reversed (n = 10/11/10 sessions): correct P = 0.022 and error P = 0.293). 
c, Same as a for the DLS (location (n = 26/24/8 sessions): correct P = 3.0 × 10−6 and 

error P = 0.215; frequency (n = 5/11/7 sessions): correct P = 4.2 × 10−4 and error 
P = 0.965; frequency reversed (n = 11/14/8 sessions): correct P = 4.3 × 10−6 and 
error P = 0.091). d, Schematic of correct trials in the probabilistic session (10% 
without rewards). e, Left, same as a, bottom left, for n = 4 new animals. Data were 
analyzed by Kruskal–Wallis tests across pooled sessions (n = 29/32/18 sessions; 
correct P = 0.007 and error P = 0.575). Right, probabilistic sessions following at 
least seven deterministic expert sessions or only one deterministic session (low 
or high recent exposure to probabilistic outcome, respectively). Data shown 
are for correct but non-rewarded trials within the first 50 trials of the session. 
Data shown in the inset were analyzed by two-sided Wilcoxon rank-sum tests 
across pooled trials with Bonferroni corrections for multiple comparisons (low, 
P = 0.005; high, P = 0.223; low, P = 0.004). Data are shown as mean ± s.e.m. across 
trials. See Supplementary Table 2 for linear mixed model analyses with animal as 
the grouping factor.
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behavioral responses to changing contexts45,46. Together, our exper-
imental and modeling results thus indicate that the rule switches 
prompted animals to cut the learned cue–action–outcome asso-
ciation and rediscover the impact of their own actions, that is, the  
locus of control.

Emphasizing the central role of goal-directed actions in the 
behavior we studied, our results provide evidence that behavioral 
strategies shape dopaminergic signatures. Cue-triggered dopamine 
signals passively tracked external outcome statistics, that is, encoded 
Pavlovian-like reward prediction of rewarded versus unrewarded trials, 
only when cue–action–outcome associations were not yet established 
(Fig. 3). In these early learning stages, mice had not yet incorporated 
their own actions into concepts of the current task but exhibited a 
strong response side bias. Animals therefore experienced one side as 
more rewarding than the other and thus falsely attributed rewards to 
external factors. As a new association was actively formed, the locus of 
control shifted toward the animal as an active agent, which was accom-
panied by reduced passive tracking. TDRL modeling showed that active 
learning could be well approximated by state-action value learning 
(Fig. 6). Interestingly, passive tracking was not captured by state-action 
RPEs but could be modeled by pure state RPEs, which recapitulated 
the response bias-related dopamine cue responses. Together, these 
results suggest an additional mechanism that is triggered in situations 
with low perceived control over outcomes. Therefore, in light of recent 
findings regarding functional heterogeneity in dopamine neurons47, it 
is conceivable that signals associated with active and passive learning 
are mixed in striatal projections, for example, in the form of distributed 
RPE coding48.

After the first rule switch, cue-triggered dopamine was higher for 
stay conditions than for switch conditions in novice sessions (Fig. 4), 
which at first glance resembled passive tracking after the second rule 
switch (that is, difference in cue dopamine signals between correct and 
error trials in novice sessions). The key difference to novice sessions in 
the other tasks, however, was that the animals did not adopt a strong 
response bias strategy after the first rule switch but instead actively 
pursued the previous task rule. Fittingly, this dopamine signature was 
explained by state-action value prediction errors, specifically by those 
produced by an on-policy learning algorithm. Interestingly, on-policy 
SARSA and off-policy Q-learning predicted qualitatively different RPE 
signatures after the first rule switch. The dopamine data clearly favored 
SARSA (Fig. 6e versus Extended Data Fig. 6i). There is mixed evidence in 
the literature regarding what type of state-action value learning might 
be used by the brain27,49. SARSA and Q-learning differ most in explora-
tory trials (that is, trials in which the lower-valued action is selected by 
mistake). Correct switch trials after the first rule switch were exactly 
such trials, which is why the SARSA model, comparable to the data, 
showed separation between stay and switch trials for cue-triggered 
RPEs after the rule switch, representing the previously learned values. 
A correct response in a switch trial was a false response before the rule 
switch, so in a correct switch trial, a low-valued action was chosen by 
mistake. SARSA fitting better to the data could be rooted in the nature 
of the task. Q-learning is more optimal for exploration and, in con-
trast to SARSA, does not penalize choosing the lower-valued option 
for exploratory purposes. Our task did not incentivize exploration 
because rule switches and accompanying changes in contingencies 
were rare, unlike in probabilistic bandit tasks. In conjunction with the 
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re-emergence of outcome RPEs uniformly in stay and switch conditions, 
signifying a reset of outcome expectancies after the rule switch, these 
SARSA-modeled cue RPEs reproduced the uncoupling observed in 
cue and outcome dopamine when the animals had to re-evaluate the 
consequences of their own actions.

