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Dynamic and selective engrams emerge with 
memory consolidation

Douglas Feitosa Tomé    1,2,8 , Ying Zhang    3,4,8 , Tomomi Aida    3, 
Olivia Mosto3, Yifeng Lu4, Mandy Chen3, Sadra Sadeh1,5, Dheeraj S. Roy    6,7,9  & 
Claudia Clopath    1,9 

Episodic memories are encoded by experience-activated neuronal 
ensembles that remain necessary and sufficient for recall. However, the 
temporal evolution of memory engrams after initial encoding is unclear. 
In this study, we employed computational and experimental approaches 
to examine how the neural composition and selectivity of engrams change 
with memory consolidation. Our spiking neural network model yielded 
testable predictions: memories transition from unselective to selective 
as neurons drop out of and drop into engrams; inhibitory activity during 
recall is essential for memory selectivity; and inhibitory synaptic plasticity 
during memory consolidation is critical for engrams to become selective. 
Using activity-dependent labeling, longitudinal calcium imaging and a 
combination of optogenetic and chemogenetic manipulations in mouse 
dentate gyrus, we conducted contextual fear conditioning experiments 
that supported our model’s predictions. Our results reveal that memory 
engrams are dynamic and that changes in engram composition mediated by 
inhibitory plasticity are crucial for the emergence of memory selectivity.

A growing body of evidence has shown that neurons activated by 
an experience have a prominent role in memory1,2. Specifically, 
loss-of-function and gain-of-function studies have demonstrated that 
ablating neurons activated during learning disrupts memory retrieval3, 
whereas artificially reactivating these neurons elicits memory recall 
even in the absence of retrieval cues4. Therefore, learning-activated 
neurons are a cellular substrate for memory storage and retrieval, and 
they constitute engram cells. The stability of engrams after memory 
encoding, however, remains an open question. In particular, there 
are two competing hypotheses regarding the effect of memory con-
solidation on the post-learning evolution of engrams. First, engrams 
may be stabilized as a result of memory consolidation (that is, stable 
engrams) in line with the crucial role of encoding-activated engram cells 

in subsequent memory retrieval2. Second, the relatively low overlap 
between ensembles of neurons activated during learning and recall  
(10–40%) raises the possibility that engrams may change over the course 
of memory consolidation with neurons ‘dropping out of’ or ‘dropping 
into’ the engram (that is, dynamic engrams)2. Critically, knowledge of 
the temporal profile of engrams may elucidate how engram composi-
tion is related to mnemonic properties such as memory selectivity—a 
feature essential for adaptive behavior5.

In the present study, we used a combination of computational and 
experimental approaches to investigate the post-encoding evolution 
of memory engrams. We developed a spiking neural network model 
that predicted that (1) neurons drop out of and drop into the engram 
as it switches from an unselective to a selective state over the course 
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as a fraction of training-activated engram cells. Given that this ratio 
decreased substantially as consolidation progressed, our model 
predicted that a large fraction of training-activated engram cells are 
removed from the engram and no longer actively encode the memory 
acquired during training (that is, they stop being activated by the 
training stimulus). To determine what fraction of probing-activated 
engram cells were originally training-activated engram cells, we com-
puted the ensemble overlap between probing-activated engram cells 
and training-activated engram cells as a fraction of probing-activated 
engram cells. This quantity also decreased substantially with memory 
consolidation. Thus, our model predicted that neurons that were 
not activated during training are recruited into the engram and start 
actively encoding the underlying memory (that is, they become respon-
sive to the training stimulus). Additionally, we found that the ensemble 
overlap between probing-activated engram cells and training-activated 
engram cells as a fraction of all neurons in the network slowly decreased 
over the course of consolidation. This was consistent with the ensemble 
of probing-activated engram cells gradually shrinking (Fig. 1f). Further-
more, our network exhibited a high overlap between probing-activated 
engram cell ensembles identified in two consecutive hours, but only 
a small fraction of training-activated engram cells remained part of 
the engram in every sampled consolidation interval (Fig. 1g). Note 
that using the first 60 s or the entire 300 s of the training phase to 
identify engram cells yielded analogous engram dynamics (compare 
Extended Data Fig. 1a–d to Fig. 1e,f). Therefore, our model predicted 
that memory engrams are highly dynamic, with neurons being removed 
from and added to the engram over the course of memory consolida-
tion. Dynamic inhibitory engrams also emerged in our network model 
but with a more moderate turnover rate (Extended Data Fig. 2a–c).

In addition, engrams in our model were initially unselective but 
became selective over the course of memory consolidation (Fig. 1h–j).  
To examine engram selectivity, we first defined recall rate as the 
cue-evoked population firing rate of engram cells averaged across all 
cue presentations in the recall phase (Methods). We saw that the recall 
rate elicited by cues of the training and novel stimuli were above the 
threshold ζthr = 10 Hz for engram cell activation immediately after train-
ing, but, as memory consolidation progressed, only the recall rate of 
cues of the training stimulus remained above the activation threshold 
(Fig. 1h). We also specifically measured memory recall by computing 
the fraction of cue presentations in the recall phase that activated the 
engram cell ensemble (an engram cell ensemble was considered acti-
vated when its average firing rate was above the activation threshold 
during the presentation of a cue; Methods). This recall metric revealed 
equal memory recall levels for the training and novel stimuli immedi-
ately after training, but, with memory consolidation, only the recall of 
the training stimulus remained at a high level (Fig. 1i and Extended Data 
Fig. 1e–h). We then defined a discrimination index for memory recall 
as the difference between recall of the training stimulus and recall of a 
novel stimulus divided by their sum to provide a normalized measure 
of memory selectivity (Methods). This discrimination index showed 
that our network developed the ability to distinguish between the 
training and novel stimuli as a result of memory consolidation (Fig. 1j). 
The slightly lower post-consolidation discrimination index of one of 
the novel stimuli (that is, circle) can be attributed to its higher overlap 
with the training stimulus as mentioned previously (Fig. 1d). Thus, our 
model predicted that engrams are initially encoded in an unselective 
state but later become selective as their composition changes with 
memory consolidation. This is consistent with a recent study show-
ing that memory selectivity in conditioned taste aversion emerges in 
the timescale of hours12. Note, also, that even though the fraction of 
probing-activated engram cells reactivated during recall was higher 
for the training stimulus relative to the novel stimuli, this ratio was only 
approximately 50% for the training stimulus after memory consolida-
tion (Fig. 1k). This suggested that our network model performed an 
operation akin to pattern separation—a process that has been ascribed 

of memory consolidation; (2) inhibitory activity is necessary for the 
expression of memory selectivity during recall; and (3) inhibitory 
synaptic plasticity during memory consolidation is essential for the 
development of memory selectivity. We performed a range of contex-
tual fear conditioning (CFC) experiments to test these predictions, and 
our results supported each of them. Therefore, our work demonstrated 
that memory engrams are dynamic and that engram cell turnover 
shaped by inhibitory plasticity has a crucial role in the emergence 
of memory selectivity. These findings challenge classical theories of 
stable memory traces and point to a close link between engram state 
and memory expression.

Memory consolidation reshapes engrams
We used a computational model to probe the evolution of engram 
cells and their selectivity with memory consolidation. Specifically, our 
spiking neural network model consisted of a stimulus population that 
projected to the hippocampus (Fig. 1a). Feedforward and recurrent 
excitatory synapses onto excitatory neurons exhibited short-term 
and long-term plasticity, whereas inhibitory synapses onto excita-
tory neurons displayed inhibitory plasticity. Long-term excitatory 
synaptic plasticity combined a Hebbian term, consisting of triplet 
spike-timing-dependent plasticity (STDP)6, and non-Hebbian terms, 
including heterosynaptic plasticity7 and transmitter-induced plastic-
ity8, as proposed previously9. Triplet STDP mediated Hebbian learning, 
and heterosynaptic plasticity prevented excessive potentiation of 
excitatory synapses and a consequent pathological increase in neu-
ronal activity. Transmitter-induced plasticity prevented neurons from 
becoming silent. Previous work used a mean-field analysis to show 
that this combination of plasticity mechanisms can support stable 
learning and memory9. Inhibitory synaptic plasticity took the form of 
a network activity-based STDP mechanism9 whose primary goal was to 
control network activity levels10. Notably, inhibitory synaptic plasticity 
acted to ensure that the activity of the population of excitatory neurons 
remained at a set target level, hence subserving a homeostatic purpose 
(see Methods for a detailed description of the model). Our network 
was initially trained by presenting a training stimulus to simulate an 
episodic memory task (Fig. 1b,c). We then identified training-activated 
engram cells by examining which neurons were selectively activated 
in response to the training stimulus (that is, average stimulus-evoked 
firing rate above the threshold ζthr = 10 Hz in the last 60 s of the train-
ing phase). Subsequently, the network underwent a consolidation 
period when the training stimulus was reactivated in line with previous 
experimental reports that learning-activated sensory neurons are reac-
tivated during post-encoding sleep11. At regular intervals throughout 
the consolidation phase (that is, consolidation time = 0, 1, …, 24 h), we 
investigated the state of the engram by presenting the training stimulus 
in a probing phase and identifying engram cells at that time point in a 
manner analogous to the one in the training phase. Probing-activated 
engram cells then represented the current state of the engram after 
memory consolidation. Lastly, we presented partial cues of either 
the training stimulus or a novel, unseen stimulus in the recall phase  
(Fig. 1b,c). In particular, we conducted a total of four separate recall 
sessions (that is, one for the training stimulus and one for each of the 
three novel stimuli) after every sampled consolidation interval. This 
allowed us to evaluate the ability of the network to selectively recall 
the encoded memory only when cues of the training stimulus were 
presented. Note that the overlap between the training stimulus (that is, 
square) and each novel stimulus (that is, circle, pentagon and hexagon) 
varies, with the circle having the highest overlap (Fig. 1d).

Our simulation results showed that memory consolidation reor-
ganized engrams with neurons being removed from and added to 
the engram (Fig. 1e). We tracked the fraction of training-activated 
engram cells that remained part of the engram over the course of 
memory consolidation by computing the ensemble overlap between 
probing-activated engram cells and training-activated engram cells 
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Fig. 1 | Memory consolidation renders engrams dynamic and selective. 
a, Schematic of computational model. Left, stimulus population (Stim) and 
hippocampus network with excitatory (Exc) and inhibitory (Inh) neurons. Right, 
plasticity of feedforward and recurrent synapses (Methods). b, Schematic of 
simulation protocol (Methods). c, Schematic of training and novel stimuli with 
corresponding partial cues for recall. d, Overlap between the training stimulus 
and each novel stimulus in c as a fraction of training stimulus neurons.  
e–k, Means and 99% confidence intervals are shown. n = 10 trials. e, Post- 
encoding evolution of engram cells. Ensemble overlap between engram cells 
activated during both probing and training as a fraction of training-activated 
engram cells (left), probing-activated engram cells (middle) and all neurons 
in the network (right). f, Ensemble of engram cells as a fraction of all neurons. 
Dashed line indicates engram cell ensemble at the end of training. g, Ensemble 
overlap between probing-activated engram cells at consolidation time = t and 
t − 1 h as a fraction of engram cells at consolidation time = t − 1 h. Dashed line 
indicates ensemble of neurons that remained part of the engram in all sampled 

time points (that is, consolidation time = 0, 1, …, 24 h) as a fraction of engram 
cells at consolidation time = 0 h (that is, training-activated engram cells).  
h, Firing rate of engram cells averaged across all cue presentations during recall 
as a function of consolidation time (Methods). Dashed line indicates threshold 
ζthr = 10 Hz for engram cell activation. Color denotes stimulus as in c. i, Memory 
recall as a function of consolidation time. Color denotes stimulus as in c. j, 
Discrimination index between recall evoked by cues of the training stimulus 
and individual novel stimuli as a function of consolidation time (Methods). 
Color denotes stimulus as in c. k, Fraction of probing-activated engram cells 
reactivated during recall as a function of consolidation time. Color denotes 
stimulus as in c. l, Mean weight strength of plastic synapses clustered according 
to engram cell status (that is, engram and non-engram cells). Top, feedforward 
excitatory synapses onto excitatory neurons. Middle, recurrent excitatory 
synapses onto excitatory neurons. Bottom, recurrent inhibitory synapses onto 
excitatory neurons. Left, at the end of the training phase. Right, after 24 h of 
consolidation. Representative trial is shown.
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to the dentate gyrus (DG) and CA3 of the hippocampus13. Lastly, inhibi-
tory engrams remained unselective in our simulations (Extended Data 
Fig. 2d–g).

The changes in engram composition and selectivity observed in 
our model were associated with ongoing synaptic plasticity during 
memory consolidation (Fig. 1l). Feedforward synapses from training 
stimulus neurons (that is, sensory engram cells; Methods) onto hip-
pocampal engram cells were strengthened over the course of memory 
consolidation, and, consequently, the synaptic coupling between the 
stimulus population and the hippocampus network was increased. 
Recurrent excitatory synapses between engram cells also experienced 
a modest gain in synaptic efficacy. Notably, inhibitory synapses from 
inhibitory engram cells onto both engram and non-engram cells were 
strongly potentiated throughout memory consolidation. This indi-
cated that a number of training-activated engram cells were forced 
out of the engram due to strong inhibition, and, consequently, only 
neurons highly responsive to the training stimulus remained in the 
engram, in line with our previous analysis (Fig. 1e). Inhibitory neurons 
also controlled the overall activity of excitatory neurons in the network 
through inhibitory synaptic plasticity (Extended Data Fig. 2h).

To investigate the contribution of synaptic plasticity to the engram 
dynamics in our model, we performed several manipulations in our 
simulations. First, we blocked the reactivation of the training stimulus 
during memory consolidation and found that this altered the tempo-
ral profile of engrams and prevented them from becoming selective 
(Extended Data Fig. 3a–i). These effects were associated with reduced 
potentiation of inhibitory synapses onto engram cells (compare 
Extended Data Fig. 3i to Fig. 1l, bottom rows). Previous experiments 
demonstrated that sleep-specific inhibition of learning-activated 
sensory neurons disrupts memory selectivity11, and, hence, our model 
was consistent with these findings, and it predicted underlying mecha-
nisms. Second, blocking long-term potentiation (LTP) during memory 
consolidation almost completely eliminated engram cell turnover after 
a steady state was reached, and it also impaired memory recall relative 
to the control case (Extended Data Fig. 4a–i). Reduced feedforward 
and recurrent excitatory synaptic weights due to LTP blockage led 
to engram stabilization and impaired recall (compare Extended Data 
Fig. 4h to Fig. 1l, top and middle rows). These results are in line with a 
recent study showing that memory recall is impaired when LTP is opti-
cally erased selectively during sleep14. Third, we separately blocked 
the Hebbian and non-Hebbian forms of long-term excitatory synaptic 
plasticity in our model and verified that each was essential for memory 
encoding and consolidation (Extended Data Fig. 5). These results are 
consistent with a previously reported mean-field analysis showing that 
this combination of plasticity mechanisms can support stable memory 

formation and recall9. Fourth, we blocked inhibitory synaptic plasticity 
in our entire simulation protocol, and this disrupted the emergence of 
memory selectivity in our network model (Extended Data Fig. 6a–h). 
This demonstrated that excitatory synaptic plasticity alone could not 
drive an increase in memory selectivity because it could not increase 
competition among excitatory neurons in the absence of inhibitory 
synaptic plasticity (compare Extended Data Fig. 6h to Fig. 1l). However, 
excitatory synaptic plasticity could promote engram cell turnover on 
its own in an even more pronounced manner than in the presence of 
both excitatory and inhibitory synaptic plasticity (compare Extended 
Data Fig. 6b to Fig. 1g). Finally, we found that an alternative inhibitory 
synaptic plasticity formulation yielded engram dynamics analogous 
to those in our original network (compare Extended Data Fig. 7a–h to 
Fig. 1e–l). This suggested that the dynamic and selective engrams pre-
dicted by our model are not a product of a specific form of inhibitory 
plasticity but a consequence of memory encoding and consolidation 
in inhibition-stabilized plastic networks in general.

