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Ripple-locked coactivity of stimulus-specific 
neurons and human associative memory

Lukas Kunz    1,2 , Bernhard P. Staresina    3,4, Peter C. Reinacher    5,6, 
Armin Brandt2, Tim A. Guth    1,2, Andreas Schulze-Bonhage2,9 & 
Joshua Jacobs    7,8,9

Associative memory enables the encoding and retrieval of relations between 
different stimuli. To better understand its neural basis, we investigated 
whether associative memory involves temporally correlated spiking 
of medial temporal lobe (MTL) neurons that exhibit stimulus-specific 
tuning. Using single-neuron recordings from patients with epilepsy 
performing an associative object–location memory task, we identified the 
object-specific and place-specific neurons that represented the separate 
elements of each memory. When patients encoded and retrieved particular 
memories, the relevant object-specific and place-specific neurons activated 
together during hippocampal ripples. This ripple-locked coactivity of 
stimulus-specific neurons emerged over time as the patients’ associative 
learning progressed. Between encoding and retrieval, the ripple-locked 
timing of coactivity shifted, suggesting flexibility in the interaction between 
MTL neurons and hippocampal ripples according to behavioral demands. 
Our results are consistent with a cellular account of associative memory, in 
which hippocampal ripples coordinate the activity of specialized cellular 
populations to facilitate links between stimuli.

Associative memory is an essential cognitive function for everyday 
life that allows us to learn and remember relations between differ-
ent stimuli1. Impairments in associative memory caused by aging and 
memory disorders2,3 are, thus, a growing problem for society, which 
makes it important to identify its underlying working principles in 
the brain. A large body of research has implicated the hippocampus 
and neighboring medial temporal lobe (MTL) regions in the encoding 
and retrieval of associative memories4,5, but its neural foundations 
remain far from understood. We thus aimed at elucidating possible 
mechanisms underlying associative memory in the human MTL at 
the single-cell level. Given prior theories on temporally precise neural 

binding in perception and memory6–8, we considered that the individual 
stimuli contributing to particular associative memories are encoded 
by separate sets of functionally specialized neurons and that these 
neurons interact transiently when individuals encode and retrieve 
the memories (Fig. 1a).

We examined this hypothesis on the neural basis of associative 
memory in the setting of object–location associations, which are par-
ticularly critical to behavioral functioning in everyday life by allowing 
us to know where important items are located in our spatial environ-
ments. We specifically investigated whether the encoding and retrieval 
of such object–location memories is correlated with the simultaneous 
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during hippocampal high-frequency oscillations, termed ‘ripples’12–14, 
which are considered important for synchronizing neural activity 
across brain regions15–18. Such ripple-locked coactivity of object and 
place cells could potentially underlie the encoding and retrieval of 
associative object–location memories by inducing and (re)activating 
synaptic connections between the object and place cells that represent 
the different memory elements19. In addition, ripple-locked coactivity 
of stimulus-specific neurons could elicit conjunctive memory repre-
sentations in downstream neurons that respond only to the unique 
combination of all memory elements20–22.

Previous studies in both animals and humans discovered that 
hippocampal ripples are relevant to various cognitive functions12–14. 
Neural recordings in patients with epilepsy revealed that ripples cor-
relate with memory encoding, retrieval and consolidation23–28. Rodent 
studies demonstrated that ripples are linked to precisely organ-
ized multicellular activity in the service of learning, memory and  
planning12–14. In particular, place cell sequences during hippocampal 
ripples were found to reflect contiguous navigation paths29–32, show-
ing that ripple-locked single-neuron activity directly reflects behavior 
in a spatiotemporally meaningful way. It has remained unknown,  
however, whether hippocampal ripples also play a role in intercon-
necting functionally different types of neurons and whether they 
could thus help binding different mental contents into associative 
memories.

To investigate this idea, we conducted single-neuron and intrac-
ranial electroencephalographic (EEG) recordings from the MTL of 
human patients with epilepsy performing an associative object– 
location memory task in a virtual environment9. In line with our 
hypothesis that human hippocampal ripples support the formation 
and retrieval of associative memories by defining time windows for the 
coactivity of stimulus-specific neurons, we show that object-specific 
and place-specific neurons that represent the separate elements of 
particular object–location associations activate together at moments 
close to hippocampal ripples. These findings are consistent with the 
idea that ripple-locked coactivity of stimulus-specific neurons provides 
a neural mechanism for the formation and retrieval of associative 
memories and, more broadly, constitutes a key property of information 
processing in the human brain.

Results
Human hippocampal ripples and object–location memory
To study the neural mechanisms underlying human associative mem-
ory, we recorded single-neuron activity and intracranial EEG from the 
MTL of patients with epilepsy (Methods, Supplementary Table 1 and 
Supplementary Fig. 1). During the recordings, participants performed 
an associative object–location memory task in a virtual environment 
(Fig. 1b,c). In this task9, participants encoded the locations of eight 
different objects once during an initial encoding period and then per-
formed a series of test trials that included periods for retrieving and 
re-encoding the object–location associations. Each test trial started 
with an inter-trial interval (ITI), followed by a cue period in which the 
participant viewed one of the eight objects that they had encountered 
during initial encoding. Then, in the retrieval phase, participants navi-
gated to the remembered location of this object and received feed-
back depending on their response accuracy. After feedback, in the 
re-encoding phase, the object appeared in its correct location, and 
participants traveled to this location, allowing them to update their 
associative memory for this object–location pair. Thirty participants 
contributed a total of 41 sessions and performed 103 trials per session 
on average (for detailed information on all statistics in the main text, 
see Supplementary Table 2). They successfully formed associative 
memories between the objects and their corresponding locations, 
as their memory performance increased over the course of the task 
(paired t-test: t(40) = −4.788, P < 0.001; Fig. 1d and Supplementary 
Figs. 2 and 3).

activation of object cells, which represent specific objects9,10, and place 
cells, which code for particular spatial locations11. We predicted that 
these coactivations would occur in a temporally confined manner 
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Fig. 1 | Hypothesis and associative object–location memory task.  
a, Illustration of the hypothesis that human associative object–location memory 
is linked to the coactivity of object cells and place cells during hippocampal 
ripples. We propose that the coactivity is specific to pairs of object and place 
cells that encode ‘associative information’, which are those cell pairs in which 
the location of the preferred object of the object cell is inside the place field of 
the place cell. b, Participants performed an associative object–location memory 
task while navigating freely in a virtual environment. After collecting eight 
different objects from their associated locations during an initial encoding 
period, participants performed a series of test trials. At the beginning of each 
test trial, after an inter-trial interval (‘ITI’), one of the eight objects was presented 
(‘Cue’), which the participant placed as accurately as possible at its associated 
location during retrieval (‘Retrieval’). Participants received feedback depending 
on the accuracy of their response (‘Feedback’) and collected the then-visible 
object from its correct location (‘Re-encoding’). Insets show histograms of the 
self-paced durations of retrieval (yellow) and re-encoding (green) periods. Black 
vertical lines indicate mean durations. c, Example paths during retrieval (yellow) 
and re-encoding (green) in one trial. Start, start location during retrieval. End, 
end location during re-encoding. The participant’s response location is indicated 
by a star. d, Left, memory performance during early versus late trials (median 
split) showing that participants improved their memories over time (two-sided 
paired t-test). Blue thick line indicates mean across sessions; thin lines indicate 
session-wise data (black, sessions with single-neuron recordings). Right, memory 
performance as a function of normalized time (two-sided Pearson correlation). 
Black, mean across sessions; gray shading, ±s.e.m. across sessions.
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We identified human hippocampal ripples during the task by 
examining local field potentials (LFPs) from bipolar macroelectrode 
channels, which were located mostly in the anterior hippocampus  
(Fig. 2a–d and Supplementary Fig. 4). Following previous ripple detec-
tion algorithms24,27,33, we recorded a total of 35,948 ripples across all 

sessions (Fig. 2e–h). Preceding ripple detection, we conservatively 
excluded interictal epileptic discharges (IEDs; Supplementary Fig. 5) 
to help interpret our ripples and ripple-related findings as physiologi-
cal34. We characterized the identified ripples with regard to various 
properties and confirmed that they reflected time periods with strongly 
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Fig. 2 | Ripples in the human hippocampus. a, Location of an example bipolar 
hippocampal channel (blue arrow). Blue circles, electrode contacts contributing to 
the bipolar channel; orange circles, other contacts. b, Probability distribution of all 
bipolar hippocampal channels, overlaid on the participants’ average MRI scan.  
c, MTL regions used for the recordings of LFPs and single-neuron activity.  
d, Illustration of the two innermost electrode contacts of an intracranial  
EEG macroelectrode with microelectrodes protruding from its tip. e, Analysis 
procedure for identifying ripples. Top to bottom: raw macroelectrode LFP; 
macroelectrode LFP filtered in the 80–140-Hz ripple band; smoothed envelope 
of the ripple band macroelectrode LFP; and spectrogram of the macroelectrode 
LFP. The power spectrum of each ripple event had to exhibit a global peak between 
80 Hz and 140 Hz (white inset in bottom panel); otherwise, it was discarded 
as a false positive. f, Action potentials of two clusters from a microelectrode 

simultaneously recorded with the macroelectrode data. g, Raw voltage trace of 
an example hippocampal ripple (green) in the time domain (left) and its relative 
power spectrogram in the time–frequency domain (right). Time 0, ripple peak.  
h, Grand average voltage trace of hippocampal ripples across all channels in the 
time domain (left) and their power spectrogram in the time–frequency domain 
(right). Ripples were first averaged per channel and then across channels. Voltage 
traces are baseline corrected with respect to ±3 s around the ripple peak. Error 
bands, ±s.e.m. Ripple power is shown as the relative change with respect to the 
average power within ±3 s around the ripple peak. Time 0, ripple peak. i, Delta phase 
locking (0.5–2 Hz) of hippocampal ripples. Black histogram, ripple-associated delta 
phase for each channel. Gray histogram, delta phases of surrogate ripples. AMY, 
amygdala; EC, entorhinal cortex; HC, hippocampus; PHC, parahippocampal cortex; 
RC, relative change; RP, relative power; TP, temporal pole.
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elevated power at approximately 90 Hz (Fig. 2h and Supplementary 
Fig. 6), consistent with previous human studies24,27,33.

These periodic high-frequency events are presumably the  
human homolog of rodent sharp-wave ripples, although their  
overlap with human high gamma or broadband gamma activity35,36  
and gamma or epsilon oscillations37,38, as well as their relation to  
ripples in animals, is not yet clear34. Because previous studies  
suggested that ripples are more strongly phase locked to low- 
frequency activity than gamma15, we examined the relation between 
ripples and low-frequency (delta, 0.5–2 Hz) activity of the LFPs in  
our data. We found that ripples were preferentially locked to a  
mean delta phase of 34° (Rayleigh test: z = 5.614, P = 0.003; Fig. 2i and 
Supplementary Fig. 7). Thus, consistent with previous results15,23,39, 
ripples in this dataset generally appeared at the descending phase of 
hippocampal slow oscillations, which may have a role in triggering 
the ripples40.