In our non-probabilistic learning task, negative dopamine RPEs 
were not inversely scaled with task performance but tended to diminish 
across learning (Fig. 5). This is in contrast to parallel offsets between 
positive and negative dopamine RPEs, which reflect externally driven 
outcome expectations both during the delivery of rewards and the 
omission of rewards37,39 but is in line with belief states shaping dopa-
mine RPEs29,41. We speculate that this result is rooted in the changing 
extent to which animals attribute outcomes to external versus internal 
factors, resulting in expectations that do not simply track external 
reward rate. When animals were experts and had a firm concept of 
the task, there was less need to update their behavioral strategy after 
errors, which may explain attenuated negative dopamine RPEs and is 
consistent with the lowered behavioral sensitivity to outcomes that is a 
characteristic of beginning habit formation after extensive training36. 
This notion was supported by our experimental finding that externally 
forced reward omissions produced stronger reductions in dopamine 
than own unforced errors (Fig. 5). This result also ruled out that a floor 
effect in the fluorescent measurements prevented the detection of a 
parallel shift of dopamine dips relative to dopamine peaks. The TDRL 
model reproduced both the upward ramping course of negative RPEs 
and the RPE differences for the two types of errors (Fig. 6), fitting to 
the on-policy SARSA agent already accounting for the (probably bad) 
choice in error trials when it processes the cue.

Despite strong similarities across striatal subregions in our study, 
we found differences between subregions regarding temporal dynam-
ics50 and learning-related changes in dopamine signals. Although 
state-action value learning models captured the main dopamine 
signatures, individual aspects were differentially expressed in the 
different subregions. In the DLS, or sensorimotor striatum, we did 
not find large dopamine transients during the cue epoch but found 
them predominantly following outcomes. Dopamine signals in this 
subregion most closely resembled the action value prediction errors 
from the model, in agreement with a hypothesized involvement of 
the DLS in action learning and habit formation36. In contrast to a 
previous study that did not observe negative RPEs in this subregion29, 
we found similar dopamine dips in all striatal subregions, including 
the DLS. This might be explained by differences in the nature of the 
measured signals (axonal calcium activity versus dopamine release) 
or differences in the behavioral task. In the VS, or motivational stria-
tum, cue-triggered dopamine signals most strongly reflected the 
Pavlovian-like encoding of rewarded and unrewarded trials in ses-
sions with strong response bias and therefore most strongly deviated 
from modeled action value prediction errors, which is in line with the 
role of the VS in motivational functions and Pavlovian learning36. In 
the DMS, or associative striatum, cue-triggered dopamine signals 
were larger than reward-triggered dopamine signals, which were 
close to 0 in expert sessions. Absence of reward-triggered dopa-
mine signals in the DMS has been reported previously in well-trained  
animals25,29,51. We found that reward-triggered dopamine signals are 
indeed present in the DMS in early training stages. Reward-related 
dopamine signals in the DMS have also been observed after changes 
in outcome contingencies52, matching the strong and transient modu-
lation of outcome-triggered dopamine signals in the DMS after rule 
switches in our task. Taken together, DMS dopamine could be used 
to facilitate behavioral adaptations after rule switches, in agree-
ment with the assumed role of the DMS in goal-directed behavior and  
behavioral flexibility36,53.

In conclusion, our findings provide insights into the dopaminergic 
signatures underlying the integration of sensory cues, actions and 
outcomes into a mechanistic understanding of the environment, which 

is the foundation of intelligent behavior. The principles of biological 
learning play a vital role in informing algorithms in artificial learning54. 
Future efforts should be directed at studying learning in increasingly 
naturalistic environments to foster fruitful interactions between the 
fields of biological and artificial intelligence55.
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Methods
Animals
All animal procedures were authorized by the local government 
(Regierung von Oberbayern, license number ROB-55.2-2532.Vet_02-
17-119). Animal health was examined and scored every day. Wild-type 
male mice (C57BL/6J, Charles River) were used for all experiments. 
Mice were 8–10 weeks old at the beginning of the experiments and 
were housed in single cages on a reverse 12-h light/12-h dark cycle (that 
is, dark during the day). Ambient humidity and temperature were set 
to 50% and 24 °C, respectively. Mice had ad libitum access to food and 
water except during behavioral experiments.

Virus injection and fiber implantation
A total of 30 mice were implanted. Animals were initially anesthetized 
with 2% isoflurane and transferred to a stereotaxic frame (Neurostar), 
where isoflurane anesthesia was maintained at 0.8–1.5%. Analgesia 
(200 mg per kg (body weight) metamizol and 1.5 mg per kg (body 
weight) meloxicam) was injected subcutaneously. Body temperature 
was controlled with a thermometer and adjustable heating pad, and 
respiration was visually monitored. Hair above the skull was removed 
with a shaver, and the skin above the skull was disinfected with 70% 
ethanol. Local anesthetics (2% lidocaine solution) were injected sub-
cutaneously, and the skin above the skull was excised. The skull was 
cleaned thoroughly with 0.9% sodium chloride solution and roughened 
with forceps in preparation for implantation. Guided by automated 
navigation software (Neurostar StereoDrive version 3.1.5) for correc-
tion of tilt and scaling of the skull, a 0.6-mm craniotomy was performed 
above the target location of virus injection and fiber implantation.