We also conduced loss-of-function and gain-of-function manipula-
tions to examine the role of training-activated engram cells in memory 
recall in our model (Fig. 2). We found that blocking training-activated 
engram cells after a consolidation period of 24 h prevented memory 
recall (Fig. 2a), whereas artificially reactivating them in the absence of 
retrieval cues was able to elicit recall (Fig. 2b), in a manner consistent 
with previous experimental findings3,4 and despite the dynamic nature 
of engrams in our simulations (Fig. 1e–g). Thus, our model was able to 
reconcile the prominent role of training-activated engram cells in mem-
ory storage and retrieval with dynamic memory engrams. To determine 
whether neuronal activity during memory acquisition was predictive 
of neurons dropping out of or dropping into the engram, we examined 
the distribution of stimulus-evoked neuronal firing rates in the train-
ing phase (Extended Data Fig. 3j–m). We found that training-activated 
engram cells that remained part of the engram throughout memory 
consolidation exhibited higher stimulus-evoked firing rates than (1) 
the remaining neurons in the network (Extended Data Fig. 3j) and 
(2) training-activated engram cells that dropped out of the engram 
over the course of consolidation (Extended Data Fig. 3k). Therefore, 
stimulus-evoked firing rates during training were indicative of a neu-
ron’s ability to outlast inhibition and remain part of the engram after 
initial memory encoding. We also verified that neurons that were not 
engram cells at the end of training but later dropped into the engram 
displayed lower training stimulus-evoked firing rates than the remain-
ing neurons in the network (Extended Data Fig. 3l). Surprisingly, neu-
rons that dropped into the engram after training showed slightly lower 
stimulus-evoked firing rates than neurons that failed to become part 
of the engram altogether (Extended Data Fig. 3m). This suggested that 
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Fig. 2 | Training-activated engram cells remain necessary and sufficient for 
memory recall. Analysis of memory recall when training-activated engram cells 
in Fig. 1b are manipulated. Means and standard deviations are shown. n = 10 trials. 
a, Analysis of memory recall after 24 h of consolidation when training-activated 
engram cells are blocked during recall with cues of the training stimulus in 
the protocol in Fig. 1b. Left, firing rate of engram cells averaged across all cue 
presentations during recall (dashed line indicates threshold ζthr = 10 Hz for 

engram cell activation). Right, memory recall. b, Analysis of memory recall 
after 24 h of consolidation when training-activated engram cells are artificially 
reactivated during recall without any stimulus cues in the protocol in Fig. 1b. Left, 
firing rate of engram cells averaged across all reactivation intervals during recall 
(dashed line indicates threshold ζthr = 10 Hz for engram cell activation). Right, 
memory recall (note that standard deviation = 0 as recall = 100% in all trials).
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stimulus-evoked firing rates during memory acquisition may not be 
reliable predictors of a neuron’s ability to increase its response to the 
training stimulus and become an engram cell after encoding. Lastly, 
we found that using a neuronal population-based approach to identify 
engram cells in our simulations yielded analogous engram dynam-
ics (compare Extended Data Fig. 4j–o to Fig. 1e−j and Extended Data  
Fig. 2i–n to Extended Data Fig. 2b−g; Methods).

Dynamic and selective fear memory engrams
To test our model’s prediction that memories switch from unselective 
to selective as the composition of the underlying engram changes, we 
used a CFC behavioral paradigm. Specifically, we initially subjected 
mice to CFC in a training context (Fig. 3a and Methods). After a delay 
period following CFC, mice were initially placed in a neutral context 
and subsequently in the training context to evaluate memory recall by 
measuring freezing levels in each context. We performed recall sessions 

first in the neutral context and subsequently in the training context to 
avoid a potential confound: we needed to measure behavioral perfor-
mance at short timescales after encoding (that is, delay = 1 h and 5 h), 
and, after a recall session in the training context, an animal’s behavioral 
state is thought to be altered for tens of minutes to a few hours (for 
example, through elevated stress hormone levels15,16). Freezing levels in 
the training and neutral contexts were similar shortly after fear training 
(that is, delay = 1 h and 5 h), but they differed for longer delay periods 
(that is, delay = 12 h, 18 h and 24 h) (Fig. 3b). By defining a discrimination 
index between the freezing behavior in the training and neutral contexts 
analogous to the one for memory recall in our simulations (Methods), 
we saw that memory selectivity emerged after a delay of 12 h following 
training (Fig. 3c). These findings were consistent with our modeling 
predictions (compare Fig. 3b,c to Fig. 1i,j) as well as with recent reports 
that conditioned taste aversion memories become selective in the time-
scale of hours12. To track the post-encoding evolution of fear memory 
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optogenetic reactivation of Cal-Light-labeled neurons (Methods).  
f, Freezing levels when mice were placed in the neutral context in e as a function 
of delay time. Means and 99% confidence intervals are shown. Unpaired t-test 
between the control and the Cal-Light activation groups. n = 9 mice per group. 
b–d,f, *P < 0.05; NS, not significant. For detailed statistical test results, see 
Supplementary Table 1.
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engrams during behavior, we used the Cal-Light dual-protein switch 
system that translates neuronal activity-mediated calcium increases 
into gene expression in a light-dependent manner17. We injected 
Cal-Light, a cocktail of three adeno-associated viruses (AAVs), into the 
hippocampal DG of wild-type B6 mice, followed by optic fiber implants 
targeting DG (Fig. 3a, left illustration, and Methods). By applying blue 
light in vivo during fear training, we tagged training-activated DG neu-
rons with EGFP (Fig. 3a, right illustration, and Extended Data Fig. 8a, 
left panel). After a delay period, we used immediate early gene c-Fos 
staining to label recall-activated neurons in the same mice. Note that 
activity-dependent labeling using either Cal-Light or c-Fos staining visu-
alizes neurons that were highly activated during defined time windows 
(that is, training and recall, respectively) without providing a quantita-
tive measure of neuronal activity. In situ hybridization confirmed that 
the majority of c-Fos+ cells in DG are granule cells (∼88%), whereas 
parvalbumin-expressing (PV+) and cholecystokinin-expressing (CCK+) 
cells represent only small fractions (1.39% and 5.56%, respectively) 
(Extended Data Fig. 8b). We observed that, when mice were returned 
to the training context for recall, each of the following ratios decreased 
over time: ensemble overlap between neurons activated during recall 
and training (c-Fos+ ∩ EGFP+) as a fraction of training-activated neurons 
(EGFP+), recall-activated neurons (c-Fos+) and all cell counts (DAPI+) 
(Fig. 3d). The decline in the level of recall-induced reactivation of 
training-activated neurons was consistent with our prediction that only 
a fraction of training-activated engram cells remain in the engram as 
memory consolidation progresses (Fig. 1e). The drop in the proportion 
of recall-activated neurons that were also active during training was in 
line with our prediction that new neurons are recruited into the engram 
after memory encoding (Fig. 1e). The decrease in the ensemble overlap 
between recall-activated and training-activated neurons relative to 
all cell counts was also consistent with our modeling results (Fig. 1e). 
 c-Fos+ ∩ EGFP+ as a fraction of EGFP+, c-Fos+ and DAPI+ also dropped 
over time when mice were placed in the neutral context after fear train-
ing (Fig. 3d). To determine baseline levels for these ensemble overlap 
ratios, we measured them when mice were placed in their home cages 
after conditioning (Fig. 3d). Critically, c-Fos+ ∩ EGFP+ as a fraction of 
EGFP+ was above the home cage baseline for recall tests in the training 
and neutral contexts at delay = 5 h, but it was above baseline only for 
recall in the training context at delay = 12 h (Fig. 3d). This coincided 
with the emergence of fear memory selectivity (Fig. 3c), consistent 
with our network simulations (Fig. 1h–j). Notably, c-Fos+ ∩ EGFP+ as 
a fraction of EGFP+ for recall in the training context remained above 
the home cage baseline at delay = 24 h. We did not observe such dif-
ferences between recall in the training and neutral contexts relative 
to the baseline in the case of c-Fos+ ∩ EGFP+ as a fraction of c-Fos+ or 
DAPI+ cells. This could indicate that the rate of engram cell turnover 
was elevated such that it would require highly precise measurements 
to capture differences in the fraction of recall-activated neurons that 
were also active during encoding and in the fraction of neurons that 
were active during both recall and encoding when mice are placed 
in the training context versus the home cage. To directly investigate 
the relationship between engram cell turnover and the emergence of 
memory selectivity, we performed a longitudinal imaging experiment 
as discussed below (Fig. 4 and Extended Data Fig. 9). Altogether, our 
experimental results supported our model’s prediction that memory 
consolidation leads to dynamic and selective engrams.

We next tested whether fear training-activated DG neurons labeled 
using Cal-Light remain sufficient for inducing recall after initial mem-
ory encoding in line with previous experimental findings4 and our 
modeling results (Fig. 2b). In particular, we activated Cal-Light-labeled 
DG neurons in the neutral context following a delay = 5 h, 12 h and 
24 h after training (Fig. 3e). For these experiments, we replaced the 
TRE-EGFP virus with a TRE-Chrimson-mCherry virus in the Cal-Light 
three-AAV cocktail for surgeries. This allowed us to first label active 
neurons during training using blue light followed by red light 

reactivation of Cal-Light-labeled DG neurons in the neutral context. 
Although we found increased freezing levels (that is, memory recall) 
in the Chrimson-mCherry Cal-Light activation group as compared 
to the mCherry-alone control group across delay times, the increase 
was statistically significant only at delay = 12 h and 24 h (Fig. 3f). One 
reason why we did not observe a significant increase in freezing in the 
Chrimson-mCherry group at delay = 5 h was that, at this time point 
after fear training, control animals showed heightened levels of freez-
ing even in the neutral context (that is, memory was still unselective at 
delay = 5 h; Fig. 3b). However, this was not the case for delay = 12 h and 
24 h (that is, memory became selective at delay = 12 h and 24 h; Fig. 3b). 
Thus, these optogenetic reactivation experiments provided functional 
evidence for the tagging of a behavioral experience using the Cal-Light 
approach and demonstrated that Cal-Light-labeled DG neurons remain 
sufficient for inducing recall after fear training.

We also conducted longitudinal imaging experiments to directly 
evaluate whether the emergence of memory selectivity is related to 
changes in engram ensemble composition as predicted by our model. 
Specifically, we performed in vivo calcium imaging from neurons in 
the hippocampal DG of mice over the course of a CFC protocol (Fig. 4a; 
461 cells and four mice). We conducted a total of eight imaging sessions 
at three time points: home cage and fear training; for delay = 1 h, home 
cage, neutral context and training context; and for delay = 24 h, home 
cage, neutral context and training context. We also measured freezing 
levels during fear training and memory recall in the neutral and training 
contexts for delay = 1 h and 24 h (Fig. 4b). Considering the dynamic 
engram hypothesis (that is, a continuously evolving engram cell ensem-
ble), we identified engram cells at three different time points (that is, 
fear training, delay = 1 h and delay = 24 h) by computing a discrimina-
tion index between the average calcium signal (ΔF/F) of each imaged 
cell in the training context and the home cage as a normalized measure 
of neuronal activation (Methods). A cell was identified as an engram 
cell at a given time point if its ΔF/F-based discrimination index exceeded 
the threshold ζthrdisc = 0.2. We then tracked the average ΔF/F signal of 
the identified engram cells in each session of the CFC protocol (Fig. 4c, 
left panel). Next, we computed a freezing discrimination index between 
freezing levels during recall in the training and neutral contexts as well 
as an engram discrimination index between average ΔF/F signals of 
engram cells during recall in the training and neutral contexts (Meth-
ods). We found that freezing discrimination and engram discrimination 
were correlated when considering dynamic engrams (Fig. 4d, left 
panel). We repeated this analysis considering the stable engram 
hypothesis (that is, a static engram cell ensemble identified during fear 
training) and a random population of neurons (that is, a randomly 
chosen neuronal ensemble of the same size as the stable engram ensem-
ble) but found no correlation between freezing discrimination and 
engram discrimination in either case (Fig. 4c,d, middle and right pan-
els). When using a neuronal population-based approach to identify 
engram cells, we also found that freezing discrimination and engram 
discrimination were correlated considering dynamic but not stable 
engrams (Extended Data Fig. 9a and Methods). Hence, our results 
provide evidence that the activity of dynamic engrams, but not stable 
engrams or random neurons, is predictive of an animal’s memory 
discrimination ability. Furthermore, we tracked the longitudinal over-
lap between engram cell ensembles identified during consecutive time 
points in our imaging experiments to characterize how the composi-
tion of the engram evolved after memory encoding (Extended Data 
Fig. 9b,c). We found that neurons dropped out of (Extended Data  
Fig. 9c, left panel) and dropped into (Extended Data Fig. 9c, middle 
panel) the engram over the course of memory consolidation with sparse 
levels of engram ensemble overlap (Extended Data Fig. 9c, right panel). 
Notably, we did not observe a significant difference between longitu-
dinal engram overlap in our mouse imaging data and overlap at random 
(Extended Data Fig. 9c), but these results are preliminary given the 
small sample size (n = 4 mice). To evaluate whether ΔF/F calcium signals 
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Fig. 4 | Dynamic engrams underlie the emergence of memory selectivity.  
a, Top, schematic (left) and representative image (right) of experimental mice. 
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three independent samples. b, Freezing levels during fear training and memory 
recall. Freezing during recall in the neutral context and the training context 
shown for different delay times in the protocol in a. c, Average ΔF/F signal of 
engram cells during each session of the protocol in a. From left to right: dynamic 
engram, stable engram and random neurons. Experimental data: longitudinal 
ΔF/F calcium signals of imaged neurons, thus providing a proxy measure of their 

in vivo neural activity. Color denotes individual mouse as in b. Means and 95% 
confidence intervals are shown. d, Correlation between freezing discrimination 
and engram discrimination at different delay times. From left to right: dynamic 
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computed based on either the animal’s freezing levels or the average ΔF/F signals 
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and associated two-sided test with P are shown.
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during memory encoding were predictive of neurons dropping out of 
or dropping into the engram, we examined the distribution of 
ΔF/F-based discrimination indices during fear training (Extended Data 
Fig. 9d–g). We found that training-activated engram cells that remained 
part of the engram during subsequent recall sessions exhibited higher 
ΔF/F-based discrimination indices during fear training than the remain-
ing imaged cells (Extended Data Fig. 9d). Although we did not observe 
a significant difference between ΔF/F-based discrimination indices 
during fear training in the case of training-activated engram cells that 
remained part of the engram and training-activated engram cells that 
dropped out of the engram after training (Extended Data Fig. 9e), this 
may reflect that large sample sizes would be required to capture such 
a difference given engram sparsity (Extended Data Fig. 9c, right panel). 
Thus, our findings point to ΔF/F-based discrimination indices during 
fear training being indicative of a neuron’s ability to remain part of the 
engram after initial memory encoding in a manner consistent with our 
modeling results (compare Extended Data Fig. 9d,e to Extended Data 
Fig. 3j,k). We also found that cells that were not activated during fear 
training but later dropped into the engram showed lower ΔF/F-based 
discrimination indices during fear training than the remaining imaged 
cells, but we did not observe such a difference relative to cells that failed 
to become part of the engram entirely (Extended Data Fig. 9f,g; com-
pare to Extended Data Fig. 3l,m). Altogether, our experimental results 
directly captured the link between the emergence of memory selectiv-
ity and changes in engram ensemble composition in line with our 
model’s prediction.