We then asked how properties of hippocampal ripples related to 
the participants’ behavioral state and memory performance in our 
associative memory task (Fig. 3 and Methods). We observed that ripple 
rates varied as a function of trial phase (Fig. 3a); that increased ripple 
rates during cue periods were associated with better performance in 
the subsequent retrieval periods (Fig. 3b,c); and that retrieval periods 

in which participants showed poorer performance were followed by 
increased ripple rates during re-encoding (Fig. 3b). These associations 
between hippocampal ripples and behavior in our object–location 
memory task extend previously established links between hippocam-
pal ripples and various memory processes in humans, which together 
suggest that hippocampal ripples are functionally important for encod-
ing and retrieving memories23,25–28,41.

Neural signature of hippocampal ripples across the human 
MTL
Hippocampal ripples are neural events with brain-wide effects that 
are considered beneficial for establishing or strengthening synap-
tic connections (by means of Hebbian or other forms of synaptic  
plasticity)13,15,42–44. We thus reasoned that hippocampal ripples could 
support associative memory by triggering brain states in which oth-
erwise separate neural representations become linked. To assess the 
general potential of awake hippocampal ripples to modulate neural 
activity across the human MTL, we performed analyses to quantify 
the effects of hippocampal ripples on single-neuron spiking and LFP 
changes in various regions of the human MTL (temporal pole, entorhi-
nal cortex, amygdala, hippocampus and parahippocampal cortex;  
Fig. 4 and Supplementary Figs. 8 and 9).
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(Pcorr. < 0.001). c, Time-resolved ripple occurrence across all trials as a function 
of absolute time relative to the onset (cue and feedback) or offset (ITI, retrieval 
and re-encoding) of a given trial phase (dashed vertical lines). Each dot is a ripple 
(colored dots, ripples during good-performance trials; gray dots, ripples during 
bad-performance trials). Colored lines and shadings, ripple rates during good-
performance trials (‘good trials’; mean ± s.e.m. across channels); gray lines and 
shadings, ripple rates during bad-performance trials (‘bad trials’; mean ± s.e.m. 
across channels). Black shadings at top indicate time periods with significant 
differences between good and bad trials (two-sided cluster-based permutation 
tests: P < 0.025). d, Correlations between ripple rates and trial index (n = 62 
channels). We tested the correlation values against 0 afterward (two-sided t-tests 
with Bonferroni correction). Ripple rates during feedback decreased over time 
(Pcorr. = 0.012). Box plots in a, b and d show center line, median; box limits, upper 
and lower quartiles; whiskers, minimum and maximum; and points, outliers. 
*Pcorr. < 0.05 and ***Pcorr. < 0.001.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | March 2024 | 587–599 591

Article https://doi.org/10.1038/s41593-023-01550-x

We first tested whether ripple events that appeared in extra- 
hippocampal MTL regions were coupled to hippocampal ripples. 
We identified ripples in extra-hippocampal MTL regions using the  
same procedure as for hippocampal ripples and found that extra- 
hippocampal MTL ripples occurred in temporal proximity with hip-
pocampal ripples using cross-correlation analyses (cluster-based 
permutation test: P < 0.001; Fig. 4a and Supplementary Figs. 8b and 9a). 
High-frequency oscillatory events, therefore, seem to be synchronized 
across the human MTL, in line with previous studies showing that hip-
pocampal ripples are temporally coupled to ripples in various other 
brain areas17,23,26,45. This interregional ripple coupling may help bind 
separate groups of neurons together.

We also examined how hippocampal ripples related to brain 
state changes as reflected in the power of LFP oscillations. Across 
all macroelectrode channels in both ipsilateral and contralateral 
extra-hippocampal MTL regions, we found that the normalized LFP 
power at higher frequencies (>20 Hz) increased during hippocampal 
ripples (cluster-based permutation test across extra-hippocampal 
MTL channels ipsilateral to hippocampal ripple channels: P = 0.018; 
contralateral: P < 0.001). Inversely, normalized power at lower fre-
quencies decreased during hippocampal ripples (ipsilateral: P < 0.001; 
contralateral: P < 0.001; Fig. 4b,c and Supplementary Figs. 8c and 9b). 
These MTL-wide power changes were strongest at the moments when 
hippocampal ripples occurred but started before and ended after 
them (see also ref. 46). Given that increased high-frequency power 
and decreased low-frequency power are indicators of elevated neu-
ronal excitation47, these results suggest that hippocampal ripples 
are associated with an excitatory state of the human MTL and further 
indicate that hippocampal ripples may support brain states suitable 
for inducing and activating synaptic connections between otherwise 
segregated neurons.

In a third analysis of the large-scale effects of hippocampal ripples, 
we examined single-neuron spiking across the MTL at the moments  
of hippocampal ripples. Across all 27 sessions with single-neuron  

recordings, we recorded a total of 1,063 neurons across multiple 
regions (Fig. 2c,f and Supplementary Fig. 1), including temporal pole, 
entorhinal cortex, amygdala, hippocampus and parahippocampal 
cortex. Overall, neuronal firing rates increased when hippocampal  
ripples occurred (cluster-based permutation test: P < 0.001), whereby 
neuronal firing rates started to rise about 0.25 s before the rip-
ples peaked (Fig. 4d). This increased spiking during hippocampal  
ripples was strongest for neurons in the hippocampus itself and  
the amygdala but was also present in other regions (Supplemen-
tary Figs. 8d and 9c). Behavior-related analyses showed that ripple- 
locked firing rate increases were similar across the different trial  
phases and for varying levels of memory performance (Supplementary 
Figs. 9 and 10).

Together, these results show that hippocampal ripples are asso-
ciated with broad changes in neural activity across the human MTL. 
When hippocampal ripples occurred, there was an increased prob-
ability of ripple-like events in extra-hippocampal MTL regions; a shift 
in LFP power from lower to higher frequencies in these regions; and 
an increase in MTL-wide neuronal spiking. Related long-range effects 
of hippocampal ripples have been described in both animals and  
humans15,16,18,26,46. Through their excitatory effects, hippocampal rip-
ples may play a key role in the formation and retrieval of associative 
memories by combining diverse patterns of neural activity from mul-
tiple regions, although studies with causal manipulations are needed 
to further evaluate this hypothesis.

Neurons in the human MTL are tuned to objects and locations
To examine whether ripples in the human hippocampus are linked to 
synchronized activity of object-specific and place-specific cells during 
associative memory processes, we next tested for these cell types in our 
data. We identified neurons as object cells if they increased their firing 
rates in response to a particular object9,10, and we considered neurons 
as place cells if they activated when the participant was at a particular 
spatial location in the virtual environment11.
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pairs, respectively. Black shading at top indicates firing rates of ipsilateral and 
contralateral pairs significantly above 0 (one-sided cluster-based permutation 
test: P < 0.05). For region-specific and trial-phase-specific results, see 
Supplementary Figs. 8 and 9. AMY, amygdala; CH, contralateral hemispheres; 
EC, entorhinal cortex; HC, hippocampus; IH, ipsilateral hemispheres; PHC, 
parahippocampal cortex; TP, temporal pole; X-Correlation, cross-correlation.
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Each object cell had a particular ‘preferred object’ in response to 
which it activated most strongly during the cue period. For example, 
the first object cell shown in Fig. 5a exhibited its highest firing when 
the participant viewed object 7. We observed 120 object cells (11% of all 
neurons; binomial test: P < 0.001; Supplementary Table 1), which were 
most prevalent in the entorhinal cortex, parahippocampal cortex and 
temporal pole (Fig. 5b). Object cells activated most strongly in response 
to their preferred object during the first second after cue onset (Fig. 5c);  
their firing rates returned to baseline shortly after the object disap-
peared from screen (Fig. 5d); and their tuning curves were overall stable 
over time (one-sample t-test: t(118) = 10.387, P < 0.001; Fig. 5e). Most 
object cells were ‘pure’ object cells in the sense that they did not also 
meet the criteria for being place cells (81% of all object cells; Fig. 5f).

Each place cell activated preferentially when the participant was at 
a particular location in the virtual environment (Fig. 6a). Over the past 
decades, studies in rodents have provided ample evidence for such 
place tuning in neurons of the hippocampus and surrounding brain 
areas11,48. Across all neurons, we identified 109 place cells (10%; binomial 
test: P < 0.001) and found them at significant levels in several regions, 
including the entorhinal cortex, hippocampus and parahippocampal 
cortex (Fig. 6b), consistent with previous work49. The firing fields of 
place cells were broadly distributed across the virtual environment 

(Fig. 6c–f), showing that all parts of the environment were neurally 
represented. The cells’ firing rates were about 20% higher inside versus 
outside the place fields (Fig. 6g), and their firing patterns were stable 
over time (one-sample t-test: t(108) = 7.080, P < 0.001; Fig. 6h), indicat-
ing that spatial information was robustly encoded by the place cells of 
our dataset. Place and object tuning was largely independent of each 
other because place and object cells only marginally overlapped with 
conjunctive cells, which exhibited significant place tuning solely dur-
ing trials with one particular object (Supplementary Fig. 11). Object and 
place cells showed some variability with regard to different electrophysi-
ological properties and, accordingly, were present among both putative 
pyramidal cells and putative interneurons (Supplementary Fig. 12).

Together, these results show that cells in the human MTL encoded 
the separate elements of to-be-established and to-be-remembered 
object–location memories in our task: object cells encoded individual 
objects, and place cells encoded particular spatial locations. This allowed 
us to next probe the coactivity of object and place cells during hippocam-
pal ripples as a potential neural correlate of associative memory.