For expression of the fluorescent dopamine sensor dLight35, 
200 nl of AAV5.hSyn.dLight1.2 (titer of 4 × 1012 genome copies per ml) 
was injected unilaterally with a glass capillary nanoinjector (Neuro-
star NanoW). pAAV-hSyn-dLight1.2 was a gift from L. Tian, UC Davis 
(Addgene viral prep 111068-AAV5; http://n2t.net/addgene:111068; 
RRID: Addgene_111068). The virus was injected in one of the following 
target regions: lateral VS (bregma +1.3 mm anterior, ±1.8 mm lateral, 
+4.3 mm ventral), DMS (bregma +0.7 mm anterior, ±1.3 mm lateral, 
+2.6 mm ventral) or DLS (bregma +0.5 mm anterior, ±2.5 mm lateral, 
+2.8 mm ventral). Seven mice were implanted in the VS, five mice were 
implanted in the DMS, and four mice were implanted in the DLS. One 
VS animal was excluded from dLight analysis due to low signal ampli-
tude. Two VS animals were lost during training and completed only the 
first two tasks. Four additional mice were implanted in the VS for the 
probabilistic experiment (Fig. 5d,e). Left and right hemispheres were 
counterbalanced across animals for each target region.

For virus injection, a glass capillary with a tip diameter smaller 
than 50 µm was lowered and retracted at 0.5 mm min–1. The virus was 
injected at a rate of 50 nl min–1. The glass capillary was retracted after 
10 min of diffusion time. Ready-to-implant 1.25-mm optic fiber ferrules 
(Thorlabs, CFMXD05 or CFMXD04) or equivalent custom-built ferrules 
(using Thorlabs FP400URT, CFX440 and NOA63) with a fiber diameter 
of 400 µm and numerical aperture of 0.5 were implanted 200 µm above 
the injection site. The length of the implanted fibers was approximately 
0.5 to 1 mm longer than the dorsoventral implantation coordinate. 
To minimize tissue trauma, the fiber was iteratively lowered 200 µm 
and retracted 100 µm at a speed of 2 mm min−1 until the implantation 
site was reached. The ferrule was fixed to the skull with light-curing 
adhesive (OptiBond All-in-One) and dental cement (Tetric EvoFlow). 
A custom-made metal bar for head fixation was fixed to the skull pos-
terior to the fiber implant. Animals received postoperative analgesia 
(1.5 mg per kg (body weight) meloxicam) for 3 d following the surgery.

Histology
After behavioral and photometry experiments, animals were perfused 
with 4% paraformaldehyde. Brains were postfixed for 24 h with fiber 
implants in place. Brains were sliced in coronal sections at 120 µm using 

a vibratome and covered with mounting medium (VectaShield). Histo-
logical slices were imaged using a confocal microscope (Leica SP8) with 
tenfold magnification. Confocal images were overlayed with sections 
from the mouse brain atlas56 for verification of implantation locations.

Behavior
Behavioral setup. Behavioral experiments were performed in 
sound-attenuated boxes (Med Associates). Mice were head fixed and 
rested in a body tube. Two drinking spouts were moved into and out 
of reach of the animals’ tongues using servo motors (Turnigy, TGY 
313C) and a microcontroller (Arduino Uno Rev3). When positioned 
within reach of the tongue, the spouts were approximately 4–8 mm 
apart. Spout contacts of the tongue (that is, lick responses) were moni-
tored as threshold crossings of the metal-to-water junction potential57. 
Water rewards were dispensed from the spouts using a TTL-controlled 
syringe pump (New Era Pump Systems, NE-500). Electrostatic speak-
ers for ultrasonic sound production (Tucker-Davis Technologies, ED1 
and ES1) were positioned 10 cm to the left and right of the animals’ 
ears at an angle of 15° toward the front. A monitor with a diagonal 
of 25.4 cm (Faytech, FT10TMB) was positioned 15 cm in front of the 
animals. The behavioral protocol was implemented using MATLAB 
(version R2018a) and the MATLAB toolbox MonkeyLogic (version 2, 
build 206)58 to control a data acquisition device (National Instruments, 
PCIe-6323) with a break-out panel (National Instruments, BNC-2090A). 
Time-stamped behavioral event codes were sent to the photometry  
recording system.

Controlled water protocol. After at least 3 d of postoperative recovery 
and 3 to 4 weeks of viral expression time, mice were administered a con-
trolled water protocol to motivate them for behavioral experiments. 
Animals received water during daily training sessions in which they 
drank 1,000 to 1,500 µl of water. If mice drank less than 1,000 µl in a 
training session, they received additional water from a pipette. Animals 
were typically trained every day. Body weight and health scores were 
examined daily to ensure that body weight was maintained above 80% 
of the weight before the surgery.

Habituation. On the first day of habituation, mice were slowly accus-
tomed to handling by the experimenter and were introduced to the 
body tube for head fixation. To reinforce the habituation, animals 
received water rewards from a pipette during handling. On the second 
or third day of habituation, mice were head-fixed in the setup and 
received free water rewards from one stationary licking spout.

Pretraining. For mice to learn to respond to two movable licking 
spouts, they received three to four sessions of pretraining in which 
only one of the two licking spouts was presented in a randomized 
order, and a water reward was released after an instrumental lick. After 
a maximum of four pretraining sessions, when mice consumed at least 
800 µl of water during one session, they progressed to the full task.