Inhibition is crucial for memory selectivity
We next examined the role of inhibition in memory selectivity using 
our network model. We blocked inhibitory neurons during memory 
recall, and this disrupted selectivity in our simulations (Fig. 5a–d; see 
Extended Data Fig. 7i for a simulation with an alternative form of inhibi-
tory synaptic plasticity). Previous experiments showed that inhibit-
ing DG CCK+ interneurons during recall 24 h or 48 h after CFC impairs 
memory selectivity, but inhibiting DG PV+ interneurons during recall 
at the same time points has no effect on selectivity5. This was associ-
ated with an enhanced post-training inhibitory synaptic input from 
DG CCK+ but not PV+ interneurons onto training-activated engram 
cells5. To capture this difference between interneuron types in medi-
ating memory selectivity, we expanded our network model to include 
both CCK+ and PV+ interneurons (Extended Data Fig. 10a). CCK+ but not 
PV+ synapses onto excitatory neurons were plastic, consistent with 
experimental reports5. Dynamic and selective engrams emerged in the 
expanded model in a manner analogous to our original network (com-
pare Extended Data Fig. 10b–i to Fig. 1e–l). In addition, blocking CCK+ 
interneurons during recall disrupted memory selectivity, but blocking 
PV+ interneurons during recall had no such impact (Extended Data 
Fig. 10j,k), in line with experimental results5. Note that blocking either 
CCK+ or PV+ interneurons before the emergence of selectivity (that is, 
at consolidation time = 0 h) had a negligible effect on memory recall 
and discrimination (compare Extended Data Fig. 10j,k to Extended 
Data Fig. 10f,g). Thus, our model predicted that inhibitory neurons—
and specifically DG CCK+ but not PV+ interneurons—are essential for 
expressing memory selectivity once engrams have become selective. 
To experimentally test this prediction, we first used CCK-Cre mice 
injected with a Dlx5/6-driven Cre-dependent eArch3.0-eYFP virus in 
DG to optogenetically inhibit (by applying green light in vivo) DG CCK+ 
interneurons during memory recall 5 h, 12 h or 24 h after contextual fear 
training (Fig. 5e and Extended Data Fig. 8a, middle panel; Methods). 
Using in situ hybridization, we confirmed that this labeling approach 
results in 90.95% of the eYFP-labeled DG cells corresponding to CCK+ 
cells, which are also inhibitory in nature as 97.22% of the eYFP-labeled 
DG cells expressed GAD1 (Extended Data Fig. 8c). Mice in the CCK+ 
inhibition group were unable to discriminate between the training 
and neutral contexts at all tested delay times, whereas those in the 

control group displayed memory selectivity with delay times of 12 h 
and 24 h (Fig. 5f,g; compare to Fig 3b,c). Next, we performed similar 
optogenetic manipulation experiments using PV-Cre mice injected with 
a Cre-dependent eArch3.0-eYFP virus in DG (Fig. 5h and Methods). We 
found that mice in both the PV+ inhibition and control groups developed 
the ability to discriminate between the training and neutral contexts at 
delay times of 12 h and 24 h (Fig. 5i,j). Therefore, our experimental find-
ings demonstrated that DG CCK+ but not PV+ interneurons are required 
for memory discrimination, and, hence, they supported our model’s 
prediction that cell-type-specific inhibitory activity during recall is 
critical for engram selectivity.

Inhibitory synaptic plasticity molds selective 
engrams
Given the essential role of inhibition in the expression of memory selec-
tivity, we investigated the contribution of post-encoding inhibitory 
synaptic plasticity to the emergence of selective engrams. To that end, 
we blocked inhibitory synaptic plasticity exclusively during memory 
consolidation in our network simulations, and this impaired memory 
selectivity (Fig. 6a–d, and see Extended Data Fig. 7j for a simulation 
with an alternative form of inhibitory synaptic plasticity). Note that 
we previously blocked inhibitory neurons during recall (Fig. 5a), but 
here we blocked inhibitory synaptic plasticity only during memory 
consolidation (Fig. 6a). Furthermore, we specifically blocked CCK+ 
interneurons during memory consolidation in our expanded network 
model containing both CCK+ and PV+ interneurons, and this disrupted 
memory selectivity (Extended Data Fig. 10l). Critically, blocking CCK+ 
interneurons in our simulations also blocked the plasticity of their 
efferent synapses given that inhibitory synaptic plasticity in our model 
required pre-synaptic activity (Methods), in line with several reports 
that coincident pre-synaptic and post-synaptic activity as well as 
pre-synaptic activity alone can induce plasticity of γ-aminobutyric 
acid-releasing (GABAergic) synapses onto excitatory neurons18. Inter-
estingly, engram cell turnover was still present in these simulations 
despite the absence of inhibitory plasticity (Extended Data Fig. 10l, 
right panels). This suggested that excitatory synaptic plasticity alone 
can drive the emergence of dynamic engrams—consistent with our 
previous results showing that blocking LTP during memory consolida-
tion leads to engram stabilization (Extended Data Fig. 4a–d). Notably, 
our previous modeling results showing that CCK+ but not PV+ interneu-
rons are necessary for expressing memory selectivity during recall 
(Extended Data Fig. 10j,k) already suggested that inhibitory synaptic 
plasticity has a critical role in the development of memory selectivity 
given that CCK+ but not PV+ efferent synapses onto excitatory neurons 
exhibited plasticity (Extended Data Fig. 10a). Therefore, our network 
model predicted that blocking inhibitory synaptic plasticity during 
memory consolidation prevents the emergence of engram selectivity.

To experimentally test this prediction, we used a chemogenetic 
approach to temporarily inhibit DG CCK+ interneurons right after fear 
training (Fig. 6e and Extended Data Fig. 8a, right panel; Methods). Specifi-
cally, we injected a Dlx5/6-driven Cre-dependent hM4Di-mCherry virus 
in the DG of CCK-Cre mice followed by an intraperitoneal injection of 
C21 immediately after fear training, hence inhibiting CCK+ interneurons 
for the first several hours of memory consolidation. Once the effects 
of the chemogenetic manipulation had subsided (that is, at least 12 h 
later), we conducted recall tests and observed that mice in the CCK+ 
inhibition group failed to discriminate between the training and neu-
tral contexts, whereas those in the control group exhibited memory 
selectivity (Fig. 6f,g, compare to Fig. 3b,c). Note that, previously, we 
optogenetically inhibited CCK+ interneurons only during memory recall  
(Fig. 5e), whereas, here, we chemogenetically inhibited CCK+ interneu-
rons immediately after fear training (that is, during the cellular consoli-
dation phase) (Fig. 6e). To determine whether the CCK+ chemogenetic 
inhibition protocol blocks CCK+ plasticity onto DG training-activated 
engram cells, we performed a slice recording experiment in CCK-Cre 
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Fig. 5 | Inhibitory activity during recall is critical for memory selectivity.  
a, Schematic of simulation protocol with blockage of inhibitory neurons during 
recall. b–d, Means and 99% confidence intervals are shown. n = 10 trials. Color 
denotes stimulus as in Fig. 1c. b, Firing rate of engram cells averaged across all  
cue presentations during recall in a as a function of consolidation time (Methods). 
Dashed line indicates threshold ζthr = 10 Hz for engram cell activation. c, Memory 
recall in a as a function of consolidation time. d, Discrimination index between 
recall evoked by cues of the training stimulus and individual novel stimuli in  
a as a function of consolidation time (Methods). e, Schematic of experimental 
protocol with optogenetic inhibition of DG CCK+ interneurons. f,g, Means and 99% 
confidence intervals are shown. f, Freezing levels during memory recall in  
e as a function of delay time. Top, control group. Bottom, CCK+ inhibition group. 
Two-sided Wilcoxon signed-rank test between freezing in the training and 
neutral contexts. Control, n = 7 mice per group. CCK+ inhibition, n = 9 mice per 

group. g, Discrimination index between freezing levels in the training and neutral 
contexts in f (Methods). Two-sided one-sample Wilcoxon signed-rank test against 
discrimination = 0. Control, n = 7 mice per group. CCK+ inhibition, n = 9 mice per 
group. h, Schematic of experimental protocol with optogenetic inhibition of DG 
PV+ interneurons. i,j, Means and 99% confidence intervals are shown. i, Freezing 
levels during memory recall in h as a function of delay time. Top, control group. 
Bottom, PV+ inhibition group. Two-sided Wilcoxon signed-rank test between 
freezing in the training and neutral contexts. Control, n = 7 mice per group. PV+ 
inhibition, n = 9 mice per group. j, Discrimination index between freezing levels in 
the training and neutral contexts in i. Two-sided one-sample Wilcoxon signed-rank 
test against discrimination = 0. Control, n = 7 mice per group. PV+ inhibition, n = 9 
mice per group. f,g,i,j, *P < 0.05; NS, not significant. For detailed statistical test 
results, see Supplementary Table 1.
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Fig. 6 | Inhibitory synaptic plasticity during memory consolidation carves 
selective engrams. a, Schematic of simulation protocol with blockage of inhibitory 
synaptic plasticity during consolidation. b–d, Means and 99% confidence intervals 
are shown. n = 10 trials. Color denotes stimulus as in Fig. 1c. b, Firing rate of 
engram cells averaged across all cue presentations during recall in a as a function 
of consolidation time (Methods). Dashed line indicates threshold ζthr = 10 Hz for 
engram cell activation. c, Memory recall in a as a function of consolidation time. 
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e, Schematic of experimental protocol with chemogenetic inhibition of DG CCK+ 
interneurons. f,g, Means and 99% confidence intervals are shown. f, Freezing levels 
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CCK+ inhibition group. Two-sided Wilcoxon signed-rank test between freezing in 
the training and neutral contexts. Control, n = 9 mice per group. CCK+ inhibition, 
n = 9 mice per group. g, Discrimination index between freezing levels in the training 

and neutral contexts in f. Two-sided one-sample Wilcoxon signed-rank test against 
discrimination = 0. Control, n = 9 mice per group. CCK+ inhibition, n = 9 mice per 
group. h, Schematic of experimental protocol to measure the plasticity of DG CCK+ 
efferent synapses onto Cal-Light-labeled EGFP+ neurons using slice recordings. 
Ephys, electrophysiology. i,j, Means and s.e.m. are shown. i, oIPSCs recorded in 
h. Left, representative traces showing oIPSCs recorded in neighboring EGFP+ and 
EGFP− neurons. Right, comparison of oIPSC amplitudes between EGFP+ and EGFP− 
neurons. Two-way repeated-measures ANOVA with Greenhouse–Geisser correction. 
For EGFP+ versus EGFP−, n = 12 neurons per group from three mice.  
j, oIPSCs recorded in the control (mCh) and CCK+ inhibition (hM4Di-mCh) groups 
in h. Left, representative traces showing oIPSCs recorded in neighboring EGFP+ and 
EGFP− neurons. Right, comparison of normalized oIPSC amplitudes between EGFP+ 
and EGFP− neurons. Paired t-test. mCh group, n = 12 neurons per group from three 
mice. hM4Di-mCh group, n = 10 neurons per group from three mice. f,g,i,j, *P < 0.05; 
NS, not significant. For detailed statistical test results, see Supplementary Table 1.
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mice that were injected with Cal-Light AAVs expressing EGFP, a 
Dlx5/6-driven Cre-dependent hM4Di-mCherry virus and a Dlx5/6-driven 
Cre-dependent Chrimson-mCherry virus (Fig. 6h and Methods). Using 
blue light during fear training, we labeled active neurons in DG with 
Cal-Light. This was followed by C21 administration immediately after 
fear training to inhibit CCK+ interneurons during consolidation. After 
12 h, we prepared brain slices to record optogenetically-evoked inhibi-
tory post-synaptic currents (oIPSCs) of CCK+ interneurons onto EGFP+ 
versus EGFP− DG cells. Although in the mCherry-alone control group we 
observed larger oIPSCs in EGFP+ cells as compared to EGFP− cells, this 
difference was not found in the hM4Di-mCherry CCK+ inhibition group 
(Fig. 6i,j). These results showed that chemogenetically inhibiting CCK+ 
interneurons using C21 blocks the plasticity of their efferent synapses. 
We also examined the effect of CCK+ interneuron inhibition during 
consolidation on engram cell turnover. For this purpose, we injected 
CCK-Cre mice with Cal-Light AAVs expressing EGFP and a Dlx5/6-driven 
Cre-dependent hM4Di-mCherry virus targeting DG (Extended Data  
Fig. 6i). We labeled training-activated neurons using blue light, 
and, immediately after fear training, we administered C21 to inhibit 
CCK+ interneurons during consolidation. After a post-training 
delay period, we placed mice in the training context and visual-
ized recall-activated neurons using c-Fos staining. Given that 
CCK+ interneuron inhibition during consolidation did not pre-
vent the emergence of dynamic engrams (Extended Data Fig. 6j),  
these experiments suggested that post-encoding CCK-mediated 
inhibitory plasticity is not required for engram cell turnover in line 
with our modeling results (Extended Data Fig. 10l). Thus, our combined 
experimental findings supported our model’s prediction that inhibitory 
synaptic plasticity during memory consolidation is necessary for the 
emergence of selective engrams.

Discussion
We have shown that memories are encoded by dynamic engrams that 
become selective with memory consolidation. Previous experiments 
examined the long-term temporal evolution of neuronal ensembles 
encoding fear memories in mouse prefrontal cortex (PFC) and reported 
that neurons activated during later recall sessions (14 d after training) are 
more robustly reactivated during remote recall (28 d after training) than 
neurons activated during fear training or earlier recall sessions (1 d after 
training)19. In addition, systems consolidation of fear memories in mice 
was found to involve training-activated PFC engram cells transitioning 
from an initial silent (that is, cannot be reactivated by partial cues) to an 
active (that is, can be reactivated by partial cues) state over roughly 12 d 
and training-activated DG engram cells switching from active to silent 
in the same timescale20. Furthermore, increased feedforward inhibition 
in the DG-CA3 circuit has been shown to promote the development of 
context-specific PFC neuronal ensembles at both recent and remote 
time points after CFC21. Moreover, a recent study reported that neurons 
in the lateral amygdala activated during an initial fear training session 
become dispensable for memory retrieval after retraining, although 
their artificial reactivation still elicits recall22. Our results extended these 
findings in several ways. First, we showed that DG engrams change in a 
much shorter timescale, corresponding to hours, with neurons being 
both removed from and added to the engram cell ensemble. Conse-
quently, this rapid turnover of DG engram cells happens before their 
active-to-silent transition linked to systems consolidation and without 
retraining. Second, we proposed a computational framework that iden-
tified ongoing synaptic plasticity during memory consolidation as a 
fundamental mechanism driving changes in engram composition. Third, 
we found that engram cell turnover is associated with the emergence 
of selective engrams. Fourth, we showed that inhibition and inhibitory 
synaptic plasticity are required for expressing and developing memory 
selectivity, respectively. Lastly, our computational model was able to 
reconcile training-activated engram cells being necessary and sufficient 
for memory recall3,4 with a continuously changing engram.

Neural representations in the olfactory, visual, parietal, prefrontal 
and motor cortices as well as in the hippocampus have been shown 
to change or drift over time when animals are repeatedly exposed to 
the same perceptual, navigational, stress-inducing or sensorimotor 
task23–28. This representational drift was observed in timescales ranging 
from minutes to weeks depending on the brain region and experimental 
paradigm. Notably, recent work has shed light on how time and experi-
ence distinctly contribute to representational drift29,30. Although our 
work specifically explored changes in memory engrams within hours of 
initial encoding, our proposition that ongoing post-encoding synaptic 
plasticity drives continuous changes in neural representations may be 
a general unifying mechanism that could account for representational 
drift across regions and tasks. We also associated engram cell turnover 
to the emergence of memory selectivity. Therefore, our results suggest 
that representational drift may not necessarily be just a byproduct 
of synaptic plasticity but may effectively have computational and 
behavioral functions—in line with a proposed role of neural ensemble 
fluidity in memory updating and flexibility31. For further discussion of 
our findings, see the Supplementary Discussion.