Ripple-locked cellular coactivity and object–location memory
Having examined hippocampal ripples and stimulus-specific (object 
and place) neurons separately, we next tested our principal hypothesis 
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Fig. 5 | Neurons in the human MTL encode specific objects. a, Example 
object cells. For each cell, from left to right: action potentials as density plot; 
locations of the objects in the environment; absolute firing rates in response 
to the different objects during the cue period (statistics are from one-sided 
permutation tests, using a total of n = 1,176, 660, 309 and 1,830 action potentials 
during all cue periods, respectively); time-resolved firing rates (baseline 
corrected relative to −1 s to 0 s before cue onset) for the preferred and the 
unpreferred objects (error bands, ±s.e.m.); and spike raster for all trials. Time 
0, cue onset. Orange, data for the preferred object; gray, data for unpreferred 
objects. Box plots show center line, median; box limits, upper and lower 
quartiles; and whiskers, minimum and maximum. Black shading below the  
time-resolved firing rates, significant difference between firing rates  

(one-sided cluster-based permutation test: P < 0.05). b, Distribution of object 
cells across brain regions; red line, 5% chance level. Object cells were significantly 
prevalent in the entorhinal cortex, parahippocampal cortex and temporal 
pole (two-sided binomial tests versus chance with Bonferroni correction for 
multiple comparisons: Pcorr. < 0.001, Pcorr. < 0.001 and Pcorr. = 0.006, respectively). 
c, Distribution of significant time windows across object cells (mean ± s.e.m.). 
d, Tuning strength across object cells (mean ± s.e.m.). Orange, data for the 
preferred object; gray, data for unpreferred objects. e, Temporal stability of 
object cell tuning. Red line, mean. f, Overlap between object and place cells. AMY, 
amygdala; EC, entorhinal cortex; FG, fusiform gyrus; HC, hippocampus; PHC, 
parahippocampal cortex; TP, temporal pole. **Pcorr. < 0.01 and ***Pcorr. < 0.001.
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that object and place cells activate together during the same hippocam-
pal ripples when individuals form and retrieve associative memories 
that link the separate elements that these neurons encode. We rea-
soned that coactivity during memory formation could facilitate syn-
aptic connections between the stimulus-specific neurons43,50 (through  
Hebbian or other forms of synaptic plasticity or as a byproduct of a 
more fundamental process, such as neurotransmitter-dependent 
upregulation of neuronal excitability13,15,42–44) and that coactivity dur-
ing memory retrieval could reflect their reciprocal activation through 
their previously established synaptic connections.

We thus analyzed whether simultaneously recorded object and 
place cells were active during the same ripples and performed this 
analysis separately for ripples during retrieval and during re-encoding. 
For each combination of an object cell, a place cell and a ripple channel, 
we computed coactivity scores between the two cells across ripples 
that indicated how often both cells were (in)active during the same 
ripples (where the coactivity scores controlled for the overall activity 
level of both cells). We systematically and independently varied the 
ripple-locked time bin for determining the underlying activity of both 
cells and thus obtained a two-dimensional time-by-time coactivity map 

for each cell pair. These coactivity maps showed the coactivity scores 
in various time bins between −0.25 s and +0.25 s around the ripple 
peaks (101 time bins; 100-ms duration per bin; 95% overlap between 
neighboring bins), where high coactivity scores indicated consistent 
across-ripple coactivations of both cells in specific time windows rela-
tive to the ripple peaks (Fig. 7a and Supplementary Fig. 13).

Based on our principal hypothesis (Fig. 1a), our analysis focused 
on the ripple-locked coactivity of object and place cell pairs in which 
the preferred object of the object cell was located inside the place 
field of the place cell. Cells in these ‘associative cell pairs’ represented 
the different pieces of information that the participants were asked 
to associate with each other (Fig. 7b). For retrieval periods, the loca-
tion of the preferred object of the object cell was defined by the par-
ticipant’s response locations, whereas, during re-encoding periods, 
it was defined by the object’s true location. We hypothesized that 
coactivations of associative object and place cells during retrieval 
would indicate that the participant remembered a particular location 
given a specific object, whereas their coactivations during re-encoding 
would indicate that the participant aimed at (re)learning or updating 
the correct location of a given object. Overall, we thus reasoned that 
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Fig. 6 | Neurons in the human MTL encode specific spatial locations.  
a, Example place cells. For each cell, from left to right: action potentials as 
density plot; navigation path of the participant through the environment 
(gray line); smoothed firing rate map (unvisited areas are shown in white); 
empirical t-statistic (red line) and surrogate t-statistics (gray histogram) from 
two-sided unpaired t-tests (using a total of n = 1,329, 1,177, 3,995, 10,111, 5,112, 
3,066, 96 and 3,776 action potentials, respectively); and color bar, firing rate. 
b, Distribution of place cells across brain regions; red line, 5% chance level. 
Place cells were significantly prevalent in the entorhinal cortex, hippocampus 
and parahippocampal cortex (two-sided binomial tests versus chance with 
Bonferroni correction for multiple comparisons: Pcorr. < 0.001, Pcorr. = 0.034 and 
Pcorr. < 0.001, respectively). c, Spatial distribution of the place fields of all place 
cells (in percent relative to the spatial distribution of the firing rate maps).  
d, Histogram of place field sizes. Place field sizes are expressed in percent relative 

to the sizes of the firing rate maps by dividing the number of spatial bins being 
part of the place field by the number of spatial bins being part of the firing rate 
map. Unoccupied spatial bins are ignored. Red line, mean. e, Histogram of place 
field fractions that were next to the edges of the firing rate maps, quantifying the 
peripherality of the place fields. Red line, mean. f, Histogram of the number of 
objects inside place fields. The number of objects inside empirical place fields 
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two-sample Kolmogorov–Smirnov test). Red line, mean. g, Firing rate of place 
cells inside versus outside the place fields (n = 109 place cells). Bars and error 
bars show mean ± s.e.m. Histogram at top shows the distribution of cell-wise 
differences in firing rates inside minus outside the place fields (ΔFR). h, Temporal 
stability of the firing rate maps of place cells; red line, mean. AMY, amygdala;  
EC, entorhinal cortex; HC, hippocampus; PHC, parahippocampal cortex;  
TP, temporal pole. *Pcorr. < 0.05 and ***Pcorr. < 0.001.
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the ripple-locked coactivity of associative cell pairs would be linked to 
the encoding and retrieval of particular associative memories.

To evaluate the statistical significance of the coactivity for pairs 
of object and place cells encoding associative information on each 
trial, we designed a series of three complementary statistical tests 
(Supplementary Fig. 14). These tests contrasted the coactivity maps (1) 
against chance to see whether the cell pairs showed a positive increase 
in coactivity; (2) against coactivity maps from a baseline period to show 
that the coactivity increases were specific to the timing of ripples; and 
(3) against the coactivity maps of non-associative object and place 
cell pairs (where the preferred object of the object cell was located 
outside the place cell’s place field) to demonstrate that the coactivity 
increases were unique to cell pairs representing the exact components 
of associative memories. Together, these three tests provided robust 
information about whether associative pairs of object and place cells 
exhibited coactivity during hippocampal ripples.

We first examined ripple-locked coactivity of associative object 
cell–place cell pairs during retrieval (Fig. 7c–e and Supplementary 
Figs. 15a–c and 16a). Across all retrieval periods, we found indications 
of ripple-locked coactivity in associative cell pairs, as their coactivity 
scores were significantly positive and significantly greater than in con-
trol cell pairs that did not encode associative information (cluster-based 
permutation test versus chance: P < 0.001; versus non-associative cell 
pairs: P < 0.001; Fig. 7c). The comparison against the coactivity maps 
from the baseline period was not significant (P = 0.178), however, which 
indicates that ripple-locked coactivity of object and place cells during 
retrieval was not fully pronounced when estimated across the entire 
task. We therefore performed this analysis separately for ‘early’ hip-
pocampal ripples (the first n / 2 individual ripples per session, where n 
is the total number of ripples per session) and ‘late’ ripples (the last n / 2 
ripples per session), because we hypothesized that retrieval-related 
coactivity would be expressed more strongly during late ripples, 
after the participants had already formed associations between the 
objects and their corresponding locations (Fig. 1d). Indeed, when 
considering only late ripples, we found clear ripple-locked coactiv-
ity of object cell–place cell pairs representing associative informa-
tion, as the coactivity maps of these cell pairs were significant for 
all three statistical tests (versus chance: P = 0.004; versus baseline: 
P = 0.004; versus non-associative cell pairs: P = 0.006; P values are 
Bonferroni corrected for analyzing both early and late ripples; Fig. 7e).  
Similarly strong effects were not present when considering early 
ripples (versus chance: P = 0.038; versus baseline: P = 0.884; versus 
non-associative cell pairs: P = 0.025; Bonferroni corrected; Fig. 7d), 
which explains why ripple-locked coactivity during retrieval was not 
fully pronounced when considering all ripples.

These findings demonstrate that ripples from later retrieval 
periods were associated with coactivations in object and place cells 
that represented associative information of to-be-retrieved associa-
tive memories. We assume that the synaptic connections between 
object and place cells gradually developed over time, which is why 
the ripple-locked coactivity of associative object and place cells was 
not robustly visible during early retrieval periods. Follow-up analyses 
confirmed these results by showing that ripple-locked coactivity was 
present at the level of individual cell pairs (Supplementary Fig. 17) and 
that the same effects were also evident with another method for esti-
mating coactivity maps (Supplementary Fig. 18) or when considering 
only the data from first experimental sessions (Supplementary Fig. 19). 
Adding the cue periods to the analysis resulted in qualitatively identical 
ripple-locked coactivations as for retrieval phases alone (Supplemen-
tary Fig. 20a), indicating that similar ripple-related neural processes 
occurred during cue and retrieval (although we did not have enough 
data to examine ripple-locked coactivity during cue periods alone).

When inspecting the coactivity maps, we observed that the 
increased coactivations occurred at the moment of the ripple peaks 
for object cells and slightly after the ripple peaks for place cells (Fig. 7e 
and Supplementary Fig. 21a). This observation may have two implica-
tions: it may suggest that the neuronal connections are directed, such 
that object cells activate slightly earlier than place cells, and it may also 
indicate that hippocampal ripples can help trigger coactivations of 
MTL neurons, in line with the broader idea that information propagates 
from the hippocampus to extra-hippocampal regions during retrieval51.