Auditory decision-making task. All 30 implanted mice were trained to 
perform an instrumental response lick on one of two drinking spouts 
to obtain a water reward. Water rewards were only dispensed after a 
correct lick. The correct spout was indicated by an auditory instruc-
tion cue, which was either low-frequency band-pass-filtered white 
noise (4 to 8 kHz) or high-frequency band-pass-filtered white noise (16 
to 32 kHz) at 75–80 dB sound pressure level. At the beginning of each 
trial, the monitor’s luminance was raised to indicate the trial start. The 
monitor was at background luminance between trials. After 1,000 ms, 
the auditory cue was played on one of the speakers for 1,000 ms. Fol-
lowing the offset of the cue, the two licking spouts were moved into 
reach of the animals’ tongues, and the response window started. In 
the response window, the first contact of the tongue with either of the 
two spouts was registered as the behavioral response. When the first 
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lick was on the correct spout, a water reward of 5 µl was triggered to be 
dispensed from the target spout. The non-target spout was retracted 
immediately after a correct lick on the target spout. When the first lick 
in the response window was on the incorrect spout, both spouts were 
retracted, and an error time out of 4,000 ms was initiated in addition 
to the regular intertrial interval of 4,000 ms. In miss trials, when no lick 
was detected, both spouts were retracted, and the regular intertrial 
interval began after the 2,000-ms response window. Trials were pre-
sented in blocks of 32 trials in pseudorandomized order, that is, within 
a block, the conditions were drawn randomly without replacement.

Task rules. Animals were trained on three different implicit task rules 
based on the two instruction cue dimensions, location and frequency. 
Animals in the main experiment were first trained on the location rule 
and had to lick the left spout following a sound from the left speaker 
or the right spout following a sound from the right speaker to obtain a 
reward. Once animals had acquired the first rule, the rule was switched 
to the previously irrelevant frequency dimension, and animals had to 
lick the left spout following a low-frequency sound and the right spout 
following a high-frequency sound to obtain a reward. Finally, after ani-
mals had acquired the frequency rule, the rule was switched within the 
dimension of frequency, and animals had to lick the left spout following 
a high-frequency sound and the right spout following a low-frequency 
sound to obtain a reward. In probabilistic sessions (Fig. 5d), the contin-
gencies were reversed in 10% of the trials such that a correct response 
triggered the outcome normally triggered in incorrect trials (that is, 
spout retraction and time out), whereas an incorrect response trig-
gered the outcome normally triggered in correct trials (that is, reward).

Session durations. Behavioral sessions were terminated manually 
when miss trials due to satiety were noticed. Sessions were then trun-
cated post hoc at the first miss trial after 90% of the trials and were 
further truncated if the performance dropped below 1.5 s.d. during 
the last 15% of trials before the first miss trial. Overall, this method 
resulted in 5.67% of trials being excluded. A negligible amount of miss 
trials (0.02% of all trials) were also excluded from the analysis. The 
average session duration after truncating was 330 trials (s.d., 77 trials).

To obtain quasicontinuous data points of dopamine measure-
ments across the learning process, dopamine signals were recorded in 
every other behavioral session. Criterion performance for task acqui-
sition was defined as at least 80% of correct trials per session and at 
least 60% of correct trials in each of the four conditions. Task rules 
were switched when animals had performed at least two photometry 
sessions at criterion performance, and the following behavior-only 
session was also a criterion session.

Response bias. Mice naturally developed idiosyncratic preferences 
for either of the two spouts. Two quantify this preference, a response 
bias index was calculated as (fraction correct left trials – fraction cor-
rect right trials)/(fraction correct left trials). The absolute response 
bias (|response bias|) was calculated as |(response bias – 0.5)| and thus 
ranged between 0 and 0.5, with larger values indicating larger absolute 
response biases independent of the response side. The response pref-
erence could be manipulated by adjusting the relative position of the 
two licking spouts, that is, positioning the non-preferred spout closer 
or the preferred spout further away. When extreme side preferences 
were observed, the spouts were positioned individually for each animal 
before the session to counteract their strong preference in previous 
sessions. In behavior-only sessions (that is, every other session), but 
not in photometry sessions, the response bias was monitored, and 
spout positions were adjusted online. The intrasession adjustments 
were not conducted during photometry sessions to keep the effort of 
reaching the spouts constant. Bias adjustments were only conducted 
in novice sessions during the first task rule but not in later sessions or 
after rule switches.

Learning rate. Learning rate was defined as the slope of a linear func-
tion fit to the performance curve across sessions from the first session 
in the task to the first criterion session. For the first task rule (location), 
two fits were used to account for the apparent slope increase in the 
learning curves after several novice sessions with strong response bias. 
The first fit was performed from the first session to the last novice ses-
sion and the second fit from the first intermediate session to the first 
criterion (expert) session. Fitting two lines instead of one yielded a 
better fit for the location task rule.

Pilot experiments. In pilot experiments, the task rule for the initial 
task acquisition was varied to examine potential preferences for one 
or the other instruction cue dimension. The pilot experiment was 
identical to the main experiment, except for the following difference. 
In a fraction of trials, only the target spout was presented, forcing the 
animal to make a correct choice. These forced-choice trials were used 
in pilot experiments to speed up task acquisition, but not in the main 
experiment. In the pilot experiments, animals showed no difference 
in the initial task acquisition time between location and frequency 
rules, suggesting that animals did not prefer either instruction cue 
dimension per se.