Past memory models conforming to standard theories of stable 
memory traces have shed light on several features of network dynamics 
supporting memory formation and recall9,32,33. Our work built on these 
results to uncover the dynamic nature of memory engrams and the 
interplay between engram state and memory expression mediated by 
ongoing synaptic plasticity, possibly offering new directions to investi-
gate pathological conditions characterized by persistently unselective 
aversive memories, such as post-traumatic stress and panic disorders.
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M et ho ds
Our experiments complied with all relevant ethical regulations fol-
lowing US National Institutes of Health (NIH) guidelines and were 
approved by the Massachusetts Institute of Technology Department 
of Comparative Medicine and Committee on Animal Care.

Neuron model
We used leaky integrate-and-fire neurons with spike frequency adap-
tion. The membrane voltage Ui of a neuron i followed9:

τm dUi
dt

= (Urest − Ui) + gexc
i (t)(Uexc − Ui) + (ggabai (t) + gai (t)) (U

inh − Ui) (1)

where τm indicates the membrane time constant; Urest indicates the 
membrane resting potential; Uexc indicates the excitatory reversal 
potential; and Uinh indicates the inhibitory reversal potential. The 
synaptic conductance terms gexc

i (t), ggaba
i (t) and ga

i (t) are discussed in 
the next subsection.

When the membrane voltage of a neuron i exceeds a threshold ϑi, 
it fires a spike. Immediately after firing a spike, the membrane voltage 
of the neuron is set to Urest

i , and its firing threshold is temporarily raised 
to ϑspike. In the absence of further spikes, the firing threshold decays to 
its resting value ϑrest with time constant τthr according to:

τthr d𝜗𝜗i
dt

= 𝜗𝜗rest − 𝜗𝜗i (2)

Synapse model
We employed a conductance-based synaptic input model. The inhibi-
tory synaptic input ggaba

i  and spike-triggered adaption ga
i  evolved 

following9:

dggaba
i
dt

= −
ggaba
i
τgaba

+ ∑
j∈inh

wijSj(t) (3)

dga
i

dt
= −

ga
i
τa + ΔaSi(t) (4)

where Sj(t) = ∑kδ(t − tkj )  denotes the pre-synaptic spike train, and 
Si(t) = ∑kδ(t − tki )  denotes the post-synaptic spike train. In both 
instances, δ indicates the Dirac delta function, and tkx(k = 1, 2,…) indi-
cates the firing times of neuron x. wij indicates the weight from neuron 
j to neuron i. Δa indicates a fixed adaptation strength. τgaba indicates the 
GABA decay time constant, and τa indicates the adaptation time 
constant.

Excitatory synaptic input is set by a combination of a fast AMPA-like 
conductance gampa

i (t) and a slow NMDA-like conductance gnmda
i (t):

gexc
i (t) = αgampa

i (t) + (1 − α)gnmda
i (t) (5)

dgampa
i
dt

= −
gampa
i
τampa + ∑

j∈exc
wij uj(t)xj(t)⏟⎵⏟⎵⏟

Short−TermPlasticity

Sj(t) (6)

τnmda
dgnmda

i
dt

= −gnmda
i + gampa

i (7)

where α indicates a constant that determines the relative contribution 
of gampa

i (t) and gnmda
i (t), and τampa and τnmda indicate their respective time 

constants. uj(t) and xj(t) denote variables that represent the state of 
short-term plasticity as discussed in the next subsection.

Synaptic plasticity model
We designed our synaptic plasticity model after previous work that 
demonstrated that a combination of Hebbian (that is, triplet STDP) and 
non-Hebbian (that is, heterosynaptic and transmitter-induced) forms 
of excitatory plasticity is able to support stable memory formation and 
recall in spiking neural networks9.

Short-term plasticity. The variables uj(t) and xj(t) representing the 
state of short-term plasticity followed9:

d
dt

xj(t) =
1 − xj(t)

τd
− uj(t)xj(t)Sj(t) (8)

d
dt

uj(t) =
U − uj(t)

τf
+ U (1 − uj(t)) Sj(t) (9)

where τd and τf indicate the depression and facilitation time constants, 
respectively. The parameter U indicates the initial release probability.

Long-term excitatory synaptic plasticity. Long-term excitatory 
synaptic plasticity combined triplet STDP6, heterosynaptic plasticity7 
and transmitter-induced plasticity8 by having an excitatory synaptic 
weight wij from an excitatory neuron j to another excitatory neuron i 
evolve according to9:

d
dt

wij(t) = ηexc (Az+j (t)z
slow
i (t − ϵ)Si(t) − Bi(t)z−i (t)Sj(t)) triplet (10a)

−β (wij − w̃ij(t)) (z−i (t − ϵ))
3
Si(t) heterosynaptic (10b)

+δSj(t) transmitter-induced (10c)

where ηexc (excitatory learning rate), A (LTP rate), β (heterosynaptic 
plasticity strength) and δ (transmitter-induced plasticity strength) 
indicate fixed parameters. ϵ indicates an infinitesimal offset whose 
purpose is to ensure that the current action potential is disregarded in 
the trace. State variables zxj/i  indicate either pre-synaptic or 
post-synaptic traces, and each has independent temporal dynamics 
with time constant τx:

dzx
j/i

dt
= −

zx
j/i
τx + Sj/i(t) (11)

The reference weights w̃ij(t) also display independent synaptic consoli-
dation dynamics following the negative gradient of a double-well 
potential9:

τcons d
dt

w̃ij(t) = wij(t) − w̃ij(t) − Pw̃ij(t) (
wP

2 − w̃ij(t)) (wP − w̃ij(t)) (12)

where P and wP indicate fixed parameters, and τcons indicates the syn-
aptic consolidation time constant. P sets the magnitude of the 
double-well potential. When wP = 0.5, an upper stable fixed point is 
located at wij(t) = w̃ij(t) , and a lower stable fixed point is located at 
w̃ij(t) = 0. If wij(t) > w̃ij(t) by a small margin, then the upper and lower 
stable fixed points of w̃ij(t) are increased. If wij(t) ≫ w̃ij(t), then w̃ij(t) only 
maintains a single fixed point that has a high value. This synaptic con-
solidation model is consistent with previous theoretical work34 and 
with synaptic tagging experiments that found that long-lasting LTP 
relies on events taking place during, as well as before, its initial induc-
tion35. In addition, this model assumes the existence of molecular 
mechanisms that enable synapses to maintain a stable efficacy (that 
is, weight) even in the presence of intermittent fluctuations triggered 
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by various factors (for example, molecular turnover)36,37. Furthermore, 
the LTD rate Bi(t) is subject to homeostatic regulation following:

Bi(t) = {
ACi(t) forCi(t) ≤ 1.

A otherwise
(13)

d
dt

Ci(t) = −Ci(t)
τhom

+ (zhti (t))
2

(14)

where τhom denotes a time constant, and zhti (t) denotes a synaptic trace 
that follows Equation (11) with its own time constant τht. Finally, excita-
tory weights were restricted to a range defined by lower and upper 
bounds wmin

exc  and wmax
exc , respectively. Nevertheless, excitatory weights 

never reached their upper bound in our simulations except in some 
protocols with blockage of neurons or plasticity mechanisms.

Inhibitory synaptic plasticity. Inhibitory synaptic plasticity took 
the form of a network activity-based STDP rule with an inhibitory 
synaptic weight wij from an inhibitory neuron j to an excitatory neuron 
i following9:

d
dt

wij(t) = ηinhG(t) [zj(t)Si(t) + zi(t)Sj(t) + Sj(t)] (15)

G(t) = H(t) − γ (16)

d
dt

H(t) = −H(t)
τH + ∑

i∈exc
Si(t) (17)

where ηinh indicates a constant inhibitory learning rate, and zj/i indicates 
either pre-synaptic or post-synapatic traces that follow Equation (11) 
with a shared time constant τiSTDP. G(t) indicates a quantity that linearly 
depends on the difference between a hypothetical global secreted 
factor H(t) and the target local network activity level γ. H(t) indicates 
a low-pass-filtered version of the spikes fired by the population of 
excitatory neurons in the local network with time constant τH. Note 
that when the network activity level falls below the target γ, G(t) < 0, 
and the inhibitory STDP rule (Equation (15)) becomes a unidirectional 
‘depression-only’ rule9. However, when the network activity level raises 
above γ, the inhibitory rule becomes Hebbian. Thus, the primary goal 
of inhibitory synaptic plasticity was to control network activity and, 
thereby, support the stabilization of the overall network dynamics 
similarly to previous theoretical models9,10,32. In Extended Data Fig. 7, 
we also examined the ability of an alternative version of the inhibitory 
STDP rule in Equation (15) to support stable network dynamics:

d
dt

wij(t) = ηinhG(t) [Sj(t)] (18)

where we retained the pre-synaptic-only term Sj(t) and removed the 
Hebbian terms zj(t)Si(t) and zi(t)Sj(t). In this alternative formulation of 
the inhibitory rule, G(t) and H(t) also follow Equations (16) and (17), 
respectively. Lastly, inhibitory weights were restricted to the range 
between wmin

inh  and wmax
inh , but they never reached their upper limit in our 

simulations except in some protocols with blockage of neurons or 
plasticity mechanisms.

Network model
The model consisted of a stimulus population of Nstim = 4,096 Poisson 
neurons and a recurrent neural network corresponding to the hip-
pocampus. Notably, the following anatomical evidence has motivated 
the use of a recurrent neural network to model the hippocampus: 
recurrent excitatory synapses in CA3 (ref. 38) and, to a less extent, in 
CA1 (ref. 39); feedforward synapses from DG to CA3 and from CA3 to 
CA1 (ref. 40); ‘backprojection’ synapses from CA1 to CA3 and DG41 and 

from CA3 to DG42; and recurrent inhibitory synapses in CA1 (ref. 41),  
CA3 (ref. 38) and DG43. The hippocampus network was composed of 
Nexc = 4,096 excitatory neurons and Ninh = 1,024 inhibitory neurons 
that were recurrently connected. Recurrent excitatory synapses onto 
excitatory neurons exhibited short-term and long-term excitatory syn-
aptic plasticity, whereas excitatory synapses onto inhibitory neurons 
displayed only short-term plasticity. Inhibitory synapses onto inhibi-
tory neurons were static, whereas inhibitory synapses onto excitatory 
neurons exhibited inhibitory synaptic plasticity. Feedforward excita-
tory synapses from the stimulus population to excitatory neurons in the 
hippocampus exhibited short-term and long-term excitatory synaptic 
plasticity. Recurrent synapses were randomly initialized following a 
uniform distribution, whereas feedforward synapses from the stimulus 
population had circular receptive fields centered at random locations 
(that is, each excitatory neuron in the hippocampus received projec-
tions from a small circular area in the stimulus population of radius 
Rhpc whose random center location followed a uniform distribution). 
Plasticity mechanisms were active in the entirety of all simulations 
except in protocols where plasticity was purposefully blocked. Recur-
rent synapses had a connection probability ϵrec and were initialized with 
specific weights (that is, wEE, wEI, wII and wIE; E, excitatory, and I, inhibi-
tory). Feedforward synapses had an initial weight wstim. For a complete 
list of network parameters, see Supplementary Table 2.

Network simulation
Network simulations comprised multiple phases: burn-in, training, 
consolidation, probing and recall. Each simulation began with a brief 
burn-in period of duration Tburn that stabilized the activity of the hip-
pocampus network under background input from the stimulus popula-
tion at rate νbg. Next, the training stimulus (Fig. 1c) was randomly 
presented to the hippocampus network in the training phase of dura-
tion Ttraining with stimulus-off and stimulus-on intervals both drawn 
from exponential distributions with means Ttraining

Off  and Ttraining
On , respec-

tively. After the training phase, the training stimulus was randomly 
reactivated in the consolidation phase with stimulus-off and 
stimulus-on intervals also drawn from exponential distributions but 
with means Tconsolidation

Off  and Tconsolidation
On , respectively. This was motivated 

by recent experiments that showed that training-activated sensory 
neurons are selectively reactivated during post-training sleep and that 
this reactivation is essential for memory selectivity11. Hence, our model 
aimed to capture the role of sleep-dependent sensory reactivation in 
memory consolidation. At regular intervals throughout the consolida-
tion phase (that is, consolidation time = 0, 1, …, Tconsolidation hours), the 
network advanced to the probing phase when the training stimulus 
was randomly presented for a brief period Tprobing with stimulus-off and 
stimulus-on intervals drawn from exponential distributions with means 
Tprobing
Off  and Tprobing

On , respectively. This allowed us to identify the set of 
engram cells that encode the training stimulus at any consolidation 
time point (see next subsection). We also subjected the network to the 
recall phase of duration Trecall after each consolidation interval (that is, 
consolidation time = 0, 1, …, Tconsolidation hours). For each stimulus (that 
is, either the training stimulus or one of three novel stimuli; Fig. 1c), a 
separate recall session was conducted with partial cues of that indi-
vidual stimulus being presented to the network. Hence, there was a 
total of four distinct parallel recall sessions (that is, one for the training 
stimulus and three for the novel stimuli) for each sampled consolida-
tion interval. Cue-off and cue-on intervals also followed exponential 
distributions with means Trecall

Off  and Trecall
On , respectively. Each stimulus 

and partial cue is depicted in a 64 × 64 grid in Fig. 1c, and the overlap 
between the training stimulus and each novel stimulus is shown in  
Fig. 1d. During presentation or reactivation of a stimulus or cue, the 
stimulus population kept firing at the background rate νbg, but the 
stimulus neurons that corresponded to a given stimulus or cue selec-
tively increased their firing rate to νstim. When blocking neurons (that 
is, stimulus, excitatory or inhibitory), their output and all their efferent 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01551-w

synapses were blocked. For a complete list of simulation parameters, 
see Supplementary Table 2.