Next, to understand the correlation between ripple-coordinated 
single-neuron activity and the formation of associative memories, we 
examined ripple-locked coactivity of the object cell–place cell pairs 
that represented associative information during the task’s re-encoding 
periods (Fig. 7f–h and Supplementary Figs. 15d–f and 16b). Similar 
to our retrieval-related results, we found indications of increased 
coactivity in associative object cell–place cell pairs when consider-
ing ripples from all re-encoding periods, whereby the comparisons 
against chance and non-associative cell pairs were significant, but the 
comparison against the baseline period was not significant (versus 
chance: P < 0.001; versus baseline: P = 0.064; versus non-associative 
cell pairs: P < 0.001; Fig. 7f). Parallel to our coactivity analyses during 
retrieval, we therefore examined re-encoding-related coactivations 
separately for early and late ripples. Indeed, we found again that, when 
only late ripples were considered, associative pairs of object and place 
cells showed robust increases in coactivity that were significant for 
all three statistical tests (versus chance: P < 0.001; versus baseline: 
P = 0.040; versus non-associative cell pairs: P < 0.001; P values are 
Bonferroni corrected for performing this analysis on both early and 

Fig. 7 | Ripple-locked coactivity of object and place cells during the retrieval 
and formation of associative memories. a, Analysis of ripple-locked coactivity 
of object and place cells (illustration). b, Example pairs of object and place cells 
with associative and non-associative information. For both place cells, from left 
to right: action potentials as density plot; smoothed firing rate map (unvisited 
areas are shown in white); empirical t-statistic (red line) and surrogate t-statistics 
(gray histogram) from two-sided unpaired t-tests (using a total of n = 5,755 and 
2,127 action potentials, respectively); and color bar, firing rate. For both object 
cells, from left to right: action potentials as density plot; locations of the objects 
in the environment; and absolute firing rates in response to the different objects 
during the cue period (statistics are from one-sided permutation tests, using a 
total of n = 1,532 and 257 action potentials during all cue periods, respectively). 
Orange, data for the preferred object; gray, data for unpreferred objects. Box 
plots show: center line, median; box limits, upper and lower quartiles; and 
whiskers, minimum and maximum. c, Coactivity maps estimated using all 
ripples during retrieval periods, considering only trials in which the participant 
is asked to remember the location of the preferred object of the object cell 
and in which the participant’s response location is inside the place field of the 
place cell. Left, comparison of the coactivity maps against chance (that is, 0). 
Middle, comparison against baseline coactivity maps. Right, comparison against 

coactivity maps estimated using ripples from trials in which the participant is 
asked to remember the location of the preferred object of the object cell and in 
which the participant’s response location is outside the place field of the place 
cell. d, Same as in c for early retrieval-related hippocampal ripples. e, Same as in c 
for late retrieval-related hippocampal ripples. f, Coactivity maps estimated using 
all ripples from the re-encoding periods, considering only trials in which the 
participant is asked to re-encode the correct location of the preferred object of 
the object cell and in which the object’s correct location is inside the place cell’s 
place field. Left, comparison of the coactivity maps against chance (that is, 0). 
Middle, comparison against baseline coactivity maps. Right, comparison against 
coactivity maps estimated using ripples from trials in which the participant is 
asked to re-encode the location of the preferred object of the object cell and in 
which the object’s correct location is outside the place cell’s place field. g, Same 
as in f for early re-encoding-related hippocampal ripples. h, Same as in f for late 
re-encoding-related hippocampal ripples. White lines in c–h delineate significant 
clusters based on one-sided cluster-based permutation tests, which control for 
multiple comparisons and whose P values are stated at the upper left (see the 
main text and Supplementary Table 2 for Bonferroni-corrected P values). AMY, 
amygdala; FG, fusiform gyrus; pref., preferred.
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late ripples; Fig. 7h and Supplementary Figs. 17–19). In contrast, such 
coactivations were not present for early re-encoding-related ripples 
(versus chance: P = 0.599; versus baseline: P = 1; versus non-associative 
cell pairs: P = 0.235; Bonferroni corrected; Fig. 7g), which again explains 
why ripple-locked coactivity during re-encoding was not fully pro-
nounced when measured across the entire session.

These results demonstrate that ripple-locked coactivity between 
associative object and place cells occurred when participants 
re-encoded object–location associations during later periods of the 
task. During these later task periods, the participants were already 

familiar with the associations. We therefore propose that ripple-locked 
coactivity during re-encoding is more closely related to the stabiliza-
tion, updating or early consolidation of associative object–location 
memories rather than to their initial formation6,12. Extending this analy-
sis to both the re-encoding and their subsequent ITI phases, we found 
similar coactivations as for re-encoding phases alone (Supplementary 
Fig. 20b), suggesting that the neural activity during ITI phases extended 
the neural processes from re-encoding. In comparison to the timing of 
ripple-locked coactivity during retrieval, the increased coactivations 
during late re-encoding-related ripples shifted to slightly precede 
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the hippocampal ripples (Fig. 7h and Supplementary Fig. 21b), which 
may relate to the propagation of information from extra-hippocampal 
regions to the hippocampus during memory encoding.

To further investigate whether the distinction between early and 
late ripples paralleled a distinction between ripples occurring before 
versus after the initial formation of the object–location memories, we 
estimated the time of strongest improvement in memory performance 
for each object. We reasoned that this time reflected the moment when 
the object–location associations emerged initially. We then grouped 
the ripples according to whether they occurred before or after this 
time of strongest memory improvement. Ripple-locked coactivations 
of object and place cells before and after initial memory formation 
appeared very similar to their coactivity patterns during early and late 
ripples, respectively (Supplementary Fig. 22). This suggests that the 
coactivations during late ripples from both retrieval and re-encoding 
periods were (at least partly) dependent upon an initial formation of 
the object–location associations.

Studies in rodents highlighted the functional relevance of ripples 
during immobility12,14. We thus differentiated between ripples during 
movement versus non-movement and examined whether the coactivity 
effects appeared preferentially during non-movement-related ripples.  
As hypothesized, the increased ripple-locked coactivity between  
associative object and place cells was driven by ripples during non- 
movement periods (Supplementary Fig. 23). This indicates that the 
relevance of ripples for human memory changes between different 
movement states of the individual. Supplemental control analyses 
showed that the neurons’ brain regions and average firing rates were not 
systematically related to their coactivity scores (Supplementary Fig. 24).

Overall, these results provide empirical support for our principal 
hypothesis that human hippocampal ripples are linked to coactivations 
of stimulus-specific neurons (which represent particular objects and 
locations in this study) during the formation and retrieval of associa-
tive memories.

Discussion
Associative memory allows us to learn and later retrieve links between 
previously unrelated stimuli1. In this study, we conducted neural 
recordings in patients with epilepsy performing an object–location 
memory task in a virtual environment to investigate possible roles of 
stimulus-specific single neurons and hippocampal ripples for human 
associative memory. Object-specific and place-specific neurons exhib-
ited correlated activity fluctuations during hippocampal ripples when 
participants formed and retrieved associative object–location memo-
ries. This phenomenon of ripple-locked coactivity of stimulus-specific 
neurons is consistent with a cellular account of how humans interconnect 
previously unrelated stimuli and how they recall a stimulus from memory 
after being cued with another stimulus. Hippocampal ripples may sup-
port these functions by binding distinct cellular populations together.

Neural mechanisms of associative memory
Different theories suggest explanations of how neural circuits encode 
associative memories1,8. Following the ‘conjunctive hypothesis’, the rel-
evant neural circuits may contain conjunctive representations as a sub-
strate for associative memories, in which neurons encode the unique 
combination of two or more stimuli20. Such conjunctive neurons do not 
respond to the different stimuli in isolation but only when the stimuli are 
encoded or retrieved together20–22. In contrast, following the ‘coactiv-
ity hypothesis’, associative memories are enabled by stimulus-specific 
neurons that encode the individual elements of associative memories 
and that coactivate temporarily when individuals encode or recall 
these memories6–8. Coactivity during memory encoding would estab-
lish synaptic connections between the stimulus-specific neurons42,50, 
and coactivity during retrieval would reflect the mutual activation 
of stimulus-specific neurons based on their previously established 
synaptic connections.

In line with the ‘conjunctive hypothesis’, several studies described 
the existence of conjunctive cells in the MTL. In rodents, the spiking 
of hippocampal neurons encodes particular object–location associa-
tions, and this conjunctive code strengthens with learning22. Neurons 
in the monkey hippocampus change their firing when monkeys learn 
particular scene–eye movement associations21, and, in humans, hip-
pocampal neurons seem to respond to unique combinations of several 
stimuli52. We obtained further evidence for conjunctive coding by 
observing neurons that represented locations only during trials with 
a particular object. These findings support the view that associative 
memory is linked to conjunctive neural coding.

Here we provide empirical support for the ‘coactivity hypothesis’ 
of associative memory by identifying single-neuron representations of 
the separate memory elements and by demonstrating how these sepa-
rate neural representations activate together at particular timepoints. 
Specifically, our results show that stimulus-specific object and place 
cells coactivate during hippocampal ripples when humans encode or 
retrieve object–location associations. We found that this ripple-locked 
coactivity was specific to object and place cells jointly representing 
associative information, that it was significantly expressed only during 
later parts of the task and that it occurred mostly after initial mem-
ory formation had taken place. These results support the ‘coactiv-
ity hypothesis’ by indicating that cellular coactivations play a role in 
human associative memory. Given that not only associative memories 
require an interplay between different mental contents, we propose 
that ripple-locked coactivations could be relevant to various cogni-
tive functions that involve transient interactions between otherwise 
independent neural representations. For example, episodic memories 
comprise event, time and place information and may, thus, rely on 
transient interactions between concept cells containing semantic 
information10, time cells coding temporal information53 and spatially 
modulated cells representing locations and directions9,11.

The ‘conjunctive hypothesis’ and the ‘coactivity hypothesis’ are 
not mutually exclusive, and various other mechanisms, such as fan 
cells in the lateral entorhinal cortex, may contribute to associative 
memory as well (Supplementary Fig. 11). One possible scenario is that 
neural activity in line with the ‘coactivity hypothesis’ leads to the emer-
gence of neural activity proposed by the ‘conjunctive hypothesis’. For 
instance, coactivity in object and place cells may induce conjunctive 
object–place coding in downstream neurons, potentially with the help 
of plateau potentials54.

Hippocampal ripples and cognition
Previous work suggests that hippocampal ripples serve multiple 
cognitive functions, including memory encoding, consolidation and 
retrieval12–14. For example, findings in rodents demonstrated that the 
suppression of sharp-wave ripples during post-training sleep impairs 
spatial memory55, providing evidence for a role of ripples in memory 
consolidation. Studies in humans showed that ripple rates increase 
when individuals encode new memories25,28 and when they freely recall 
memories25,28,41, implicating ripples in both memory encoding and 
retrieval. Ripple-associated place cell sequences depict the animal’s 
future paths through an environment, which indicates that hippocam-
pal ripples help plan future behavior13,30,31.

In the present study, we extended the evidence for impor-
tant roles of hippocampal ripples in cognition by examining their 
possible involvement in human associative memory. Specifically, 
hippo campal ripples were associated with broad increases in neural  
activity across the human MTL (Supplementary Fig. 8) and appeared to 
define time windows for coactive spiking by stimulus-specific neurons 
that represented different types of information. During the retrieval of 
object–location memories, we observed this ripple-locked coactivity 
when the participant was asked to recall the location of the preferred 
object of the object cell and in which the participant’s response location 
was inside the place field of the place cell. This result implicates human 
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ripples in the retrieval of associative memories and also supports their 
implication in planning future behavior, as the coactivity occurred on 
trials in which the participant’s response location, which is the location 
that the participant was heading to, was located inside the place field 
of the place cell. As we observed significant coactivations only during 
late ripples of each session, it suggests that participants first had to 
establish some intuition about the locations of the different objects 
before ripple-locked coactivity during retrieval could emerge.