Fiber photometry
Fiber photometric signals were acquired with a two-channel analog 
optometer with amplification and filter modules (NPI Electronic, FOM-
02 and LPBF-01GD). For dLight measurements, a 470-nm LED, 442- to 
478-nm excitation and 500- to 530-nm emission filter and a 495-nm 
dichroic mirror were used. For control measurements, a 556-nm LED, 
546- to 566-nm excitation filter, 589- to 625-nm emission filter and 
573-nm dichroic mirror were used. The two channels were separated 
with a 532-nm dichroic mirror.

A low-autofluorescence patch cable (Thorlabs, FP400URT- 
CUSTOM) was connected to the implanted ceramic ferrule using a 
ceramic mating sleeve (Thorlabs, ADAL1). The excitation light intensity 
was set to 50 µW at the tip of the patch cable in all dLight photometry 
sessions. The transmission rate of the implanted ferrules was between 
80% and 86%, as tested before implantation, resulting in an excita-
tion intensity of 40 to 43 µW. The fluorescence signals were ampli-
fied and filtered in hardware with a gain of 100 and a low-pass filter 
at 100 Hz, digitized at a 1-kHz sampling rate using a data acquisition 
system (Plexon Omniplex version 1.18.3) and recorded together with 
behavioral time stamps.

Control photometry sessions were performed using the 556-nm 
channel. Because the excitation light in this control channel did not 
overlap with the excitation wavelength of dLight, the recorded signal 
was assumed to represent background autofluorescence independent 
of dLight activity. The light intensity was titrated individually for each 
animal to match the background fluorescence level in the control chan-
nel to the level of dLight recordings, resulting in intensities from 60 to 
250 µW. Control recordings showed negligible amplitudes compared 
to dLight signals.

Choice models
The session-based choice model was a logistic regression model. The 
probability of an animal’s choice ̂yi in each trial was modeled as a linear 
combination of predictors passed through a logistic function

ŷ = 1
1 + e−z ,

where

z = ∑
p
βp + β0,

and where βp is the regression weight for predictor p, and β0 is an 
intercept, which represents a general tendency for a left or right 
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response. Regressor weights were optimized by minimizing the nega-
tive log-likelihood function

J = − 1
m

m
∑
i
y log( ŷi) + (1 − yi) log(1 − ŷi),

where m is the number of trials, yi is the actual choice in trial i, and ̂yi is 
the predicted probability of choice in trial . Weights were optimized 
by gradient descent, and the optimization was stopped when the loss 
was below 1 × 10−4 or a maximum number of iterations was reached. 
Binary model predictions for choice were calculated by rounding the 
model probability ̂y to 0 or 1. The model was validated using the Pyglm-
net toolbox (version 1.1)59, which produced similar results.

The model was fit per session with tenfold cross-validation. The 
samples of all regressors were randomly split into training and test 
sets ten times, such that every sample appeared in the test set once. 
The predictions for all samples from the test sets were used to cal-
culate the cross-validated prediction accuracy, which was used for 
model selection. Using likelihood-based measures, such as pseudo-R2, 
cross-validated bit per trial34 or information criteria (Bayesian informa-
tion criterion and Akaike information criterion), for model selection 
produced similar results. Prediction accuracy was used for model 
evaluation due to intuitive interpretation. Elastic net regularization, 
including a grid search for the regularization parameters, did not 
qualitatively change the results. Therefore, no regularization was used.

Regressors for the final model were selected such that the pre-
diction accuracy across all sessions was significantly reduced when 
a regressor was removed, and the prediction accuracy was not sig-
nificantly enhanced when other regressors were added or alternative 
regressors were used. The following regressors were part of the final 
session-based choice model: cue location of the current trial (−1 for the 
left speaker and +1 for the right speaker), cue frequency of the current 
trial (−1 for the low-frequency sound and +1 for the high-frequency 
sound) and ∆reward rate (the difference of a ten-trial exponentially 
weighted average rate of rewards up to and including the previous 
trial calculated separately for each spout, ranging between −1 and 
1). ∆Reward rate indicated whether a reward was expected more on 
the left spout or on the right spout according to the history of previ-
ous choices and rewards. Several alternative models were compared 
to the final model. The first alternative trial history model included 
the reward rates of the left and right spout (ten-trial exponentially 
weighted average of rewards up to and including the previous trial, 
ranging between 0 and 1). The second alternative trial history model 
included three predictors for the choice up to three trials back (−1 for 
the left choice and +1 for the right choice). The third alternative trial 
history model included two predictors representing a ‘win–stay’ and 
‘lose–switch’ strategy, respectively. Win–stay was coded as −1 follow-
ing a correct previous trial with a left choice, as +1 following a correct 
previous trial with a right choice and as 0 following a false previous 
trial. Lose–switch was coded as −1 following a false previous trial with 
a left choice, as +1 following a false previous trial with a right choice 
and as 0 following a correct previous trial. The fourth alternative trial 
history model included only the choice in the previous trial (−1 for 
left previous choice and +1 for right previous choice). The additional 
variables included the choice in the previous trial and previous trial 
outcome (−1 for no reward in the previous trial and +1 for reward in 
the previous trial) and the interaction thereof, the previous choice and 
outcome and interaction thereof up to three trials back, the win–stay 
and lose–switch predictors, the interaction of the cue predictors and 
the history of the cue up to three trials back. Input variables were all in 
the range between −1 and +1 and were not standardized to avoid mean 
centering and to ascertain interpretability of weight deviations from 0.