Engram cells and recall metrics in simulations
In our simulations, engram cells were identified by computing the aver-
age stimulus-evoked firing rate of each neuron in the hippocampus 
network at different time points. First, a neuron was said to be an engram 
cell encoding the training stimulus at the end of the training phase if its 
average stimulus-evoked firing rate was above the threshold ζthr = 10 Hz 
for the last Δteng = 60 s of the training phase. After training, we used the 
probing phase to identify engram cells after consolidation time had 
elapsed. Specifically, after consolidation time = 0, 1, …,  
Tconsolidation hours, a neuron was regarded an engram cell encoding the 
training stimulus if its average stimulus-evoked firing rate was above 
the threshold ζthr = 10 Hz during the entire probing phase of duration  
Tprobing = 60 s. Note that we used the last Δteng = 60 s of the training phase 
to identify engram cells so that the time window used for engram cell 
identification in the training and probing phases had the same length 
in each case. Consequently, any differences between the ensembles of 
engram cells identified in the training and probing phases did not arise 
from differences in the time windows used for engram cell identifica-
tion. In Extended Data Fig. 4j–o, we used an alternative, neuronal 
population-based approach to identify engram cells in the training and 
probing phases to examine the robustness of our modeling results. In 
this approach, we first computed the non-negative matrix of neuronal 
spike counts V (row = time bin, column = neuron) of the last Δteng = 60 s 
of the training phase or the entire Tprobing = 60 s of the probing phase 
using a time bin of 10 ms. Then, we used non-negative matrix factoriza-
tion (NMF) to factorize V into two non-negative matrices W (that is, 
features matrix) and H (that is, coefficients matrix) such that V = WH. 
We set the number of features in the factorization (that is, number of 
columns in W) to 1 (that is, 1 engram ensemble encoding the training 
stimulus at any point in time), and a neuron was considered an engram 
cell encoding the training stimulus at a given time point if its coefficient 
supplied by H was above the threshold ζthrNMF = 0.5. We used this neuronal 
population-based approach to identify engram cells because NMF is 
able to take into account the spike trains of the entire population of 
neurons, and it has an inherent clustering capability44 that has been 
previously used to detect cell assemblies in calcium imaging data45. 
Using either the single neuron-based (that is, average stimulus-evoked 
firing rate of individual neurons) or the neuronal population-based 
(that is, NMF of neuronal spike counts) approach to identify engram 
cells, a neuron may be an engram cell at one point and subsequently no 
longer be an engram cell at a later time point (that is, the neuron 
‘dropped out of’ the engram2). Conversely, a neuron may not be an 
engram cell initially but later may become an engram cell (that is, the 
neuron ‘dropped into’ the engram2). In addition, a neuron may alternate 
between being and not being an engram cell over the course of consoli-
dation. Naturally, a neuron may be an engram cell or a non-engram cell 
at the end of the training phase and remain so throughout the consolida-
tion period. To examine the evolution of engrams with memory con-
solidation in our simulations, we measured the overlap between engram 
cells identified in the probing phase (that is, probing-activated or prob-
ing+ engram cells) and in the training phase (that is, training-activated 
or training+ engram cells) as a fraction of training+, probing+ or all neu-
rons in the hippocampal network. We also tracked the size of the prob-
ing+ engram cell ensemble as a fraction of all neurons in the network as 
well as the hour-to-hour overlap between probing+ engram cell ensem-
bles. Moreover, training stimulus neurons were considered stable sen-
sory engram cells given the prominent role of training-activated sensory 
neurons in memory storage and consolidation11. Furthermore, an 
engram cell ensemble at a given time point was taken as activated upon 
presentation of a partial cue of either the training or a novel stimulus if 
its population firing rate (that is, average firing rate computed over all 
engram cells in the ensemble) was above the threshold ζthr = 10 Hz during 

presentation of the cue. We then measured recall as the number of 
instances when the engram cell ensemble was activated by a cue pres-
entation divided by the total number of cue presentations in the recall 
phase. Moreover, we defined recall rate as the population firing rate of 
engram cells evoked by partial cues averaged across all cue presenta-
tions in the recall phase. We computed separate recall metrics for the 
training and novel stimuli given that cues of a single stimulus were 
presented in a given recall session (see previous subsection).

Mice
C57BL/6J wild-type male mice were obtained from The Jackson Labo-
ratory. Experiments using CCK-Cre mice employed the CCK-IRES-Cre 
knock-in line (stock no. 012706, The Jackson Laboratory). Experiments 
using PV-Cre mice employed the PV-IRES-Cre knock-in line (stock no. 
017320, The Jackson Laboratory). Knock-in mice were maintained as 
hemizygotes. Mice had access to food and water ad libitum and were 
socially housed in numbers of 2–5 littermates until surgery. After sur-
gery, mice were single housed. During housing, temperature was kept 
between 18 °C and 23 °C, and humidity was maintained between 40% and 
60%. For behavioral experiments, all mice were male and 2–4 months 
old. All experiments were conducted in accordance with NIH guide-
lines and were approved by the Massachusetts Institute of Technology 
Department of Comparative Medicine and Committee on Animal Care.

Mouse behavior
Experiments were conducted during the light cycle (7:00 to 19:00). 
Mice were randomly assigned to experimental groups for specific 
behavioral assays immediately after surgery. Mice were habituated to 
investigator handling for 1–2 min on three consecutive days. Handling 
took place in the holding room where the mice were housed. Before 
each handling session, mice were transported by wheeled cart to and 
from the vicinity of the behavior rooms to habituate them to the jour-
ney. All behavior experiments were analyzed blinded to experimental 
group. Following behavioral protocols, brain sections were prepared 
to confirm efficient viral labeling in hippocampal DG. Animals lack-
ing adequate labeling were excluded before behavior quantification.

CFC. Two distinct contexts were employed. The conditioning context 
was a 29 × 25 × 22-cm chamber with grid floors and dim white lighting 
and scented with 0.25% benzaldehyde. The neutral context consisted 
of a 29 × 25 × 22-cm chamber with white perspex floors and red light-
ing and scented with 1% acetic acid. All mice were conditioned (120-s 
exploration, one 0.65-mA shock of 2-s duration at 120 s, 60-s post-shock 
period; second 0.65-mA shock of 2-s duration at 180 s, 60-s post-shock 
period; third 0.65-mA shock of 2-s duration at 240 s, 60-s post-shock 
period). After different intervals (1 h, 5 h, 12 h, 18 h and 24 h), mice 
were tested in the neutral context (3 min) followed by a recall test in 
the conditioning context (3 min) approximately 1 h later. Floors of 
chambers were cleaned with quatricide before and between runs. Mice 
were transported to and from the experimental room in their home 
cages using a wheeled cart. For experiments that included optoge-
netic manipulations (including Cal-Light active neuron labeling), the 
behavior chamber ceilings were customized to hold a rotary joint (Doric 
Lenses) connected to two 0.3-m optic fibers. All mice had optic fibers 
attached to their optic fiber implants before training and recall tests. 
Because optogenetic manipulations (that is, optic fibers) interfered 
with automated motion detection, freezing behavior was manually 
quantified for these experiments.

Surgery
Animals were anesthetized with isoflurane for stereotaxic injections 
and were given 1 mg kg−1 meloxicam as analgesic before incisions. Virus 
was injected at 70 nl min−1 using a glass micropipette attached to a 10-ml 
Hamilton microsyringe. The needle was lowered to the target site and 
remained for 5 min before beginning the injection. After the injection, 
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the needle stayed for 10 min before it was withdrawn. Coordinates 
for hippocampal DG were −2.0 mm AP, ±1.0 mm ML and −2.1 mm DV, 
and 250 nl of the virus was injected per hemisphere. For labeling and 
behavioral manipulation experiments using optogenetics, implants 
were lowered right above injection sites. The implant was secured to 
the skull with two jewelry screws, adhesive cement (C&B Metabond) 
and dental cement. Mice were given 1–2 mg kg−1 sustained-release 
buprenorphine as analgesic after surgeries and allowed to recover for 
at least 2 weeks before behavioral experiments.

Activity-dependent labeling using Cal-Light
For Cal-Light experiments, a cocktail of three viruses was injected 
into hippocampal DG of wild-type mice, followed by bilateral optic 
fiber implants (200-μm core diameter, Newdoon). Viruses were 
AAV-TM-CaM-NES-TEV-N-AsLOV2-TEVseq-tTA (Addgene plasmid 
92392), AAV-M13-TEV-C-P2A-tdTomato (Addgene plasmid 92391) and 
AAV-TRE-EGFP (Addgene plasmid 89875). These constructs were sero-
typed with AAV5 coat proteins and packaged by the Viral Core at Boston 
Children’s Hospital (∼4 × 1012 genome copies per milliliter (GC ml−1) 
viral titer). After recovery, active neurons during fear conditioning 
were tagged with EGFP by delivery of continuous blue light (473 nm, 
15 mW at patch cord tip) for the entire duration of the training session 
(∼5 min). For c-Fos staining together with Cal-Light labeling, labeled 
animals were perfused 60 min after the specific behavioral epoch to 
capture endogenous c-Fos protein by immunohistochemistry (IHC). 
We used expression of the immediate early gene c-Fos as a marker 
of neuronal activity following standard practice in memory engram 
research19,46,47. Both Cal-Light labeling and c-Fos staining tag neurons 
that are highly activated during defined time windows without pro-
viding a quantitative measure of neuronal activity. For functional 
testing of Cal-Light-labeled neurons at different time points during 
memory consolidation, surgery mice were prepared using a cocktail 
of the three viruses in which the AAV5-TRE-EGFP was replaced by an 
AAV5-TRE-Chrimson-mCherry (Addgene plasmid 92207). Chrimson 
was activated during behavior with a 633-nm laser (10 mW, 20 Hz light).

IHC
Mice were killed using an overdose of isoflurane and transcardially 
perfused with PBS, followed by 4% paraformaldehyde (PFA). Brains 
were extracted and incubated in 4% PFA at room temperature over-
night. Brains were transferred to PBS, and 50-μm coronal slices were 
prepared using a vibratome. For immunostaining, each slice was placed 
in PBS + 0.2% Triton X-100 (PBS-T) with 5% normal goat serum for 1 h 
and then incubated with primary antibody at 4 °C for 16–24 h. Slices 
then underwent three wash steps for 10 min each in PBS-T, followed 
by a 2-h incubation with secondary antibody. After three more wash 
steps of 10 min each in PBS-T, slices were mounted on microscope 
slides. Antibodies used for staining were as follows: chicken anti-GFP 
(1:1,000, Life Technologies) and anti-chicken Alexa Fluor 488 (1:1,000), 
rabbit anti-c-Fos (1:500, Cell Signaling Technology) and anti-rabbit 
Alexa Fluor 555 (1:300), and nuclei were stained with DAPI (1:3,000, 
Sigma-Aldrich). For c-Fos staining in the CCK+ interneuron inhibition 
experiment, an anti-rabbit Alexa Fluor 633 (1:200) was used for the 
secondary antibody staining. Brain sections were imaged with a ×10 
magnification objective on an Olympus fluorescence microscope.

In situ hybridization
Mouse brain samples were carefully extracted, embedded in OCT 
compound (Tissue-Tek) and flash frozen. Coronal sections (16-μm 
thickness) were prepared on a cryostat (Leica) and stored at −80 °C until 
staining. ACD RNAScope multiplex fluorescent protocol was applied 
for mRNA fluorescence in situ hybridization (FISH) staining using 
fresh frozen tissues. In brief, charged slides with slices were fixed in 
pre-chilled 4% PFA for 30 min, followed by a series of dehydration steps 
using 50%, 70% and 100% ethanol. Sections were then permeabilized 

with ACD Protease IV for 30 min, followed by probe hybridization for 2 h 
at 40 °C. Fluorescent labeling of two probes per section was performed 
using four steps of Amp 1-FL to Amp 4-FL. Sections were stained with 
DAPI and stored at 4 °C. Mouse ACD probes for eYFP (cat. no. 312131), 
CCK (cat. no. 402271), Gad1 (cat. no. 400951), PV (cat. no. 421931) and 
c-Fos (cat. no. 316921) were used. Stained sections were imaged with 
a ×20 magnification objective on an Olympus confocal microscope.

Cell counting
Images were processed using ImageJ software, and quantifications were 
performed manually from 3–5 sections per animal. All counting experi-
ments were conducted blinded to experimental group. Researcher 
1 trained the animals, prepared slices and randomized images, and 
Researcher 2 performed cell counting. Neuronal cell counts were nor-
malized to the number of DAPI+ cells in the field of view.

Ex vivo electrophysiological recordings
Brain slice preparation. CCK-Cre mice (7–9 weeks old) were injected 
in DG with a virus cocktail of Cal-Light (to label active neurons with 
TRE-EGFP), AAV5-Dlx5/6-DIO-hM4Di-mCherry (to inhibit inhibitory 
CCK+ interneurons using C21 during the cellular consolidation window) 
that we generated and AAV5-Dlx5/6-DIO-Chrimson-mCherry (to meas-
ure the strength of CCK+ connections to Cal-Light-labeled EGFP+ neu-
rons in brain slices using 633-nm light) that we generated. About 12 h 
after CFC training, mice were anesthetized with isoflurane and decapi-
tated, and their brains were quickly removed. Coronal slices (300-μm 
thickness) were prepared in oxygenated artificial cerebrospinal fluid 
(ACSF) solution at 4 °C using a Leica vibratome. ACSF contained (in mM):  
125 NaCl, 3 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, 25 NaHCO3 and 
10 D-glucose, saturated with 95% O2/5% CO2 (pH 7.3, osmolarity of 
300 mOsm). Slices were stored for 30 min at 33 °C (±0.5 °C) and then 
kept at room temperature until recordings.

Slice recordings. Electrophysiology data were collected using 
Clampex 10.7 software. Whole-cell recordings in voltage-clamp mode 
were performed using an IR-DIC microscope (Olympus) with a water 
immersion ×40 objective (NA = 0.8), equipped with four automatic 
manipulators (Luigs & Neumann) and a CCD camera (Hamamatsu). 
For all recordings, borosilicate glass pipettes were fabricated (Sut-
ter Instrument) with resistances of 3.5–5 MΩ. IPSCs were pharmaco-
logically isolated with 50 μM APV (Tocris) and 20 μM DNQX (Tocris) 
and recorded from cells that were voltage clamped at −70 mV using a 
high-Cl internal solution containing (in μM): 130 CsCl, 4 NaCl, 10 TEA, 
10 HEPES, 2 Na2-ATP, 0.5 Na3-GTP and 0.2 EGTA. The osmolarity of this 
intracellular solution was 290 mOsm, and the pH was 7.25. Recordings 
were amplified using up to two dual-channel amplifiers (Molecular 
Devices), filtered at 2 kHz, digitized (20 kHz) and acquired through an 
ADC/DAC data acquisition unit (InstruTech) using custom software run-
ning on Igor Pro (WaveMetrics). Access resistance (Ra) was monitored 
throughout the duration of the experiment, and data acquisition was 
suspended whenever Ra was beyond 20 MΩ. To record oIPSCs, we used 
2-ms 633-nm LED stimulations at 0.2, 0.5, 0.8, 1.1, 1.4 and 1.7 mW/mm2 
generated through Polygon400 (Mightex) with built-in LED sources 
and delivered through the ×40 objective. Recordings were carried 
out on labeled DG granule cells (EGFP+) and unlabeled neighboring 
DG granule cells (EGFP−). In the experiments where CCK+ neurons 
were inhibited using C21 administration, oIPSCs were recorded using 
voltage-clamp mode at −70 mV with a high-Cl internal solution. Average 
peak responses were calculated from 10 sweeps, stimulated every 30 s 
with 0.8 mW/mm2 red light.

In vivo calcium imaging
Experimental protocol. For calcium imaging experiments, wild-type 
mice that were 10–13 weeks old were used. Because these surgeries 
required the implantation of a GRIN lens targeting the upper blade of DG,  

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01551-w

we started by creating a guide track in the right hemisphere only. We 
then injected AAV8-Syn-jGCaMP7f virus (Addgene virus 104488-AAV8) 
in the right hemisphere (that is, these were unilateral injections). Ten 
minutes later, we implanted a 1.0-mm-diameter ProView Integrated 
Lens from Inscopix (part no. 1050-004637) targeting the right hemi-
sphere DG, which was stabilized to the skull using 2–3 jewelry screws, 
adhesive cement (C&B Metabond) and dental cement. After 3.5 weeks 
for virus expression, mice were habituated to investigator handling 
and the attachment of a microendoscope that permits one-photon 
in vivo calcium imaging at single-cell resolution (nVista 3.0, Inscopix). 
To maximize animal movement while carrying the microendoscope, 
these animals were housed in a reverse light cycle room so that imaging 
experiments could be performed during their dark cycle (correspond-
ing to 7:00 to 19:00 for the investigator). Individual animals were used 
for 5-min imaging sessions for a total of eight sessions across a 24-h 
period in the following order: home cage followed by contextual fear 
training; after a delay period of 1 h, home cage followed by neutral con-
text followed by training context; and after a delay period of 23 h, home 
cage followed by neutral context followed by training context. Calcium 
events were captured at 20 Hz for one z-plane. Calcium imaging data 
were collected using Inscopix Acquisition Software 2.0.4. For image 
processing and single-cell identification analyses, we used Inscopix 
Data Processing Software 1.9.2. In brief, calcium imaging movies from 
each session were pre-processed using a spatial downsampling of 
4 and a temporal downsampling of 2, which was followed by spatial 
filtering and motion correction. At this stage, the ΔF/F signal was cal-
culated. Using the motion-corrected movie, we applied a constrained 
non-negative matrix factorization (CNMF) algorithm specifically for 
microendoscopic data (CNMF-E) to identify single DG cells. For each 
animal, we visually confirmed that every region of interest (ROI) identi-
fied by the CNMF-E approach indeed reflected only one cell. With the 
list of accepted ROIs/cells, using Inscopix Data Processing Software 
we performed image registration across the eight sessions per animal 
to be able to longitudinally track single cells across sessions. For the 
cells that could be tracked across sessions, calcium imaging traces 
were deconvolved and exported in a CSV file for downstream data and 
statistical analyses.