During re-encoding periods of our object–location memory task, 
we observed coactivity of object and place cells on trials when the par-
ticipant was asked to re-encode the correct location of the preferred 
object of the object cell and when the correct location of the object 
was inside the place field of the place cell. This coactivity of object and 
place cells during re-encoding may thus have helped the participants to 
build or stabilize accurate associations between the different objects 
and their locations, implicating ripples in memory formation. Notably, 
we again observed significant ripple-locked coactivity of object and 
place cells only during late ripples of the recording sessions. We there-
fore propose that ripple-locked coactivity during re-encoding relates 
more closely to the stabilization, updating or early consolidation of 
associative memories rather than to their initial formation6,12,56. The 
differences among memory initialization, stabilization, updating and 
early consolidation are not exactly defined, however, and hippocampal 
ripples may be involved in all of these cognitive operations14. Future 
studies may present individuals with various versions of a task that 
differ with regard to their duration and complexity to clarify the exact 
role of ripple-locked cellular coactivity for memory. Furthermore, 
going beyond the correlational nature of our results, future studies 
may manipulate ripple-locked coactivations to better understand to 
what extent they are causally relevant.

Our results suggest that the ripple-locked timing of neuronal coac-
tivity shifts between behavioral states. During retrieval, the strongest 
object cell–place cell coactivity occurred shortly after the hippocampal 
ripple peaks, whereas, during re-encoding, the coactivations mainly 
preceded them. This timing shift indicates some flexibility in the inter-
action between MTL neurons and hippocampal ripples and may poten-
tially reflect task-related changes in the direction of information flow 
during hippocampal ripples. Ripples during retrieval may induce the 
coactivity of stimulus-specific neurons and may support the propa-
gation of information from the hippocampus to extra-hippocampal 
regions. Conversely, during re-encoding, ripples may be triggered by 
stimulus-specific neuronal activity and may be involved in information 
transfer from extra-hippocampal regions to the hippocampus. This 
interpretation is speculative, however, and requires further investiga-
tion. Our finding of object cell–place cell coactivity starting before  
hippocampal ripples is in line with results in rodents showing that 
place cell sequences can start approximately 100 ms earlier than the 
hippocampal ripple29,30 and that the reactivation of brain-wide neural 
representations of word pairs, faces and scenes emerges already approxi-
mately 100 ms before hippocampal ripples in humans25,26. This temporal 
delay raises the question of whether hippocampal ripples actually trigger 
the (re)activation of stimulus-specific neural representations or whether 
another mechanism—for example, the excitatory sharp wave13,14—is in fact 
the trigger event for both the (re)activation of stimulus-specific neural 
representations and the hippocampal ripples. Sharp waves, which rodent 
studies typically record from the CA1 stratum radiatum during ripples in 
the stratum pyramidale13,34, reflect the excitatory depolarization of the 
apical dendrites of pyramidal cells and are presumably generated by the 
hippocampal CA3 region when the suppression effects of subcortical 
neuromodulators are removed13. It is conceivable that sharp waves rather 
than ripples are the mesoscopic events that drive cellular coactivations, 
and further studies are required to understand whether ripple-locked 
coactivity is better described as being triggered by sharp waves.

Another way in which our study implicates hippocampal ripples in 
human associative memory is by showing that ripple rates correlated 

with the participants’ behavioral state and memory performance. Rip-
ple rates increased during memory cues before good memory retrieval 
and during re-encoding periods after poor memory retrieval. These 
observations extend previous reports that hippocampal ripples are 
important for the accurate encoding and retrieval of human memo-
ries23,25–28,41 and help translate the functional role of ripples from the 
rodent to the human brain34. Of note, we recorded ripples solely from 
the anterior hippocampus, and future studies are needed to investigate 
whether ripples in different parts of the human hippocampus have simi-
lar or different functional roles (Supplementary Fig. 6). Furthermore, 
there is an ongoing debate whether the high-frequency events that 
we and others identified as ‘ripples’ are indeed the human homolog of 
rodent ripples34. Their relation to and/or overlap with gamma oscilla-
tions38, epsilon oscillations37, high gamma35, broadband gamma36 and 
pathological ripples13 is non-trivial and requires further investigation 
(Supplementary Fig. 6). As an attempt to ensure that the signals that 
we identified are true ripples, we required each event to exhibit a mini-
mum of three cycles and a global peak in the power spectrum that falls 
into the ripple band. Despite these efforts, it may be that the ripples 
in our study are broadband gamma events, which have been shown to 
result from enhanced synaptic and spiking activity57. Future studies are 
needed to better understand the diversity of human high-frequency 
events. Moving forward, these insights may have clinical relevance, 
as augmenting ripples32 might be a target for improving cognitive 
performance in patients with memory disorders.

Limitations of the study
It remains unclear whether ripple-locked coactivity has a causal role in 
the formation of new synaptic connections between neuronal assem-
blies or whether it is a side effect of more fundamental processes. 
Future studies may, thus, monitor modulatory brain systems, includ-
ing neurotransmitters (for example, glutamate), to test whether these 
systems are driving factors of ripple-locked coactivity. Given the known 
effects of these neurotransmitters on neural excitability and plastic-
ity, it may be that they simultaneously enhance ripples and neuronal 
activity, thus constituting the actual origin of strengthened synaptic 
connections between stimulus-specific neurons that may underlie the 
formation of new associative memories. It also remains elusive whether 
ripple-locked coactivity reflects direct synaptic connections between 
the participating object and place cells or whether it is a byproduct of 
shared input to the hippocampal formation. Upstream mechanisms 
of associative memory may activate both object and place cells in a 
temporally coordinated manner, resulting in coactivations between 
these cell types without direct connections between them.

Other open questions arise from our computation of cellular 
coactivations in relatively broad time windows of 100 ms. This temporal 
resolution occupies an intermediate level between typical studies of syn-
aptic plasticity, in which cellular synchrony is estimated with millisecond 
precision using, for instance, spike cross-correlations, and studies of cor-
related trial-to-trial fluctuations of neuronal activity (‘noise correlations’), 
in which firing rates are usually estimated in second-long time windows58. 
It remains unclear whether and how cellular coactivations at time scales 
of ~100 ms may support synaptic plasticity, as the time windows for 
spike-timing-dependent plasticity are typically less than a few tens of 
milliseconds59. To answer this question, it may be useful to consider the 
possibility of a more relaxed time window for spike-timing-dependent 
plasticity in humans60 and other forms of synaptic plasticity, including 
behavioral time scale synaptic plasticity43,44.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-023-01550-x.

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01550-x


Nature Neuroscience | Volume 27 | March 2024 | 587–599 598

Article https://doi.org/10.1038/s41593-023-01550-x

References
1. Kahana, M. J. Foundations of Human Memory (Oxford Univ. Press, 

2014).
2. Naveh-Benjamin, M. Adult age differences in memory 

performance: tests of an associative deficit hypothesis. J. Exp. 
Psychol. Learn. Mem. Cogn. 26, 1170–1187 (2000).

3. Bastin, C. et al. Associative memory and its cerebral correlates 
in Alzheimer’s disease: evidence for distinct deficits of relational 
and conjunctive memory. Neuropsychologia 63, 99–106 (2014).

4. Squire, L. R., Stark, C. E. L. & Clark, R. E. The medial temporal lobe. 
Annu. Rev. Neurosci. 27, 279–306 (2004).

5. Neves, G., Cooke, S. F. & Bliss, T. V. P. Synaptic plasticity, memory 
and the hippocampus: a neural network approach to causality. 
Nat. Rev. Neurosci. 9, 65–75 (2008).

6. Buzsaki, G., Llinas, R., Singer, W., Berthoz, A. & Christen, Y. 
Temporal Coding in the Brain (Springer, 1994).

7. von der Malsburg, C. The what and why of binding: the modeler’s 
perspective. Neuron 24, 95–104 (1999).

8. Singer, W. Recurrent dynamics in the cerebral cortex: integration 
of sensory evidence with stored knowledge. Proc. Natl Acad. Sci. 
USA 118, e2101043118 (2021).

9. Kunz, L. et al. A neural code for egocentric spatial maps in the 
human medial temporal lobe. Neuron 109, 2781–2796 (2021).

10. Quiroga, R. Plugging in to human memory: advantages, 
challenges, and insights from human single-neuron recordings. 
Cell 179, 1015–1032 (2019).

11. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. 
Preliminary evidence from unit activity in the freely-moving rat. 
Brain Res. 34, 171–175 (1971).

12. Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the 
awake state: a potential substrate for memory consolidation and 
retrieval. Nat. Neurosci. 14, 147–153 (2011).

13. Buzsáki Hippocampal sharp wave-ripple: a cognitive biomarker for 
episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

14. Joo, H. R. & Frank, L. M. The hippocampal sharp wave–ripple in 
memory retrieval for immediate use and consolidation. Nat. Rev. 
Neurosci. 19, 744–757 (2018).

15. Logothetis, N. K. et al. Hippocampal–cortical interaction during 
periods of subcortical silence. Nature 491, 547–553 (2012).

16. Karimi Abadchi, J. et al. Spatiotemporal patterns of neocortical 
activity around hippocampal sharp-wave ripples. eLife 9, e51972 
(2020).

17. Dickey, C. W. et al. Widespread ripples synchronize human 
cortical activity during sleep, waking, and memory recall. Proc. 
Natl Acad. Sci. USA 119, e2107797119 (2022).

18. Nitzan, N., Swanson, R., Schmitz, D. & Buzsáki, G. Brain-wide 
interactions during hippocampal sharp wave ripples. Proc. Natl 
Acad. Sci. USA 119, e2200931119 (2022).

19. Sadowski, J. H. L. P., Jones, M. W. & Mellor, J. R. Ripples make 
waves: binding structured activity and plasticity in hippocampal 
networks. Neural Plast. 2011, e960389 (2011).

20. O’Reilly, R. C. & Rudy, J. W. Conjunctive representations in 
learning and memory: principles of cortical and hippocampal 
function. Psychol. Rev. 108, 311–345 (2001).

21. Wirth, S. et al. Single neurons in the monkey hippocampus and 
learning of new associations. Science 300, 1578–1581 (2003).

22. Komorowski, R. W., Manns, J. R. & Eichenbaum, H. Robust 
conjunctive item–place coding by hippocampal neurons parallels 
learning what happens where. J. Neurosci. 29, 9918–9929 (2009).

23. Axmacher, N., Elger, C. E. & Fell, J. Ripples in the medial temporal 
lobe are relevant for human memory consolidation. Brain 131, 
1806–1817 (2008).

24. Staresina, B. P. et al. Hierarchical nesting of slow oscillations, 
spindles and ripples in the human hippocampus during sleep. 
Nat. Neurosci. 18, 1679–1686 (2015).

25. Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual 
episodic recollection in humans. Science 365, eaax1030 (2019).

26. Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple 
oscillations between the medial temporal lobe and neocortex 
retrieve human memory. Science 363, 975–978 (2019).

27. Chen, Y. Y. et al. Stability of ripple events during task engagement 
in human hippocampus. Cell Rep. 35, 109304 (2021).

28. Henin, S. et al. Spatiotemporal dynamics between interictal 
epileptiform discharges and ripples during associative memory 
processing. Brain 144, 1590–1602 (2021).

29. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural 
sequences in hippocampal place cells during the awake state. 
Nature 440, 680–683 (2006).

30. Diba, K. & Buzsáki, G. Forward and reverse hippocampal place- 
cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

31. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences 
depict future paths to remembered goals. Nature 497, 74–79 
(2013).

32. Fernández-Ruiz, A. et al. Long-duration hippocampal sharp wave 
ripples improve memory. Science 364, 1082–1086 (2019).

33. Ngo, H.-V., Fell, J. & Staresina, B. Sleep spindles mediate 
hippocampal-neocortical coupling during long-duration ripples. 
eLife 9, e57011 (2020).

34. Liu, A. A. et al. A consensus statement on detection of 
hippocampal sharp wave ripples and differentiation from other 
fast oscillations. Nat. Commun. 13, 6000 (2022).

35. Ray, S. & Maunsell, J. H. R. Different origins of gamma rhythm 
and high-gamma activity in macaque visual cortex. PLoS Biol. 9, 
e1000610 (2011).

36. Miller, K. J. et al. Broadband changes in the cortical surface 
potential track activation of functionally diverse neuronal 
populations. Neuroimage 85, 711–720 (2014).

37. Buzsáki, G. & da Silva, F. L. High frequency oscillations in the 
intact brain. Prog. Neurobiol. 98, 241–249 (2012).

38. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. 
Annu. Rev. Neurosci. 35, 203–225 (2012).

39. Weiss, S. A. et al. Ripples have distinct spectral properties and 
phase-amplitude coupling with slow waves, but indistinct unit 
firing, in human epileptogenic hippocampus. Front. Neurol. 11, 174 
(2020).

40. Neske, G. T. The slow oscillation in cortical and thalamic networks: 
mechanisms and functions. Front. Neural Circuits 9, 88 (2016).

41. Sakon, J. J. & Kahana, M. J. Hippocampal ripples signal 
contextually mediated episodic recall. Proc. Natl Acad. Sci. USA 
119, e2201657119 (2022).

42. Sadowski, J. H. L. P., Jones, M. W. & Mellor, J. R. Sharp-wave 
ripples orchestrate the induction of synaptic plasticity during 
reactivation of place cell firing patterns in the hippocampus. Cell 
Rep. 14, 1916–1929 (2016).

43. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and 
functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

44. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, 
J. C. Behavioral time scale synaptic plasticity underlies CA1 place 
fields. Science 357, 1033–1036 (2017).

45. Khodagholy, D., Gelinas, J. N. & Buzsáki, G. Learning-enhanced 
coupling between ripple oscillations in association cortices and 
hippocampus. Science 358, 369–372 (2017).

46. Skelin, I. et al. Coupling between slow waves and sharp-wave 
ripples engages distributed neural activity during sleep in 
humans. Proc. Natl Acad. Sci. USA 118, e2012075118 (2021).

47. Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/
inhibition balance from field potentials. Neuroimage 158, 70–78 (2017).

48. Moser, E. I., Moser, M.-B. & McNaughton, B. L. Spatial 
representation in the hippocampal formation: a history.  
Nat. Neurosci. 20, 1448–1464 (2017).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | March 2024 | 587–599 599

Article https://doi.org/10.1038/s41593-023-01550-x

49. Jacobs, J. et al. Direct recordings of grid-like neuronal activity in 
human spatial navigation. Nat. Neurosci. 16, 1188–1190 (2013).

50. Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb’s 
postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001).

51. Treder, M. S. et al. The hippocampus as the switchboard between 
perception and memory. Proc. Natl Acad. Sci. USA 118, e2114171118 
(2021).

52. Kolibius, L. D. et al. Hippocampal neurons code individual episodic 
memories in humans. Nat. Hum. Behav. 7, 1968–1979 (2023).

53. Eichenbaum, H. Time cells in the hippocampus: a new dimension 
for mapping memories. Nat. Rev. Neurosci. 15, 732–744 (2014).

54. Bittner, K. C. et al. Conjunctive input processing drives feature 
selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 
1133–1142 (2015).

55. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. &  
Zugaro, M. B. Selective suppression of hippocampal ripples 
impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

56. Wamsley, E. J. Memory consolidation during waking rest. Trends 
Cogn. Sci. 23, 171–173 (2019).

57. Lachaux, J.-P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N. E.  
High-frequency neural activity and human cognition: past, 
present and possible future of intracranial EEG research. Prog. 
Neurobiol. 98, 279–301 (2012).

58. Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal 
correlations. Nat. Neurosci. 14, 811–819 (2011).

59. Kepecs, A., van Rossum, M. C. W., Song, S. & Tegner, J. 
Spike-timing-dependent plasticity: common themes and 
divergent vistas. Biol. Cybern. 87, 446–458 (2002).

60. Silva, G. et al. Human synapses show a wide temporal window for 
spike-timing-dependent plasticity. Front. Synaptic Neurosci. 2, 12 
(2010).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natureneuroscience
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01550-x

Methods
Experimental procedures were approved by the Ethics Committee 
of the University of Freiburg in Freiburg im Breisgau, Germany, and 
all participants provided written informed consent. Data collection 
and analysis were not performed blinded to the conditions of the 
experiment. No statistical methods were used to pre-determine sample 
sizes, but our sample sizes are similar to those reported in previous 
publications9,25,61,62.

Human participants
We tested n = 35 human participants, who were patients with epilepsy 
undergoing treatment for pharmacologically intractable epilepsy at 
the Freiburg Epilepsy Center in Freiburg im Breisgau, Germany. Of 
these, five patients had to be excluded because of technical issues 
(n = 1); no hippocampal electrode contacts (n = 2); hippocampal chan-
nels that were close to the resection border of a previous surgery (n = 1); 
and a very low number of ripples (n = 1). This resulted in a final sample 
of n = 30 patients (16 female; age range, 19–61 years; mean age ± s.e.m., 
36 ± 2 years), contributing a total of n = 41 experimental sessions with 
intracranial EEG recordings including the left and/or right hippocam-
pus (n = 62 hippocampal bipolar channels). For 20 of these 30 patients, 
additional single-neuron recordings from various MTL regions were 
available (n = 27 sessions and n = 43 hippocampal bipolar channels). 
All participants were in the same experimental group and did not 
undergo randomization. Participants were not compensated for their 
participation in the study. Further participant information is presented 
in Supplementary Table 1.

Neurophysiological recordings
Participants were surgically implanted with intracranial depth elec-
trodes in the MTL for diagnostic purposes to isolate their epileptic 
seizure focus for potential subsequent surgical resection. The exact 
electrode numbers and locations varied across participants and 
were determined solely by clinical needs. Electrodes were provided 
by Ad-Tech. Macroelectrode recordings were performed at a sam-
pling rate of 2 kHz using a Compumedics system. Microelectrode 
recordings were performed using Behnke–Fried electrodes (Ad-Tech) 
at a sampling rate of 30 kHz using a NeuroPort system (Blackrock 
Microsystems). Each Behnke–Fried electrode contained a bundle of 
nine platinum–iridium microelectrodes with a diameter of 40 µm 
that protruded from the tip of the macroelectrode63,64 (Fig. 2d). The 
first eight microelectrodes were used to record action potentials and 
LFPs. The ninth microelectrode served as reference. Microelectrode 
coverage included amygdala, entorhinal cortex, fusiform gyrus, 
hippocampus, insula, parahippocampal cortex, temporal pole and 
visual cortex. Temporal pole refers to a broader area in the anterior 
temporal lobe, situated ventral and anterior to the amygdala and 
entorhinal cortex.

Associative object–location memory task
During the invasive neural recordings, participants sat in their hospital 
bed and performed an associative object–location memory task in a 
virtual environment on a laptop computer (Fig. 1), which was adapted 
from previous studies9,65–67. Before performing the first task session, 
participants had never been exposed to this task before. The fact that 
they performed above chance already early during the task (Fig. 1d) is 
due to the initial encoding period in which they collected each object 
from its correct location once, giving the participants a rough idea 
where the objects were placed in the environment. The task was devel-
oped using Unreal Engine 2 (Epic Games).

During the task, participants first learned the locations of eight 
everyday objects by collecting each object from its location once 
(by running over it). The navigation path of an example participant 
during this initial encoding period is shown in Supplementary Fig. 3e.  
This resulted in eight initial encoding events per session (one per 

object–place association). On average, the initial encoding periods 
had a duration of 3.326 ± 0.352 minutes (mean ± s.e.m.; Supplementary 
Fig. 3f). Because of the low number of initial encoding events (eight 
per session) and the short duration of the initial encoding period, we 
did not consider them as a focus of our analyses a priori. Basic analyses 
on average ripple rates during the initial encoding period showed that 
they were positively correlated with the average ripple rates during the 
main task (Pearson’s r = 0.797, P < 0.001, n = 62 channels; Supplemen-
tary Fig. 3g) and that they were not significantly different from those 
during the main task (paired t-test: t(61) = 0.760, P = 0.450). When we 
analyzed time-resolved ripple rates around the initial encoding events, 
we did not find significant ripple rate increases at particular moments 
relative to these events (Supplementary Fig. 3h). This observation 
is similar to the null effect toward the end of the re-encoding phase  
(Fig. 3c) and may again result from the self-paced nature of the task, 
due to which actual encoding processes may be less closely locked to 
particular task events than in tasks that are temporally more tightly 
controlled (for example, see ref. 25 for ripple rate increases when 
individuals encoded novel pictures of faces or places).

After the initial encoding period, participants completed variable 
numbers of test trials depending on compliance. Each test trial started 
with an ITI of 3–5-s duration (uniformly distributed). Participants were 
then shown one of the eight objects (‘cue’; duration of 2 s). During 
the subsequent retrieval period (‘retrieval’; self-paced), participants 
navigated to the remembered object location and indicated their 
arrival with a button press. Next, participants received feedback on 
the accuracy of their response using one of five different emoticons 
(‘feedback’; duration of 1.5 s). The retrieved object then appeared in 
its correct location, and participants collected it from there to further 
improve their associative object–location memories (‘re-encoding’; 
self-paced). Across all trials, the average duration of the retrieval peri-
ods was 13.415 ± 0.218 s (mean ± s.e.m.), and the average duration of 
the re-encoding periods was 7.685 ± 0.158 s (mean ± s.e.m.). The par-
ticipants could use several different strategies to retrieve the locations 
of the objects, including allocentric, egocentric and landmark-based 
strategies9. The choice of this object–location memory task, including 
self-paced navigation in a virtual environment, was guided by previ-
ous human single-neuron studies showing single-neuron responses 
to objects and spatial locations in different regions of the human MTL 
(for example, see refs. 10,61). The task mimicked the setup of naviga-
tion studies in rodents that showed robust spatial coding in the rodent 
hippocampus and neighboring regions (for example, see ref. 48) and 
gave the patients a sense of movement through space. Due to the 
self-paced nature of the task, the task was engaging and presumably 
enhanced the presence of neurons being tuned to different aspects 
of the task. The use of emoticons as feedback may have strengthened 
single-neuron responses in the amygdala, which have previously been 
shown to be involved in integrating spatial and motivational informa-
tion in monkeys68,69.