The trial-based choice model was fit using the PsyTrack tool-
box30, which also models choice in a logistic regression. The PsyTrack 
model was fit per animal using optimized hyperparameters to allow for 

fluctuations of regressor weights throughout the learning process, both 
across trials and across sessions. The recommended default initial hyper-
parameters were used. Model predictions were again made with tenfold 
cross-validation to calculate the cross-validated prediction accuracy and 
compare the PsyTrack model to the custom session-based model. The 
same regressor variables as in the final session-based model were used.

Data analysis
Fiber photometric signals were smoothed with a 50-ms running aver-
age and downsampled to 50 samples per s. For analysis of trial-related 
modulations of dLight, relative fluorescence ∆F/F was calculated by 
subtracting a baseline from every sample and dividing it by the base-
line using the average amplitude of a 500-ms window before the trial 
start as a baseline. Using baselining methods that retain slow fluc-
tuations across the session (for example, subtracting a polynomial 
fit or low-pass-filtered version of the whole-session signal) yielded 
qualitatively similar results. The ∆F/F signals were normalized using 
a robust z score (subtracting the median and dividing by the median 
absolute deviation) calculated for each session using the analyzed trial 
sections to account for differences in signal intensities across sessions 
and animals. Calculating the z score using only the baseline period or 
using the whole session did not change the main results.

Statistics
No statistical methods were used to predetermine sample sizes, but our 
sample sizes are similar to those reported in previous publications20,28. 
For tests of statistical significance, sessions were pooled across animals 
when groups of sessions were compared (for example, comparisons 
across performance levels). Trials were pooled across sessions when 
different trial types were compared (for example, comparisons across 
stay and switch trials). The main results were not qualitatively differ-
ent without pooling. Non-parametric tests were used for comparisons 
across two groups (Wilcoxon signed-rank/rank-sum test) and three or 
more groups (Kruskal–Wallis test), unless otherwise stated. Signifi-
cance levels were adjusted for multiple comparisons (Bonferroni cor-
rection), as noted in the figure captions. To account for the hierarchical 
structure in the data, we performed additional linear mixed model 
analyses with fixed and random effects for all tests with pooled data 
using animal identity as the grouping factor for random intercepts and 
random slopes. Linear mixed models confirmed the main results (see 
Supplementary Table 2). Data are presented as mean ± s.e.m. across 
animals, sessions or trials, as specified in the figure captions. Box plot 
elements are defined in the following way: center lines represent the 
median values, box limits represent the upper and lower quartiles, 
whiskers represent 1.5× interquartile range, and points represent 
outliers. Significance levels are indicated as *P < 0.05, **P < 0.01 and 
***P < 0.001 in all figures.

Dopamine peaks (positive or negative) were defined as the peak 
or valley with the larger prominence in a given time window. The time 
windows were selected to account for differences in dynamics of dopa-
mine signals across trial epochs and striatal subregions. Peaks in the cue 
epoch were detected using windows of 1,000 ms after cue presentation 
for all subregions. Peaks in the outcome epoch were detected using a 
window of 840 ms for the VS, 740 ms for the DMS and 380 ms for the 
DLS. The windows for the outcome epoch started with a short latency 
after the instrumental lick (160 ms for the VS and DMS and 140 ms for 
the DLS) to account for latencies in reward delivery and kinetics of the 
fluorescent sensor. To avoid visual doubling of signals triggered by 
the presentation of the spouts, this latency was also used in all figures 
showing outcome-triggered dopamine signals. For the trial epoch of 
the spout movements, a window of 340 ms after the cue offset was 
used for all subregions. Differences in average dopamine levels were 
also calculated by simple averages across time windows instead of peak 
extraction, which produced qualitatively similar results. Further, main 
results did not depend on the exact window lengths.
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Data were analyzed with Python (version 3.6.8) using the packages 
NumPy (version 1.16.4)60, SciPy (version 1.5.4)61, pandas (v0.25.1)62, 
matplotlib (v3.1.3)63, scikit-learn (version 0.22.1)64, statsmodels (ver-
sion 0.11.1)65 and pymer4 (version 0.8.0)66 in addition to the toolboxes 
mentioned earlier.

Data collection and analysis were not performed blind to the con-
ditions of the experiments. All animals underwent the same behavioral 
protocol. There was no random assignment to experimental groups.

Reinforcement learning models
TDRL models of state-action values were used to simulate mouse behav-
ior and RPEs in the form of TD errors. Because we were interested in 
mechanistic insights at a conceptual level, we did not perform formal 
quantitative fits to the data but instead designed the models’ environ-
ment and agent configurations to qualitatively capture the behavioral 
and neural signatures.