Longitudinal engram cell identification. To identify engram cells 
over time, we compared the average ΔF/F signal of each imaged cell in 
the training context and the home cage at different time points. Specifi-
cally, we first computed the average ΔF/F signal of each cell in each of 
the eight imaging sessions. We then computed a discrimination index 
(see subsection below) of the average ΔF/F signal of each cell in the 
training context and the home cage at three time points: for fear train-
ing, fear training versus home cage; for a delay = 1 h after fear training, 
recall in the training context versus home cage; and for a delay = 24 h 
after fear training, recall in the training context versus home cage. A 
cell was identified as an engram cell at a given time point if its 
ΔF/F-based discrimination index exceeded the threshold ζthrdisc = 0.2. We 
tracked the evolution of the engram by computing the overlap between 
engram cell ensembles identified at consecutive time points (that is, 
fear training, delay = 1 h and delay = 24 h) as a fraction of the engram 
cells identified in the previous time point, current time point or the 
number of imaged cells. In Extended Data Fig. 9a, we used an alterna-
tive, neuronal population-based approach to identify engram cells in 
our longitudinal calcium imaging experiments to evaluate the robust-
ness of our findings. In this approach, we first took the matrix of ΔF/F 
calcium signals of the fear training session Ctraining (row = timestamp, 
column = neuron), and, for each entry, we subtracted the average ΔF/F 
of the corresponding neuron in the prior home cage session (that is, 
average of the corresponding column in the ΔF/F matrix of the prior 
home cage session Chome cage). We then divided each entry in the resulting 
matrix by the sum of the average ΔF/F of the corresponding neuron in 
the prior home cage session and the average ΔF/F of the corresponding 

neuron in the current training session to arrive at the matrix  
Cnormalized training. Next, we subtracted the minimum value of Cnormalized training 
from each of its entries to obtain the non-negative matrix Cnon−negative

normalized training. 
Subsequently, we employed an NMF-based approach to identify 
engram cells using Cnon−negative

normalized training that was analogous to the NMF-based 
approach that we used to identify engram cells in our simulations (see 
previous subsection). Specifically, we used NMF to factorize 
Cnon−negative
normalized training  into two non-negative matrices W (that is, features 

matrix) and H (that is, coefficients matrix) such that Cnon−negative
normalized training = WH. 

We set the number of features in the factorization (that is, number of 
columns in W) to 1 (that is, 1 engram ensemble encoding the fear mem-
ory at any point in time), and a neuron was considered an engram cell 
encoding the fear memory if its coefficient supplied by H was above 
the 99% quantile of the coefficients in H (that is, among the largest 1% 
of coefficients). To identify engram cells at delay = 1 h and 24 h, we 
repeated the procedure above replacing Ctraining with the ΔF/F matrix 
corresponding to recall in the training context at delay = 1 h and 24 h 
and replacing Chome cage with the ΔF/F matrix corresponding to the home 
cage session at delay = 1 h and 24 h. We used this neuronal 
population-based approach to identify engram cells because NMF is 
able to take into account the longitudinal calcium signals of the entire 
population of imaged neurons, and it has an inherent clustering prop-
erty44 that has been used to identify cell assemblies in calcium imaging 
data45, as mentioned previously.

Chemogenetic and optogenetic inhibition experiments
For chemogenetic (that is, hM4Di) neuronal activity manipulation exper-
iments, we generated and injected an AAV5-Dlx5/6-DIO-hM4Di-mCherry 
virus (∼5.3 × 1012 GC ml−1 viral titer) into hippocampal DG of CCK-Cre 
mice. We used the second-generation DREADD agonist known as com-
pound 21 (C21). This agonist was purchased in a water-soluble dihy-
drochloride form (Hello Bio). For each mouse, optimal chemogenetic 
activity was achieved using a target concentration of 2 mg kg−1 (injected 
intraperitoneally), which, in this study, was injected right after fear 
conditioning to inhibit DG CCK+ interneurons during the subsequent 
cellular consolidation window. Control mice were injected with a virus 
similar to the one used for the CCK+ inhibition group but lacking hM4Di. 
For optogenetic inhibition of CCK+ interneurons, we generated and 
injected an AAV5-Dlx5/6-DIO-eArch3.0-eYFP virus (∼3.8 × 1012 GC ml−1 
viral titer) into hippocampal DG of CCK-Cre mice, followed by bilateral 
optic fiber implants targeting hippocampal DG. Control mice were 
injected with a virus similar to the one used for the CCK+ inhibition 
group but lacking eArch3.0. For optogenetic inhibition of PV+ interneu-
rons, we injected an AAV5-EF1α-DIO-eArch3.0-eYFP virus (∼3 × 1012 
GC ml−1 viral titer, UNC Vector Core) into hippocampal DG of PV-Cre 
mice, followed by bilateral optic fiber implants targeting hippocampal 
DG. Control mice were injected with a virus similar to the one used for 
the PV+ inhibition group but lacking eArch3.0. eArch3.0 was activated 
with a 570-nm laser (10 mW, constant light).

Discrimination index
We defined a discrimination index between two quantities q1 and q2 as:

discrimination = q1 − q2
q1 + q2

(19)

We computed a discrimination index of memory recall in our 
simulations by setting q1 = recalltraining stimulus and q2 = recallnovel stimulus. 
recalltraining stimulus and recallnovel stimulus denote recall levels when cues of 
the training stimulus and a novel stimulus are presented in the recall 
phase of our simulation protocol, respectively. Note that a separate 
discrimination index was calculated for each novel stimulus. We also 
computed a discrimination index of freezing behavior in our CFC exper-
iments by setting q1 = freezingtraining context and q2 = freezingneutral context.  
freezingtraining context and freezingneutral context denote freezing levels during 
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memory recall in the training and neutral contexts, respectively.  
For both memory recall and freezing behavior, the discrimination 
index measured the ability of network models or mice to selectively 
recall the encoded memory only when cues of the training experience 
were presented.

In addition, we computed a discrimination index of the ΔF/F signal 
of each imaged cell in our calcium imaging experiment by setting 
q1 = ΔF/Fcelltraining context and q2 = ΔF/Fcellhomecage. ΔF/Fcelltraining context and ΔF/Fcellhomecage 
denote the average ΔF/F signal of a given imaged cell in the training 
context and the home cage, respectively. This discrimination index 
was computed for each imaged cell at three time points (that is, fear 
training, delay = 1 h and delay = 24 h) to determine whether it was an 
engram cell in each instance (see subsection above). Lastly, we com-
puted a discrimination index of the recall-evoked ΔF/F signal of each 
engram cell ensemble that we identified in our calcium imaging experi-
ment by setting q1 = ΔF/Fengramtraining context  and q2 = ΔF/Fengramneutral context . 
ΔF/Fengramtraining context and ΔF/Fengramneutral context denote the average ΔF/F signal of an 
engram cell ensemble (that is, ΔF/F averaged across all cells in the 
ensemble) during recall in the training and neutral contexts, respec-
tively. This discrimination index was computed at two time points (that 
is, delay = 1 h and 24 h), and it measured the ability of an engram cell 
ensemble to selectively respond only when mice were placed back in 
the training context.

Statistics
Distributions of stimulus-evoked neuronal firing rates in simulations 
were compared using a two-sided Kolmogorov–Smirnov test. Dis-
tributions of ΔF/F-based discrimination indices of imaged cells in 
longitudinal calcium imaging experiments were compared using a 
two-sided Kolmogorov–Smirnov test. Distributions compared using 
a Kolmogorov–Smirnov test met required assumptions (that is, con-
tinuous variables). Freezing levels in CFC experiments were compared 
at multiple time points using a two-sided Wilcoxon signed-rank test 
between freezing in the training and neutral contexts. Discrimination 
indices between freezing levels in the training and neutral contexts 
in CFC experiments were compared against an average discrimina-
tion = 0 at multiple time points using a two-sided one-sample Wil-
coxon signed-rank test. Memory recall at consolidation time = 24 h 
in the control simulation (Fig. 1i) and in the simulation with blockage 
of LTP during consolidation (Extended Data Fig. 4f) were compared 
using a two-sided Wilcoxon signed-rank test. Quantities compared 
using a Wilcoxon signed-rank test met required assumptions (that is, 
dependent samples, independence of paired observations, continu-
ous dependent variable and ordinal level of measurement). For CFC 
experiments with Cal-Light active neuron labeling and c-Fos staining, 
a one-way ANOVA followed by Tukey’s honestly significant difference 
(HSD) post hoc test was used to compare ensemble overlap between 
neurons activated during both recall and training (c-Fos+ ∩ EGFP+) 
when memory recall was evaluated in the training context, neutral 
context or home cage. c-Fos+ ∩ EGFP+ as a fraction of training-activated 
neurons (EGFP+), recall-activated neurons (c-Fos+) and neuronal cell 
count (DAPI+) were each tested separately. Ensemble overlap data 
met required assumptions of one-way ANOVA (that is, independent 
samples, normality of residuals, homogeneity of variances and con-
tinuous dependent variable). For the experiments with optogenetic 
reactivation of Cal-Light-labeled neurons, we used an unpaired t-test 
to compare freezing levels in the neutral context between the control 
and the Cal-Light activation groups. Freezing level data compared 
using an unpaired t-test met required assumptions (that is, continuous 
variable, random sampling, homogeneity of variance and normality). 
For calcium imaging experiments, we computed Spearman’s rank cor-
relation coefficient between the discrimination index of freezing levels 
and the discrimination index of recall-evoked ΔF/F signals of engram 
cell ensembles at delay = 1 h and 24 h (see subsection above). We also 
computed the associated P to test non-correlation. Discrimination data 

used to compute Spearman’s rank correlation met required assump-
tions (that is, paired observations and continuous variables). For elec-
trophysiological recordings, a two-way repeated-measures ANOVA was 
used to compare oIPSC amplitudes between EGFP+ and EGFP− neurons. 
oIPSC data met required assumptions of two-way repeated-measures 
ANOVA (that is, continuous dependent variable, normality of depend-
ent variable, sphericity and absence of outliers). We used a paired 
t-test to compare normalized oIPSC amplitudes between EGFP+ and 
EGFP− neurons. Normalized oIPSC data met required assumptions of 
paired t-test (that is, independent observations, normality of the dif-
ferences between pairs and absence of outliers). For each test, the null 
hypothesis was rejected at the P < 0.05 significance level. No statistical 
methods were used to pre-determine sample sizes, but our sample sizes 
are similar to those reported in previous publications3,4,19.

Simulation and data analysis details
In our simulations, we employed the forward Euler method to update 
neuronal state variables with a timestep Δ = 0.1 ms (with the exception 
of reference weights w̃ for which we set a longer timestep Δlong = 1.2 s 
for efficiency reasons). Population activity (that is, average firing rate 
over all neurons in a given ensemble) was computed with a temporal 
resolution of 10 ms without smoothing or convolution. We computed 
99% confidence intervals for mean metrics (that is, ensemble overlap, 
recall firing rate, recall and discrimination index) using a 
non-parametric bootstrap to provide an estimate of uncertainty and 
to facilitate their visualization.

Code details
Simulation code was written in C++ employing the Auryn framework 
for spiking neural network simulation48. After several preliminary 
simulations, we found that setting the number of Message Passing 
Interface (MPI) ranks Nranks = 16 minimized our simulation time with 
Auryn. Code used to analyze simulation output and experimental data 
was written in Python 3.11.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data necessary to reproduce the simulations and data analyses 
reported in this study are available in a public repository49. Calcium 
imaging, individual mouse behavior and cell counting data are avail-
able in the Source Data files. Source data are provided with this paper.

Code availability
The code used to perform the simulations and data analyses in this 
work is available in a public repository49.
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Extended Data Fig. 1 | Engram cell turnover in the model is robust to the 
training window used to identify engram cells, and dynamic engrams are 
selectively reactivated by cues of the training stimulus. a-b, Post-encoding 
evolution of the engram ensemble when using the first 60 s of the training phase 
to identify engram cells in Fig. 1b. Means and 99% confidence intervals are 
shown. n = 10 trials. a, Ensemble overlap between engram cells activated during 
both probing and training as a fraction of training-activated engram cells (left), 
probing-activated engram cells (middle) and all neurons in the network (right).  
b, Engram cell ensemble as a fraction of all neurons. Dashed line indicates engram 
cell ensemble at the end of training. c-d, Post-encoding evolution of the engram 
ensemble when using the entire 300 s of the training phase to identify engram 
cells in Fig. 1b. Means and 99% confidence intervals are shown. n = 10 trials.  
c, Ensemble overlap between engram cells activated during both probing and 
training as a fraction of training-activated engram cells (left), probing-activated 
engram cells (middle) and all neurons in the network (right). d, Engram cell 
ensemble as a fraction of all neurons. Dashed line indicates engram cell ensemble 

at the end of training. e-h, Population activity of engram cells (that is, firing rate 
averaged over all engram cells) during recall after 24 h of consolidation in Fig. 1b.  
Population activity is shown with a temporal resolution of 10 ms without 
smoothing or convolution to reflect fast changes in the population response 
of engram cells. Note that memory recall was considered successful upon 
presentation of a partial cue if the firing rate of engram cells averaged over the 
entire cue presentation interval was above the threshold ζthr = 10 Hz for engram 
cell activation (see Methods). e, Population activity of engram cells when cues 
of the training stimulus were presented during recall. Cue presentation times 
indicated at the top where color denotes stimulus in Fig. 1c. Dashed line indicates 
threshold ζthr = 10 Hz for engram cell activation. Representative trial is shown. 
f, Same as e but when cues of a novel stimulus (that is, circle in Fig. 1c) were 
presented. g, Same as e but when cues of a novel stimulus (that is, pentagon in 
Fig. 1c) were presented. h, Same as e but when cues of a novel stimulus (that is, 
hexagon in Fig. 1c) were presented.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Dynamic and unselective inhibitory engrams control 
network activity. a-c, Post-encoding evolution of inhibitory engram cells in  
Fig. 1b. Means and 99% confidence intervals are shown. n = 10 trials.  
a, Ensemble of inhibitory engram cells as a fraction of all inhibitory neurons (see 
Methods). Dashed line indicates inhibitory engram cell ensemble at the end of 
training. b, Ensemble overlap between probing-activated inhibitory engram 
cells at consolidation time = t and t-1 h as a fraction of inhibitory engram cells at 
consolidation time = t-1 h. Dashed line indicates ensemble of inhibitory neurons 
that remained part of the inhibitory engram in all sampled time points (that 
is, consolidation time = 0, 1, …, 24 h) as a fraction of inhibitory engram cells at 
consolidation time = 0 h (that is, training-activated inhibitory engram cells). 
c, Ensemble overlap between inhibitory engram cells activated during both 
probing and training as a fraction of training-activated inhibitory engram cells 
(top), probing-activated inhibitory engram cells (middle) and all inhibitory 
neurons in the network (bottom). d-g, Analysis of inhibitory engram cells during 
recall in Fig. 1b. Means and 99% confidence intervals are shown. n = 10 trials. 
Color denotes stimulus as in Fig. 1c. d, Recall rate of inhibitory engram cells as 
a function of consolidation time. Dashed line indicates threshold ζthr = 10 Hz 
for engram cell activation. e, Recall of inhibitory engram cells as a function of 
consolidation time. f, Discrimination index between recall of inhibitory engram 
cells evoked by cues of the training stimulus and individual novel stimuli as 
a function of consolidation time. g, Fraction of probing-activated inhibitory 
engram cells reactivated during recall as a function of consolidation time.  
h, Analysis of excitatory network activity in a 60 s interval during consolidation 
in Fig. 1b. From top to bottom: training stimulus reactivation times (in red), spike 
raster of 256 randomly-chosen excitatory neurons (for clarity, only every fifth 