The virtual environment comprised a grassy plain with a diameter 
of approximately 10,000 virtual units (vu), surrounded by a cylindrical 
cliff. There were no landmarks within the environment. The background 
scenery comprised a large and a small mountain, clouds and the sun. 
All distal landmarks were rendered at infinity and remained stationary 
throughout the task. Participants were asked to complete up to 160 tri-
als but were instructed to pause or quit the task whenever they wanted. 
Participants navigated the virtual environment using the arrow keys of 
the laptop computer (forward, turn left and turn right). Instantaneous 
virtual locations and heading directions (which are identical to viewing 
directions in our task) were sampled at 50 Hz. We aligned the behav-
ioral data with the macroelectrode and microelectrode data using 
visual triggers, which were detected by a phototransistor attached 
to the screen of the laptop computer. The phototransistor signal was 
recorded together with the macroelectrode and microelectrode data 
at temporal resolutions of 2 kHz and 30 kHz, respectively.
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General information on statistics
All analyses were carried out in MATLAB 2020b and 2021b (MathWorks) 
using MATLAB toolboxes, the CircStat toolbox70 (version 1.21.0.0), 
FieldTrip (version 20210614; http://fieldtriptoolbox.org)71 and custom 
MATLAB scripts.

Unless otherwise indicated, we considered results statistically 
significant when the corresponding P value fell below an alpha level of 
α = 0.05. Analyses were two-sided, unless otherwise specified. Binomial 
tests evaluated the significance of proportions of neurons relative to 
a chance level of 5%, unless otherwise specified. Surrogate statistics 
were one-sided to assess whether an empirical test statistic signifi-
cantly exceeded (or fell below) a distribution of surrogate statistics, 
unless otherwise specified. The use of statistical tests with surrogate 
statistics avoided the assumption of normality when evaluating signifi-
cance. When using parametric statistical tests, data distributions were 
assumed to be normal, but this was not formally tested. Correction for 
multiple comparisons was applied when necessary. All cluster-based 
permutation tests controlled for multiple comparisons across all rel-
evant data dimensions. If not otherwise specified, we plotted the fol-
lowing information in box plots: median as center line; upper and lower 
quartiles as box limits; minimum and maximum (after removing the 
outliers) as whiskers; and outliers as points. Outliers were identified as 
elements more than 1.5 interquartile ranges above the third quartile or 
more than 1.5 interquartile ranges below the first quartile.

Behavioral analysis
For each trial, we quantified the participant’s associative memory 
performance by calculating the Euclidean distance between the partici-
pant’s response location and the object’s correct location (‘drop error’). 
Drop errors were transformed into memory performance values by 
ranking each drop error within a distribution of surrogate drop errors 
(n = 107 surrogate drop errors). Surrogate drop errors were generated 
synthetically as the distances between the trial-specific correct object 
location and random locations within the virtual environment. The 
transformation into memory performance values accounted for the 
fact that the possible range of drop errors is smaller for objects located 
in the center of the virtual environment as compared to objects located 
in the periphery of the virtual environment9,72: For objects in the envi-
ronment center, the possible drop errors are in the range between 
[0, r], whereas they are in the range between [0, 2 × r] for objects at 
the boundary of the arena, where r is the arena radius. For objects 
placed anywhere else in the environment, the drop error is somewhere 
between the ranges [0, r] and [0, 2 × r]. Using the transformation pro-
cedure, performance values are mapped onto a range between [0, 1], 
irrespective of whether the associated objects are located in the center 
or the periphery of the environment. A memory performance value 
of 1 represents the smallest possible drop error, whereas a memory 
performance value of 0 represents the largest possible drop error. A 
given drop error leads to higher memory performance values the closer 
the correct object location is toward the boundary of the environment. 
Supplementary Fig. 2 shows an illustration of the procedure of convert-
ing drop errors into memory performance values using three examples 
in which the correct object location is in the center of the environment, 
at its boundary or halfway between the center and the boundary.

To quantify performance increases within sessions, we computed 
the change in memory performance between early and late trials (aver-
aged across trials), where early trials are trials 1 to n / 2 of a session; 
late trials are the remaining trials; and n is the total number of trials. 
We observed a significant increase in memory performance across all 
participants and also when considering only participants with micro-
electrodes (Supplementary Table 2). We also estimated memory per-
formance values per normalized time bin (20 bins, averaged across 
trials falling into a given normalized time bin) and calculated a Pearson 
correlation between bin index and average memory performance 
afterwards (averaged across sessions).

Intracranial EEG: pre-processing
Intracranial macroelectrode recordings were performed to identify 
ripples on hippocampal channels and to examine the MTL-wide effects 
of hippocampal ripples on LFPs. Signals were sampled at 2 kHz, and 
initial recordings were referenced to a common surface EEG contact 
(Cz). We visually inspected the data from each channel and removed 
channels without reasonable signals (for example, because they were 
located outside the brain). This resulted in a total number of 2,897 
intracranial EEG channels across all 41 sessions (519 out of 3,416 chan-
nels were removed because of artifactual data).

To eliminate potentially system-wide artifacts or noise and to bet-
ter sense ripples locally, we then applied bipolar re-referencing between 
pairs of neighboring contacts26,41,73. After bipolar re-referencing, we 
used band-stop filters to perform line noise removal at 50, 100, 150 
and 200 Hz (±2 Hz; two-pass 4th-order Butterworth filter) in FieldTrip. 
To remove time periods with ripple-like artifacts that were present on 
the majority of all intracranial EEG channels, we computed the grand 
average signal across all intracranial EEG channels25,74. This grand aver-
age signal was also band-stop filtered at 50, 100, 150 and 200 Hz to 
remove line noise.

Intracranial EEG: electrode locations
To identify which bipolar channels were located inside the hippocam-
pus and could, thus, be used to detect hippocampal ripples, we visu-
ally inspected all hippocampal electrodes on the post-implantation 
magnetic resonance imaging (MRI) scans (Supplementary Fig. 4). 
Following the hippocampal segmentation in ref. 25, we assigned the 
hippocampal bipolar channels to putative hippocampal subregions, 
which suggested that most bipolar channels were located in CA1. We 
similarly inspected all amygdala, entorhinal cortex, parahippocampal 
cortex and temporal pole electrodes to identify which bipolar channels 
were located in these regions (to examine the MTL-wide effects of hip-
pocampal ripples). The locations of all bipolar channels in the different 
regions are displayed in Supplementary Fig. 8a.

To show a summary of all hippocampal bipolar channels, we deter-
mined the location of each macroelectrode channel in MNI space using 
PyLocator (http://pylocator.thorstenkranz.de/), following our previ-
ous procedure75, and estimated the location of each bipolar channel 
as the mean of the MNI coordinates of the two contributing channels. 
We display the distribution of all hippocampal bipolar channels as a 
probability map on the group average MRI scan (Fig. 2b).

Intracranial EEG: IEDs
To reduce the probability that the detected ripples were a result of 
IEDs73, we identified IEDs before ripple detection using an automated 
procedure, which we double-checked with visual inspection. We 
automatically detected IEDs following previously established meth-
ods23,24,33. The raw data were filtered using a high-pass filter of 0.5 Hz 
(two-pass 5th-order Butterworth filter) to remove slow-frequency 
drifts and a low-pass filter of 150 Hz (two-pass 6th-order Butterworth 
filter) in FieldTrip. A timepoint was considered belonging to an IED if 
(1) its amplitude exceeded four interquartile ranges above or below the 
median amplitude calculated across the entire recording; if (2) the gra-
dient to the next timepoint exceeded four interquartile ranges above or 
below the median gradient; or if (3) the sum power across the frequen-
cies 1–60 Hz (30 logarithmically spaced frequencies; time–frequency 
decomposition using Morlet wavelets with seven cycles, followed by 
taking the natural logarithm and frequency-specific z-scoring across 
time) exceeded four interquartile ranges above the median sum power. 
The rationale behind these criteria was that IEDs exhibit high ampli-
tudes, sharp amplitude changes and power increases across a broad 
frequency range. We used interquartile ranges instead of standard 
deviations to reduce the influence of outliers. We inspected the output 
of our automated IED detection, which appeared suitable for detecting 
IEDs. Example IEDs are shown in Supplementary Fig. 5a.
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Intracranial EEG: relationship between IEDs and behavior
To investigate systematic relationships between hippocampal IEDs and 
behavior, we estimated the prevalence of IEDs per trial phase. Using a 
repeated-measures ANOVA (dependent variable: IED prevalence, aver-
aged across trials; independent variable: trial phase; Tukey–Kramer 
correction for multiple comparisons), we tested whether the occur-
rence of IEDs varied as a function of trial phase.

To understand whether IEDs were associated with memory per-
formance, we performed partial correlations between IED prevalence 
and memory performance values across trials, separately for each trial 
phase (controlling for trial index and the interaction between memory 
performance and trial index). We then computed one-sample t-tests 
across channels to see whether the correlations were significantly 
above or below 0, including Bonferroni correction for the number of 
trial phases. Moreover, to test whether IEDs increased or decreased over 
the course of the task, we performed partial correlations between IED 
prevalence and trial indices across trials, separately for each trial phase 
(controlling for memory performance and the interaction between 
memory performance and trial index). To corroborate the results 
from the partial correlations, we also computed linear mixed models 
with IED prevalence as dependent variable and various independent 
variables (Supplementary Table 3).

Intracranial EEG: ripples
We detected hippocampal ripples on bipolar channels of hippocampal 
macroelectrodes. If a participant was implanted bilaterally, hippocampal 
channels from both hemispheres were used for ripple detection. We first 
ensured reasonable signals on each hippocampal ripple channel by visu-
ally inspecting the raw intracranial EEG traces during pre-processing. If 
the signal of the most medial bipolar hippocampal channel did not have 
sufficient quality (which was the case in five of the 62 hippocampal chan-
nels), we used the second-most medial bipolar hippocampal channel 
for ripple detection. In one participant, the hippocampal electrode was 
implanted from posterior to anterior along the longitudinal axis of the 
hippocampus—in this case, we selected the two most anterior hippocam-
pal channels so that the resulting bipolar channel was located in a similar 
hippocampal subregion as the channels from all other participants (that 
is, in the anterior hippocampus). For each bipolar hippocampal channel, 
we visually verified that it was located inside the hippocampus. Most 
hippocampal channels were putatively located in the CA1 region (Sup-
plementary Fig. 4). In total, 62 hippocampal channels were included (33 
from the right hemisphere). Forty-three of these channels were from 
participants with microelectrode recordings.