For each task rule, one task environment was constructed. The 
environments included five temporal states (initial, cue, action, out-
come and end; Extended Data Fig. 6a). We used four cue states to 
represent the four conditions, eight action states to represent the com-
bination of four conditions and two response sides (left and right) and 
eight outcome states to represent the combination of the four condi-
tions and two outcomes (that is, correct or false). This resulted in a total 
of 22 states. In each episode representing a trial, the agent visited each 
of the temporal states. From the initial state, the agent transitioned to 
one of the four cue states with uniform probability. In the cue state, a 
left or right action could be selected. Missed actions were not modeled 
due to the negligibly small amount of miss trials in the data. Depending 
on the selected action, the agent transitioned to the left or right action 
state. The agent then transitioned to the reward state or the no-reward 
state depending on whether the action (selected during the cue state) 
was correct or false, respectively. Entering the reward state, a reward 
of 1 was obtained, whereas entering the no-reward state, a reward of 
−1 was obtained. For the modeling of probabilistic sessions (Fig. 6g), 
the environment was changed such that in 10% of trials, there was a 
transition from the correct action state to the no-reward state and a 
transition from the false action state to the reward state.

We tested two different standard state-action value learn-
ing algorithms: an on-policy variant of Q-learning (SARSA, 
state-action-reward-state-action43) and off-policy Q-learning42. The 
goal of the agent is to maximize the cumulative future reward

Rt =
∞
∑
k=0

γkrt+k,

where γ is the discount factor, and rt  is the reward at time point t. The 
agent learns and updates state-action values, which were initialized to 
0 according to

Q (st,at) ← Q (st,at) + αδt,

where Q (st,at) is the state-action value for action a in state s  at time 
point t, α is the learning rate, and δt is the TD error. The TD error for the 
on-policy SARSA agent is

δt = rt+1 + γQ (st+1,at+1) −Q (st,at) ,

where rt+1 is the reward at the next time point, γ is the discount factor, 
and Q (st+1,at+1) is the state-action value at the next time point using the 
next state and chosen action. The TD error for the off-policy Q-learning 
agent is

δt = rt+1 + γmax
a

Q (st+1,a) −Q (st,at) ,

where, in contrast to SARSA, the Q-learning agent uses the maximum 
of the state-action values in the next state max

a
Q (st+1,a).

Actions only influenced the probability of state transitions in the 
cue epoch. In the other states, a dummy action was selected, and the 
action values were set to the same value for each action after the update. 
RPEs were modeled as the TD errors of entering a state.

For action selection, we used the ‘softmax’ choice rule, which trans-
forms the Q values to probabilities of choosing an action according to

P (a = left) =
exp[β(Qleft + βbias_left)]

exp[β(Qleft + βbias_left)] + exp[β(Qright + βbias_right)]
,

where β is the inverse temperature that controls the stochasticity of 
choice, ranging from 0 (random choice) to ∞ (deterministic choice 
of the highest value), and βbias is a bias parameter that was arbitrarily 
initialized with initial value βbias0 for one of the two actions (and 0 
for the other action) for each agent and set to exponentially decay 
to 0 across sessions with decay constant λbias. To account for the 
animals’ response biases (Fig. 1f), the bias term in the model was used 
during task rules with initial learning (location task) or when the 
performance dropped below chance level due to perseveration on 
the previous rule (frequency reversed task). We thus assumed that 
the response bias originated in the action selection system, not the 
valuation system.

The rule (that is, the environment) was switched after two ses-
sions with criterion performance, as in the behavioral experiments. To 
model the resulting effects on behavioral and dopamine signatures, we 
explored different variants of resetting Q values after the rule switch: 
no reset, complete reset and partial reset, where cue-state Q values, 
which represent the choice-guiding information learned during the 
previous task rule, were retained.

We simulated 300 trials per session. The following parameters 
were used for all simulations presented in the figures: α = 0.003, γ = 1, 
β = 6, βbias0 = 0.4 and λbias = 0.4.

State RPEs were obtained from the SARSA partial Q reset model 
that was generated using the same settings as described earlier. State 
values were updated according to

V (st) ← V (st) + αδt,

where V (st,at) is the state value in state s at time point t, α is the learning 
rate, and δt  is the TD error

δt = rt+1 + γV (st+1) − V (st) .

For state value learning, we applied the same state space and 
partial value reset as for state-action value learning and used the fol-
lowing parameters: α = 0.015 and γ = 1.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw data are available on request from the authors. Source data are 
provided with this paper.

Code availability
Code is available on request from the authors.
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Extended Data Fig. 1 | Pilot control study and details of behavioral analysis. a, 
Average absolute response bias per session for n = 26 animals (gray) and average 
across animals (color) for currently non-relevant cue dimension. b, Average 
fraction of correct trials per session up to the first criterion session for n = 26 
animals for each task rule (gray) and linear fit to average performance across 

sessions from first session in task to first criterion (expert) session. Two fits for 
location task rule (red/black, see Methods). c, Left, average fraction of correct 
trials per session and per animal (n = 4 animals for location rule and n = 4 animals 
for frequency rule). Right, average number of sessions to criterion per task rule. 
Mean ± s.e.m. across animals. Two-sided permutation test, P = 0.886.
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Extended Data Fig. 2 | Choice model performance. a, Cross-validated 
prediction accuracy of the full session-based model compared to reduced 
models, averaged across sessions, split by performance levels. Two-sided 
Wilcoxon signed-rank tests (n = 26 animals) with Holm-Bonferroni correction 
for multiple comparisons. Novice: Bias vs. History, P = 2.8 × 10−4; History vs. Cue, 
P = 0.970; Cue vs. Full, P = 1.4 × 10−4. Intermediate: Bias vs. History, P = 1.4 × 10−4; 
History vs. Cue, P = 7.5 × 10−5; Cue vs. Full, P = 1.4 × 10−4. Expert: Bias vs. History, 