spike is shown), population activity (that is, average firing rate) of all excitatory 
neurons (dashed lines indicate target activity level γ = 4 Hz and threshold ζthr = 10 Hz  
for engram cell activation) and network statistics for the interval marked at 
the top (from left to right: histograms of firing rates, interspike intervals (ISI) 
and coefficient of variation (CV) of ISI). Population activity is shown without 
smoothing or convolution (see Methods). Representative trial is shown.  
i-n, Analysis of inhibitory engram dynamics in Fig. 1b using non-negative matrix 
factorization to identify engram cells (see Methods). Means and 99% confidence 
intervals are shown. n = 10 trials. i, Ensemble overlap between probing-activated 
inhibitory engram cells at consolidation time = t and t-1 h as a fraction of 
inhibitory engram cells at consolidation time = t-1 h. Dashed line indicates 
ensemble of inhibitory neurons that remained part of the inhibitory engram in 
all sampled time points (that is, consolidation time = 0, 1, …, 24 h) as a fraction 
of inhibitory engram cells at consolidation time = 0 h (that is, training-activated 
inhibitory engram cells). j, Ensemble overlap between inhibitory engram cells 
activated during both probing and training as a fraction of training-activated 
inhibitory engram cells (left), probing-activated inhibitory engram cells (middle) 
and all inhibitory neurons in the network (right). k-n, Color denotes stimulus as 
in Fig. 1c. k, Recall rate of inhibitory engram cells as a function of consolidation 
time. Dashed line indicates threshold ζthr = 10 Hz for engram cell activation.  
l, Recall of inhibitory engram cells as a function of consolidation time.  
m, Discrimination index between recall of inhibitory engram cells evoked 
by cues of the training stimulus and individual novel stimuli as a function of 
consolidation time. n, Fraction of probing-activated inhibitory engram cells 
reactivated during recall as a function of consolidation time.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Sensory reactivation during memory consolidation is 
essential for engram selectivity, and analysis of stimulus-evoked neuronal 
firing rates during training. a-i, Simulation with blockage of training-activated 
stimulus neurons during consolidation. a, Schematic of simulation protocol with 
blockage of training-activated stimulus neurons during consolidation. Network 
and simulation parameters as in Fig. 1b. b-d, Post-encoding evolution of engram 
cells in a. Means and 99% confidence intervals are shown. n = 10 trials. b, Engram 
cell ensemble as a fraction of all neurons (see Methods). Dashed line indicates 
engram cell ensemble at the end of training. c, Ensemble overlap between 
probing-activated engram cells at consolidation time = t and t-1 h as a fraction 
of engram cells at consolidation time = t-1 h. Dashed line indicates ensemble of 
neurons that remained part of the engram in all sampled time points (that is, 
consolidation time = 0, 1, …, 24 h) as a fraction of engram cells at consolidation 
time = 0 h (that is, training-activated engram cells). d, Ensemble overlap between 
engram cells activated during both probing and training as a fraction of training-
activated engram cells (top), probing-activated engram cells (middle) and all 
neurons in the network (bottom). e-h, Analysis of memory recall in a. Means and 
99% confidence intervals are shown. n = 10 trials. Color denotes stimulus as in  
Fig. 1c. e, Firing rate of engram cells averaged across all cue presentations during 
recall as a function of consolidation time. Dashed line indicates threshold ζthr = 10 Hz 
for engram cell activation. f, Memory recall as a function of consolidation time. g, 
Discrimination index between recall evoked by cues of the training stimulus and 
individual novel stimuli as a function of consolidation time (see Methods).  
h, Fraction of probing-activated engram cells reactivated during recall as a 
function of consolidation time. i, Mean weight strength of plastic synapses in 
the network in a clustered according to engram cell status. Top, feedforward 

excitatory synapses onto excitatory neurons. Middle, recurrent excitatory 
synapses onto excitatory neurons. Bottom, recurrent inhibitory synapses onto 
excitatory neurons. Left, at the end of the training phase. Right, after 24 h of 
consolidation. Representative trial is shown. j-m, Analysis of the distribution 
of stimulus-evoked neuronal firing rates in the training phase in Fig. 1b (dashed 
line indicates threshold ζthr = 10 Hz for engram cell activation). j, Cumulative 
distributions of stimulus-evoked neuronal firing rates in the training phase in  
Fig. 1b. Red, training-activated engram cells that remained part of the engram in 
all sampled time points (that is, consolidation time = 0, 1, …, 24 h). Black, all other 
neurons. Two-sided Kolmogorov-Smirnov test, P = 1.776357 × 10−15. k, Cumulative 
distributions of stimulus-evoked neuronal firing rates in the training phase in  
Fig. 1b. Red, training-activated engram cells that remained part of the engram in all 
sampled time points (that is, consolidation time = 0, 1, …, 24 h). Black, training-
activated engram cells that dropped out of the engram in any of the sampled time 
points (that is, consolidation time = 0, 1, …, 24 h). Two-sided Kolmogorov-Smirnov 
test, P = 3.330669 × 10−16. l, Cumulative distributions of stimulus-evoked neuronal 
firing rates in the training phase in Fig. 1b. Red, neurons that were not engram cells 
at the end of training but dropped into the engram in any of the sampled time 
points (that is, consolidation time = 0, 1, …, 24 h). Black, all other neurons. Two-
sided Kolmogorov-Smirnov test, P = 0.0. m, Cumulative distributions of stimulus-
evoked neuronal firing rates in the training phase in Fig. 1b. Red, neurons that were 
not engram cells at the end of training but dropped into the engram in any of the 
sampled time points (that is, consolidation time = 0, 1, …, 24 h). Black, neurons 
that were not engram cells at the end of training and remained non-engram cells 
in all sampled time points (that is, consolidation time = 0, 1, …, 24 h). Two-sided 
Kolmogorov-Smirnov test, P = 1.060787 × 10−40. j–m, *P < 0.05.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Blocking long-term potentiation during memory 
consolidation impairs recall, and neuronal population-based analysis yields 
dynamic and selective engrams. a-i, Simulation with blockage of long-term 
potentiation (LTP) during consolidation. a, Schematic of simulation protocol 
with blockage of long-term potentiation (LTP) during consolidation. LTP induced 
by triplet STDP and transmitter-induced plasticity are both blocked. Network 
and simulation parameters as in Fig. 1b except that A = δ = 0 during consolidation 
(see Methods). b-d, Post-encoding evolution of engram cells in a. Means and 99% 
confidence intervals are shown. n = 10 trials. b, Engram cell ensemble as a fraction 
of all neurons. Dashed line indicates engram cell ensemble at the end of training. 
c, Ensemble overlap between probing-activated engram cells at consolidation 
time = t and t-1 h as a fraction of engram cells at consolidation time = t-1 h. Dashed 
line indicates ensemble of neurons that remained part of the engram in all 
sampled time points (that is, consolidation time = 0, 1, …, 24 h) as a fraction of 
engram cells at consolidation time = 0 h (that is, training-activated engram cells). 
d, Ensemble overlap between engram cells activated during both probing and 
training as a fraction of training-activated engram cells (top), probing-activated 
engram cells (middle) and all neurons in the network (bottom). e-g, Analysis of 
memory recall in a. Means and 99% confidence intervals are shown. n = 10 trials. 
Color denotes stimulus as in Fig. 1c. e, Firing rate of engram cells averaged across 
all cue presentations during recall as a function of consolidation time. Dashed 
line indicates threshold ζthr = 10 Hz for engram cell activation. f, Memory recall as 
a function of consolidation time. g, Discrimination index between recall evoked 
by cues of the training stimulus and individual novel stimuli as a function of 
consolidation time. h, Mean weight strength of plastic synapses in the network 
in a clustered according to engram cell status. Top, feedforward excitatory 

synapses onto excitatory neurons. Middle, recurrent excitatory synapses onto 
excitatory neurons. Bottom, recurrent inhibitory synapses onto excitatory 
neurons. Left, at the end of the training phase. Right, after 24 h of consolidation. 
Representative trial is shown. i, Memory recall evoked by cues of the training 
stimulus at tconsolidation = 24 h in Fig. 1i (control) and in f (LTP blockage) (same data). 
Two-sided Wilcoxon signed-rank test, W = 0.0, P = 0.001953. Means and standard 
deviations are shown. n = 10 trials per group. *P < 0.05. j-o, Analysis of engram 
dynamics in Fig. 1b using non-negative matrix factorization to identify engram 
cells (see Methods). Means and 99% confidence intervals are shown. n = 10 
trials. j, Post-encoding evolution of engram cells. Ensemble overlap between 
engram cells activated during both probing and training as a fraction of training-
activated engram cells (left), probing-activated engram cells (middle) and all 
neurons in the network (right). k, Ensemble of engram cells as a fraction of all 
neurons. Dashed line indicates engram cell ensemble at the end of training.  
l, Ensemble overlap between probing-activated engram cells at consolidation 
time = t and t-1 h as a fraction of engram cells at consolidation time = t-1 h. Dashed 
line indicates ensemble of neurons that remained part of the engram in all 
sampled time points (that is, consolidation time = 0, 1, …, 24 h) as a fraction of 
engram cells at consolidation time = 0 h (that is, training-activated engram cells). 
Note that the dashed line is close to 0. m-o, Color denotes stimulus as in Fig. 1c.  
m, Firing rate of engram cells averaged across all cue presentations during recall 
as a function of consolidation time. Dashed line indicates threshold ζthr = 10 Hz 
for engram cell activation. n, Memory recall as a function of consolidation time. 
o, Discrimination index between recall evoked by cues of the training stimulus 
and individual novel stimuli as a function of consolidation time.
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Extended Data Fig. 5 | Hebbian and non-Hebbian forms of excitatory 
synaptic plasticity are critical for memory encoding and consolidation. 
a-b, Simulation protocol as in Fig. 1b but with blocked triplet STDP (that is, 
A = Bi(t) = 0, see Methods). a, Memory recall as a function of consolidation time. 
Means and 99% confidence intervals are shown. n = 10 trials. Color denotes 
stimulus as in Fig. 1c. b, Mean weight strength of plastic synapses clustered 
according to engram cell status. Top, feedforward excitatory synapses onto 

excitatory neurons. Middle, recurrent excitatory synapses onto excitatory 
neurons. Bottom, recurrent inhibitory synapses onto excitatory neurons. Left,  
at the end of the training phase. Right, after 24 h of consolidation. Representative 
trial is shown. c-d, Same as a-b but with blocked heterosynaptic plasticity (that 
is, β = 0, see Methods). e-f, Same as a-b but with blocked transmitter-induced 
plasticity (that is, δ = 0, see Methods).
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Extended Data Fig. 6 | See next page for caption.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01551-w

Extended Data Fig. 6 | Inhibitory synaptic plasticity is essential for the 
emergence of memory selectivity, and engram cell turnover under CCK+ 
interneuron inhibition. a-h, Simulation protocol as in Fig. 1b but without 
inhibitory synaptic plasticity in the entire simulation. a-g, Means and 99% 
confidence intervals are shown. n = 10 trials. a, Ensemble of engram cells as 
a fraction of all neurons (see Methods). Dashed line indicates engram cell 
ensemble at the end of training. b, Ensemble overlap between probing-activated 
engram cells at consolidation time = t and t-1 h as a fraction of engram cells 
at consolidation time = t-1 h. Dashed line indicates ensemble of neurons that 
remained part of the engram in all sampled time points (that is, consolidation 
time = 0, 1, …, 24 h) as a fraction of engram cells at consolidation time = 0 h (that 
is, training-activated engram cells). Note that the dashed line is close to 0. c, 
Ensemble overlap between engram cells activated during both probing and 
training as a fraction of training-activated engram cells (top), probing-activated 
engram cells (middle) and all neurons in the network (bottom). d-g, Color 
denotes stimulus as in Fig. 1c. d, Firing rate of engram cells averaged across all 
cue presentations during recall as a function of consolidation time. Dashed line 
indicates threshold ζthr = 10 Hz for engram cell activation. e, Memory recall as a 
function of consolidation time. f, Discrimination index between recall evoked 
by cues of the training stimulus and individual novel stimuli as a function of 

consolidation time. g, Fraction of probing-activated engram cells reactivated 
during recall as a function of consolidation time. h, Mean weight strength of 
synapses clustered according to engram cell status. Top, feedforward excitatory 
synapses onto excitatory neurons. Middle, recurrent excitatory synapses onto 
excitatory neurons. Bottom, recurrent inhibitory synapses onto excitatory 
neurons. Left, at the end of the training phase. Right, after 24 h of consolidation. 
Representative trial is shown. i, Schematic of experimental protocol to track the 
evolution of the fear memory engram under CCK+ interneuron inhibition. Cal-
Light was initially used to label training-activated DG neurons during CFC in mice. 
DG CCK+ interneurons were then chemogenetically inhibited immediately after 
fear training using C21. Following a post-training delay period, mice were placed 
in the training context and c-Fos staining was used to label recall-activated DG 
neurons. j, Ensemble overlap between neurons activated during both recall and 
training (c-Fos+ ∩ EGFP+) in i as a fraction of training-activated neurons (EGFP+) 
(left), recall-activated neurons (c-Fos+) (middle) and all cell counts (DAPI+) 
(right). These ensemble overlap ratios decreased over time, thus indicating that 
neurons dropped out of and dropped into the engram over the course of memory 
consolidation. Means and 99% confidence intervals are shown. n = 7 mice per 
group.
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Extended Data Fig. 7 | Alternative form of inhibitory synaptic plasticity 
supports dynamic and selective engrams. a-h, Simulation protocol as in Fig. 1b 
but with the network subjected to an alternative form of inhibitory synaptic 
plasticity (Equation 18, see Methods). a-g, Means and 99% confidence intervals 
are shown. n = 10 trials. a, Engram cell ensemble as a fraction of all neurons (see 
Methods). Dashed line indicates engram cell ensemble at the end of training.  
b, Ensemble overlap between probing-activated engram cells at consolidation 
time = t and t-1 h as a fraction of engram cells at consolidation time = t-1 h. Dashed 
line indicates ensemble of neurons that remained part of the engram in all 
sampled time points (that is, consolidation time = 0, 1, …, 24 h) as a fraction of 
engram cells at consolidation time = 0 h (that is, training-activated engram cells). 
c, Ensemble overlap between engram cells activated during both probing and 
training as a fraction of training-activated engram cells (top), probing-activated 
engram cells (middle) and all neurons in the network (bottom). d, Firing rate of 
engram cells averaged across all cue presentations during recall as a function of 
consolidation time. Dashed line indicates threshold ζthr = 10 Hz for engram cell 
activation. e, Memory recall as a function of consolidation time. f, Discrimination 
index between recall evoked by cues of the training stimulus and individual novel 
stimuli as a function of consolidation time. g, Fraction of probing-activated 

engram cells reactivated during recall as a function of consolidation time.  
h, Mean weight strength of plastic synapses clustered according to engram cell 
status. Top, feedforward excitatory synapses onto excitatory neurons. Middle, 
recurrent excitatory synapses onto excitatory neurons. Bottom, recurrent 
inhibitory synapses onto excitatory neurons. Left, at the end of the training 
phase. Right, after 24 h of consolidation. Representative trial is shown. i-j, Means 
and 99% confidence intervals are shown. n = 10 trials. i, Simulation protocol as in 
Fig. 5a but with the network subjected to an alternative form of inhibitory 
synaptic plasticity as in a-h (see Methods). Left, memory recall as a function of 
consolidation time. Right, discrimination index between recall evoked by cues of 
the training stimulus and individual novel stimuli as a function of consolidation 
time. j, Simulation protocol as in Fig. 6a but with the network subjected to an 
alternative form of inhibitory synaptic plasticity as in a-h (see Methods). Left, 
memory recall as a function of consolidation time. Right, discrimination index 
between recall evoked by cues of the training stimulus and individual novel 
stimuli as a function of consolidation time. d-g/i-j, Color denotes stimulus as in 
Fig. 1c. a-j, Network simulation parameters as in Fig. 1a-c except that 
Tconsolidation
Off = 2.5 s (see Methods and Supplementary Table 2).
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Extended Data Fig. 8 | Representative images and specificity of the 
labeling approaches used in mouse experiments. a, Representative images 
of experimental approaches. Left, Cal-Light labeling in Fig. 3a. Middle, CCK+ 
neuronal eArch3.0-eYFP labeling in Fig. 5e. Right, CCK+ neuronal hM4Di-mCherry 
labeling in Fig. 6e. For each experiment, representative image of a group of 
3 independent samples. b-c, Means and standard deviations are shown. b, 
Proportion of PV+ cells, CCK+ cells, and granule cells (GC+) in c-Fos+ populations. 
Fluorescent in situ hybridization (FISH) was used to determine the proportion of 