P = 0.008; History vs. Cue, P = 7.5 × 10−5; Cue vs. Full, P = 1.0. Markers and error 
bars show mean and standard error of the mean across sessions, respectively. 
b, Same as a, but for trial-based model. Novice: Bias vs. History, P = 1.0; History 
vs. Cue, P = 7.5 × 10−5; Cue vs. Full, P = 1.0. Intermediate: Bias vs. History, P = 1.0; 
History vs. Cue, P = 7.5 × 10−5; Cue vs. Full, P = 1.0. Expert: Bias vs. History, 
P = 7.5 × 10−5; History vs. Cue, P = 7.5 × 10−5; Cue vs. Full, P = 0.721. *P < 0.05, 
**P < 0.01, ***P < 0.001.
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Extended Data Fig. 3 | Photometry control measurements. a, Raw 
fluorescence in an example session with dLight measurement (green) or 
control measurement (red). b, Relative fluorescence for the last task sessions 
with dLight photometry (green) and a task session after the experiment with 
autofluorescence control (red). Mean ± s.e.m. across animals (VS, n = 6 animals, 

DMS, n = 5 animals, DLS n = 4 animals). c, Same as b, but only control signals from 
three different sessions before and after the experiment (‘Task’: last task session, 
‘Control before’: pre-training session before task learning, ‘Control after’: pre-
training session after task learning).
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Extended Data Fig. 4 | Lateralization of dopamine signals. a-c, Average normalized dLight fluorescence in VS (a), DMS (b), and DLS (c) in correct trials split by choice 
ipsilateral and contralateral to implanted hemisphere.
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Extended Data Fig. 5 | Spout-triggered dopamine signals during pre-training. 
a, Left, average normalized dLight fluorescence in VS in correct trials in spouts 
epoch during pre-training sessions and first task sessions. Mean ± s.e.m across 
sessions. Right, average normalized dLight fluorescence peak heights in spouts 

epoch. Kruskal-Wallis test across n = 6 animals. P = 0.016. b, same as a, but for 
DMS. P = 0.008, n = 5 animals. c, same as a, but for DLS. P = 0.043, n = 4 animals. 
*P < 0.05, **P < 0.01.
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Extended Data Fig. 6 | Full TDRL model state space and different 
implementations of learning. a, Full state space of TDRL models, exemplified 
for one environment (that is, task rule) and highlighting one condition (black). 
State transitions were determined by the environment except in cue states, 
where the agent transitioned to one of two action states depending on its choice. 
For deterministic state transitions only one state-action value is shown. QL/R, 
state-action values for the left/right action in the cue state. b, Simulation of 
SARSA agents with complete Q reset (that is, no Q-values were retained after rule 
switches). Top, average fraction of correct trials per session for n = 5 agents (gray) 
and average across agents (color) for each task rule. c, Average fraction of correct 
trials per agent for the first 100 trials of the last session of the previous task 
rule and the following rule switch session, split by stay and switch conditions. 

d, e, same as b, c, but for SARSA agents without Q reset (that is, all Q-values 
were retained after rule switches). f, Average reward prediction error (RPE) for 
SARSA agents without Q reset in the cue epoch (left) and outcome epoch (right) 
in correct trials, split by performance levels for all task rules. g, Top, fraction of 
correct trials for last location session (Llast), first frequency session (F1), selected 
intermediate frequency sessions, and the last frequency session (Flast), split by 
stay and switch conditions. Middle and bottom, average RPE in trial epochs 
cue (middle) and outcome (bottom) in correct trials, split by stay and switch 
conditions. h, i, same as f, g, but for Q-learning model with partial Q reset (that is, 
only QL/R values in cue states were retained after rule switches). j, k, same as f, g, 
but showing state RPEs obtained from the SARSA partial Q reset model.
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Sample size No statistical methods were used to pre-determine sample sizes, but our sample sizes are similar to those reported in previous publications 

(see Methods). Datasets were completed before data analysis and no data were added at later timepoints.

Data exclusions As reported in Methods, one animal was excluded from dLight analysis due to low signal amplitude and two animals were lost during training 

and completed only the first two tasks.

Replication No additional replication measures were performed, except succesful replication of main results across individual animals (4 to 6 animals).

Randomization All animals underwent the same behavioral protocol. There was no random assignment to experimental groups.

Blinding We did not perform blinded experiments, since all animals underwent the same behavioral protocol.
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Laboratory animals Wild-type male mice (C57BL/6J, Charles River) were used. Mice were 8-10 weeks old at the beginning of the experiments. 
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Wild animals No wild animals were used.

Reporting on sex Only male mice were used. There is no indication that the effects are sex-specific.

Field-collected samples No field-collected samples were used.

Ethics oversight All animal procedures were authorized by the local government (Regierung von Oberbayern, license number 

ROB-55.2-2532.Vet_02-17-119 ).
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