PV+ vs. GC+ cells (top row, n = 3 mice) and CCK+ vs. GC+ cells (bottom row,  
n = 4 mice) in c-Fos+ populations that were induced by contextual fear training. 
c-Fos+ labeling within the GC layer that was PV- and CCK- represents GC+ counts. 
Left, representative images. Right, proportion of cells in c-Fos+ populations.  
c, Specificity of AAV5-Dlx5/6-DIO-eArch3.0-eYFP in CCK-Cre mice (from Fig. 5e). 
FISH was used to measure the proportion of the virally-labeled CCK+ neurons 
(eYFP probe) that overlapped with endogenous CCK mRNA (top row) and 
endogenous GAD1 mRNA (bottom row). n = 3 mice per group.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Analysis of longitudinal calcium imaging experiments. 
a, Correlation between freezing discrimination and engram discrimination at 
different delay times when using non-negative matrix factorization to identify 
engram cells in the longitudinal calcium imaging experiments in Fig. 4a (see 
Methods). Left, dynamic engram. Right, stable engram. Discrimination indices 
computed based on either the animal’s freezing levels or the average ΔF/F signals 
of engram cells during recall in the training and the neutral contexts (see 
Methods). Spearman’s rank correlation coefficient and associated two-sided test 
with P are shown. b-c, Longitudinal imaging reveals engram cell turnover in 
contextual fear memory. Analysis of engram cell ensembles identified in the 
longitudinal calcium imaging experiments in Fig. 4a (see Methods). b, Schematic 
depicting the set of imaged cells (NIm), the set of engram cells identified at delay = 
0 h (that is, fear training) (N0), the set of engram cells identified at delay = 1 h (N1) 
and the set of engram cells identified at delay = 24 h (N24). By comparing N0 and 
N1, we can identify cells that dropped out of the engram, cells that dropped into 
the engram, and cells that remained in the engram (that is, engram overlap 
N0 ∩ N1) from delay = 0 to 1 h. By comparing N1 and N24, we can identify cells that 
dropped out of the engram, cells that dropped into the engram, and cells that 
remained in the engram (that is, engram overlap N1 ∩ N24) from delay = 1 to 24 h. c, 
Longitudinal engram overlap from delay = 0 to 1 h (that is, N0 ∩ N1) and from delay 
= 1 to 24 h (that is, N1 ∩ N24). Left, (N0 ∩ N1) / N0 measures the fraction of engram 
cells at delay = 0 h that remained part of the engram at delay = 1 h and (N1 ∩ N24) / 
N1 measures the fraction of engram cells at delay = 1 h that remained part of the 
engram at delay = 24 h. Middle, (N0 ∩ N1) / N1 measures the fraction of engram cells 
at delay = 1 h that were also part of the engram at delay = 0 h and (N1 ∩ N24) / N24 
measures the fraction of engram cells at delay = 24 h that were also part of the 
engram at delay = 1 h. Right, (N0 ∩ N1) / NIm measures the fraction of imaged cells 
that were engram cells both at delay = 0 and 1 h and (N1 ∩ N24) / NIm measures the 
fraction of imaged cells that were engram cells both at delay = 1 and 24 h. To 
compare longitudinal engram overlap in mouse 1-4 to overlap at random, we 
generated ensembles of random cells using the following procedure. First, we 
took NIm of an individual mouse and randomly drew Nrandom

0 , Nrandom
1  and Nrandom

24  
of the same size as N0, N1 and N24 of the same mouse, respectively. We then 
repeated this procedure 10 times for each mouse. Finally, we compared 
longitudinal engram overlap in mouse 1-4 versus random cells using a two-sided 

Mann-Whitney U test. (N0 ∩ N1) / N0, U = 108.5, P = 0.250176. (N1 ∩ N24) / N1, 
U = 101.5, P = 0.389608. (N0 ∩ N1) / N1, U = 99.5, P = 0.436077. (N1 ∩ N24) / N24, 
U = 82.5, P = 0.934642. (N0 ∩ N1) / NIm, U = 97.5, P = 0.486051. (N1 ∩ N24) / NIm, 
U = 86.5, P = 0.805871. n = 4 mice. For mouse 1-4, individual data points as well as 
mean and 95% confidence intervals are shown. For random cells, mean and 95% 
confidence intervals are shown. Data compared using a Mann-Whitney U test met 
required assumptions (that is, continuous dependent variable, independent 
variable consisting of two independent groups, and independence of 
observations). d-g, Analysis of the distribution of ΔF/F-based discrimination 
indices of imaged cells in the longitudinal calcium imaging experiments in Fig. 4a 
(see Methods). Representative animal shown. d, Cumulative distributions of 
ΔF/F-based discrimination indices of imaged cells in the fear training session in 
Fig. 4a (dashed line indicates threshold ζthrdisc = 0.2 for engram cell identification). 
Red: engram cells identified during fear training that remained part of the 
engram in all imaging sessions. Black: all other imaged cells. Two-sided 
Kolmogorov-Smirnov test, P = 0.009213. e, Cumulative distributions of 
ΔF/F-based discrimination indices of imaged cells in the fear training session in 
Fig. 4a (dashed line indicates threshold ζthrdisc = 0.2 for engram cell identification). 
Red: engram cells identified during fear training that remained part of the 
engram in all imaging sessions. Black: engram cells identified during fear training 
that dropped out of the engram in any of the imaging sessions. Two-sided 
Kolmogorov-Smirnov test, P = 0.571078. f, Cumulative distributions of 
ΔF/F-based discrimination indices of imaged cells in the fear training session in 
Fig. 4a (dashed line indicates threshold ζthrdisc = 0.2 for engram cell identification). 
Red: cells that were not identified as engram cells during fear training but 
dropped into the engram in any of the remaining imaging sessions. Black: all 
other imaged cells. Two-sided Kolmogorov-Smirnov test, P = 0.001345.  
g, Cumulative distributions of ΔF/F-based discrimination indices of imaged cells 
in the fear training session in Fig. 4a (dashed line indicates threshold ζthrdisc = 0.2 for 
engram cell identification). Red: cells that were not identified as engram cells 
during fear training but dropped into the engram in any of the remaining imaging 
sessions. Black: cells that were not identified as engram cells during fear training 
and remained non-engram cells in all imaging sessions. Two-sided Kolmogorov-
Smirnov test, P = 0.410507. c–g, *P < 0.05; ns, not significant.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | CCK+ interneurons support memory selectivity.  
a, Schematic of network model with CCK+ and PV+ interneurons. The network 
consists of a stimulus population (Stim) and a hippocampus network similar to 
Fig. 1a but with excitatory neurons (Exc) as well as CCK+ and PV+ interneurons. 
Plasticity of feedforward and recurrent synapses are shown. Specifically, 
feedforward excitatory synapses and recurrent excitatory synapses onto 
excitatory neurons exhibit short- and long-term excitatory synaptic plasticity, 
whereas recurrent excitatory synapses onto CCK+ or PV+ interneurons only 
display short-term plasticity. CCK+ synapses onto excitatory neurons are 
subject to inhibitory synaptic plasticity (Equation 15) while the remaining 
inhibitory synapses are static (see Methods). b-i, Simulation protocol as in  
Fig. 1b with the network in a. b-h, Means and 99% confidence intervals are 
shown. n = 10 trials. b, Engram cell ensemble as a fraction of all neurons. Dashed 
line indicates engram cell ensemble at the end of training. c, Ensemble overlap 
between probing-activated engram cells at consolidation time = t and t-1 h as a 
fraction of engram cells at consolidation time = t-1 h. Dashed line indicates 
ensemble of neurons that remained part of the engram in all sampled time 
points (that is, consolidation time = 0, 1, …, 24 h) as a fraction of engram cells at 
consolidation time = 0 h (that is, training-activated engram cells). d, Ensemble 
overlap between engram cells activated during both probing and training as a 
fraction of training-activated engram cells (top), probing-activated engram 
cells (middle) and all neurons in the network (bottom). e, Firing rate of engram 
cells averaged across all cue presentations during recall as a function of 
consolidation time. Dashed line indicates threshold ζthr = 10 Hz for engram cell 
activation. f, Memory recall as a function of consolidation time. g, 
Discrimination index between recall evoked by cues of the training stimulus 
and individual novel stimuli as a function of consolidation time (see Methods). 
h, Fraction of probing-activated engram cells reactivated during recall as a 
function of consolidation time. i, Mean weight strength of plastic synapses 

clustered according to engram cell status. Top, feedforward excitatory 
synapses onto excitatory neurons. Middle, recurrent excitatory synapses onto 
excitatory neurons. Bottom, recurrent CCK+ synapses onto excitatory neurons. 
Left, at the end of the training phase. Right, after 24 h of consolidation. 
Representative trial shown. j-l, Means and 99% confidence intervals are shown. 
n = 10 trials. j, Simulation protocol as in Fig. 1b with the network in a but with 
CCK+ interneurons blocked during recall. Top, memory recall as a function of 
consolidation time. Bottom, discrimination index between recall evoked by 
cues of the training stimulus and individual novel stimuli as a function of 
consolidation time (see Methods). k, Simulation protocol as in Fig. 1b with the 
network in a but with PV+ interneurons blocked during recall. Top, memory 
recall as a function of consolidation time. Bottom, discrimination index 
between recall evoked by cues of the training stimulus and individual novel 
stimuli as a function of consolidation time (see Methods). l, Simulation 
protocol as in Fig. 1b with the network in a but with CCK+ interneurons blocked 
during consolidation. This also blocked the plasticity of CCK+ synapses onto 
excitatory neurons during consolidation (see Methods). The remaining CCK+ 
synapses continued to be static in the entire simulation protocol as in a. Left, 
memory recall as a function of consolidation time (top) and discrimination 
index between recall evoked by cues of the training stimulus and individual 
novel stimuli as a function of consolidation time (bottom) (see Methods). 
Right, ensemble overlap between engram cells activated during both probing 
and training as a fraction of training-activated engram cells (top) and 
probing-activated engram cells (bottom). e-h/j-l, Color denotes stimulus as in 
Fig. 1c. a-l, Network simulation parameters as in Fig. 1a-c except that 
NCCK+ = NPV+ = 512 interneurons, wE→CCK+ = wE→PV+ = 0.6,wCCK+→CCK+ 
= wPV+→PV+ = 0.2,wCCK+→E = wPV+→E = 0.2,wCCK+→PV+ = wPV+→CCK+

= 0.02,αCCK+ = αPV+ = 0.3, νstimtraining  = νstimprobing = 15Hz, νstimconsolidation = 30Hz and 
νstimrecall = 20Hz (see Methods and Supplementary Table 2).
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Data collection We wrote C++ code using the Auryn framework for spiking neural network simulation version 6928b97 to perform all reported simulations. 

The code was deposited in a public repository at https://zenodo.org/doi/10.5281/zenodo.10251086. Ex vivo electrophysiology data were 

collected using the Clampex 10.7 software and in vivo calcium imaging data were collected using the Inscopix Acquisition Software 2.0.4.

Data analysis We wrote Python 3.11 code to analyze the results of all reported simulations and experiments. The code was deposited in a public repository 

at https://zenodo.org/doi/10.5281/zenodo.10251086. Following acquisition, calcium imaging data was processed using the Inscopix Data 

Processing Software 1.9.2.
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The data necessary to reproduce the simulations and data anlyses reported in this study are available in a public repository at https://zenodo.org/doi/10.5281/

zenodo.10251086. Calcium imaging, individual mouse behavior, and cell counting data are available in the Source Data files.
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Life sciences study design
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Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications 

(https://doi.org/10.1038/s41593-018-0318-7, https://doi.org/10.1038/nature11028, https://doi.org/10.1126/science.1164139). The selected 

sample sizes were sufficient given the reproducibility of our results across trials.

Data exclusions No data were excluded from the computational analyses. For mouse experiments, if the viral targeting missed the brain region of interest, 

animals were removed prior to data analysis.

Replication The simulations reported in the manuscript were performed on three different machines and the main findings of the study were replicated 

each time. Mouse experiments, including behavior, cell counting, and physiology, were performed in at least two independent batches 

yielding consistent results.

Randomization All spiking neural networks simulated in the study were randomly initialized (with random seeds) before training. Mice were randomly 

assigned to experimental groups for specific behavioral assays immediately after surgery.

Blinding Blinding was not performed for the analysis of simulation results since simulation output was automatically processed by our custom data 

analysis code without human intervention. All cell counting experiments were conducted blind to experimental group: Researcher 1 trained 

the animals, prepared slices, and randomized images, while Researcher 2 performed cell counting. Similarly, mouse behavior and slice 

electrophysiology experiments were conducted blind to experimental group information.
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Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Chicken anti-GFP (1:1000, Life Technologies, Catalog # A10262), anti-chicken Alexa-488 (1:1000, Life Technologies, Catalog # 

A-11039), rabbit anti-c-Fos (1:500, Cell Signaling Technology, Catalog # 2250, Clone Name 9F6), anti-rabbit Alexa-555 (1:300, Life 

Technologies, Catalog # 21428), anti-rabbit Alexa-633 (1:200, Life Technologies, Catalog # 21070).

Validation All these antibodies have been validated by the manufacturer and other researchers using cell lines, western blots, and mouse brain 

tissue.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6J wild type male mice (Jackson Laboratory), CCK-IRES-Cre knock-in mice (Stock No. 012706, Jackson Laboratory), and PV-

IRES-Cre knock-in mice (Stock No. 017320, Jackson Laboratory). All mouse lines were maintained as hemizygotes. For behavioral 

experiments, all mice were male and 2-4 months old.
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Wild animals The study did not involve animals captured in the field.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All experiments were conducted in accordance with U.S. National Institutes of Health (NIH) guidelines and were approved by the 

Massachusetts Institute of Technology Department of Comparative Medicine and Committee on Animal Care.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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