Ripple detection was preceded by a detection of IEDs (see above) 
and ripple-like events in the grand average signal to exclude those 
time periods from ripple detection. To reduce the probability that the 
detected ripples were a result of artifacts, we conservatively excluded 
±1 s around each detected IED24 and each timepoint that co-occurred 
with a ripple-like event in the grand average signal.

To detect ripple candidates, we filtered the raw LFP between 80 Hz 
and 140 Hz (two-pass 4th-order Butterworth filter) and computed the 
instantaneous analytic amplitude within that band using a Hilbert 
transform26,73. We then smoothed the amplitudes using a smoothing 
time window of 20 ms33. Timepoints with artifacts were excluded (that 
is, set to NaNs) in the smoothed amplitude time series. Next, we com-
puted the mean and standard deviation of the smoothed amplitudes 
across the entire recording and detected candidate ripple events as 
time periods in which the signal exceeded 2 standard deviations above 
the mean26,27,73. Each candidate event then had to fulfill additional cri-
teria to qualify as a putatively physiological ripple: (1) the peak of the 
smoothed amplitude had to exceed 3 standard deviations above the 
mean26,73; (2) the duration had to last longer than 20 ms (ref. 25) and be 
shorter than 500 ms27; (3) the band-pass signal needed to have at least 
three peaks and at least three troughs33; and (4) the power spectrum, 
computed for frequencies between 30 Hz and 190 Hz in steps of 2 Hz 

(using Morlet wavelets with seven cycles) and divided by the power 
spectrum estimated across the entire recording, had to exhibit a global 
peak between 80 Hz and 140 Hz. Only candidate events that fulfilled 
all these criteria were considered as ripples.

Next, for each ripple, we extracted its peak time as the timepoint 
at which the band-pass signal was highest. Ripple duration was defined 
as the time difference between the start and end time of a given ripple. 
The frequency of a ripple was estimated based on the average tempo-
ral delay between the peaks and troughs in the band-pass signal. To 
show the time domain signal, the frequency domain power spectrum 
(2–200 Hz in steps of 4 Hz) and the time–frequency domain power spec-
trogram of the ripples (2–200 Hz in steps of 4 Hz), we extracted the raw 
LFP within ±3 s around each ripple. Supplementary Fig. 6 shows various 
ripple characteristics, including ripple rates, durations, frequencies, 
power spectra and inter-ripple intervals.

To compare the putatively physiological ripples against an identi-
cal number of ‘surrogate ripples’ (Fig. 2i and Supplementary Fig. 6), we 
selected a random timepoint within ±60 s of each putatively physiologi-
cal ripple (excluding time periods with artifacts), which we denoted as 
the peak time of the corresponding surrogate ripple33.

Intracranial EEG: delta phase locking of hippocampal ripples
To investigate whether ripples were locked to particular phases of 
low-frequency oscillations15,23, we filtered the hippocampal intracranial 
EEG with a two-pass finite impulse response (FIR) filter using MATLAB’s 
designfilt and filtfilt functions (filter order, 8,000; lower cutoff fre-
quency, 0.5 Hz; upper cutoff frequency, 2 Hz). We then estimated the 
phases of this delta band filtered data using a Hilbert transform. For 
each ripple, we extracted its corresponding delta phase at the ripple 
peak time and averaged the ripple-locked delta phases afterwards. 
Across channels, we tested whether the average delta phases were 
clustered using a Rayleigh test70.

To assess statistical significance of ripple–phase coupling, we com-
pared the empirical Rayleigh z value against 1,001 surrogate Rayleigh z 
values, which we generated by performing the same steps as described 
above with the only difference that the inter-ripple intervals were ran-
domly shuffled. We computed the P value of the empirical Rayleigh z 
value in comparison to the surrogate Rayleigh z values as P = 1 − rank, 
where rank is the fraction of surrogate Rayleigh z values that were 
smaller than the empirical Rayleigh z value. This analysis showed that 
the delta phase locking of empirical ripples was significantly stronger 
than in surrogate ripples with shuffled inter-ripple intervals (P = 0.017). 
To also test whether the empirical average delta phases (one per chan-
nel) were different from the surrogate average delta phases (one per 
channel in each of 1,001 surrogate rounds), we performed a two-sample 
Kuiper’s test70. This showed that the empirical preferred delta phases 
were significantly different from the preferred delta phases of surro-
gate ripples (Kuiper’s test: k = 1,132,988.000, P = 0.001).

Intracranial EEG: extra-hippocampal ripple detection
To characterize the MTL-wide effects of hippocampal ripples, we 
detected ripples on bipolar channels from the amygdala, entorhinal 
cortex, parahippocampal cortex and temporal pole using the same 
procedure as for hippocampal ripples (see above). We then performed 
cross-correlations between the ripple time series of a given hippocam-
pal channel and the ripple time series of another channel (where each 
ripple time series is a vector of zeros and ones, with values of 1 indicat-
ing ripple periods). We considered maximum time lags of ±5 s between 
both time series and used unbiased estimations of the cross correla-
tions by means of MATLAB’s ‘xcorr’ function. We smoothed the pairwise 
cross-correlations with a Gaussian filter (kernel length of 0.2 s) and 
z-scored the cross-correlations across time lags. To evaluate whether 
the z-scored cross-correlations were significantly positive, we then 
performed a cluster-based permutation test against 0 across channels 
(1,001 surrogates).
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In this cluster-based permutation test, we first applied a 
one-sample t-test to the empirical data, separately for each time lag, 
and identified contiguous clusters of time lags in which the uncor-
rected P value of the t-test was significant (α = 0.05) and the t value was 
positive. For each cluster, we computed an empirical cluster statistic 
by summing up all t values that were part of that cluster (tcluster-empirical). 
We then compared the empirical cluster statistics against surrogate 
cluster statistics, which we obtained by inverting the sign of the 
cross-correlation values of a random subset of the cross-correlation 
series72, performing exactly the same steps as described above for the 
empirical data and keeping only the maximum cluster statistic (result-
ing in 1,001 tmax-cluster-surrogate values). We considered an empirical cluster 
statistic (tcluster-empirical) significant if it exceeded the 95th percentile of 
all surrogate maximum cluster statistics (tmax-cluster-surrogate).

Intracranial EEG: LFP power during hippocampal ripples
To characterize the MTL-wide effects of hippocampal ripples, we com-
puted ripple-aligned time–frequency-resolved power spectrograms 
in different MTL regions. Across the 41 sessions with macroelectrode 
recordings, 400 combinations of electrodes in the left/right hippocam-
pus and electrodes in the left/right amygdala, left/right entorhinal 
cortex, left/right hippocampus, left/right parahippocampal cortex 
or left/right temporal pole were available (240 in ipsilateral and 160 
in contralateral hemispheres). Forty-five macroelectrode channels 
were located in the left amygdala (26 ipsilateral to their co-recorded 
hippocampal channel), 48 in the right amygdala (29 ipsilateral), 11 in 
the left entorhinal cortex (seven ipsilateral), 33 in the right entorhinal 
cortex (21 ipsilateral), 50 in the left hippocampus (29 ipsilateral), 54 in 
the right hippocampus (33 ipsilateral), 33 in the left parahippocampal 
cortex (18 ipsilateral), 31 in the right parahippocampal cortex (20 ipsi-
lateral), 45 in the left temporal pole (26 ipsilateral) and 50 in the right 
temporal pole (31 ipsilateral).

For each macroelectrode channel, we computed the time–frequency 
spectrogram across the entire recording (using Morlet wavelets with 
seven cycles at 50 logarithmically spaced frequencies between 1 Hz and 
200 Hz). Power values at timepoints with IEDs were excluded (that is, set 
to NaN). Power values were then z-scored across time (using MATLAB’s 
‘normalize’ function), separately for each frequency. Around each hip-
pocampal ripple (±3 s), we extracted the z-scored power values, averaged 
across ripples in each channel and smoothed the average spectrograms 
with a Gaussian filter across time (kernel length, 0.2 s). Spectrograms 
were then truncated to ±0.5 s around the ripple peak timepoint. Next, we 
averaged the z-scored power spectrograms across channels for depiction 
and performed cluster-based permutation tests (1,001 surrogates) across 
channels to statistically evaluate whether hippocampal ripples were 
associated with significant changes in LFP power in other MTL regions.

In these cluster-based permutation tests, we first applied a 
one-sample t-test to the empirical data, separately for each time–fre-
quency bin, and identified contiguous clusters of time–frequency bins 
in which the uncorrected P value of the t-test was significant (α = 0.025). 
For each cluster, we computed an empirical cluster statistic by sum-
ming up all t values being part of that cluster (tcluster-empirical). We then 
compared the empirical cluster statistics against surrogate cluster 
statistics, which we obtained by flipping the sign of the power values 
of a random subset of the power spectrograms, performing exactly the 
same steps as described above for the empirical data and keeping only 
the maximum cluster statistic (resulting in 1,001 tmax-cluster-surrogate values). 
We considered an empirical cluster statistic (tcluster-empirical) significant if 
it exceeded the 97.5th percentile or if it fell below the 2.5th percentile 
of all surrogate maximum cluster statistics (tmax-cluster-surrogate). We used a 
first-level alpha of α = 0.025 (for identifying significant time–frequency 
bins in the power spectrograms) and a second-level alpha of α = 0.025 
(for identifying significant clusters of significant time–frequency 
bins), because these cluster-based permutation tests tested for both 
increases and decreases in power.

Intracranial EEG: relationship between hippocampal ripples 
and behavior
Previous studies demonstrated that characteristics of hippocampal 
ripples can vary between different cognitive tasks, between different 
components of the same task and as a function of the participants’ 
behavioral performance23,25–28,41,73,74. Hence, we aimed at understand-
ing whether hippocampal ripples were related to the participants’ 
behavioral state and memory performance in our object–location 
memory task.

To test whether ripple characteristics varied as a function of trial 
phase (that is, ITI, cue, retrieval, feedback and re-encoding), we esti-
mated their rate, duration and frequency in each trial phase. We then 
tested for significant associations between ripple characteristics and 
behavior using repeated-measures ANOVAs (dependent variable: rip-
ple characteristic, averaged across trials; independent variable: trial 
phase; Tukey–Kramer correction for multiple comparisons) and linear 
mixed models (Supplementary Tables 4 and 5). In line with previous 
results25,27, ripple rates were increased during the ITI and cue periods, 
when participants rested and viewed pictures of the objects that cued 
them to remember particular locations in the environment, respec-
tively (repeated-measures ANOVA: F4,244 = 19.942, P < 0.001; post hoc 
comparisons between ITI and retrieval, feedback or re-encoding: all 
PTukey–Kramer < 0.024; post hoc comparisons between cue and retrieval, 
feedback or re-encoding: all PTukey–Kramer < 0.001; Fig. 3a). Ripple dura-
tions showed a similar modulation pattern (repeated-measures 
ANOVA: F4,236 = 2.463, P = 0.046; Fig. 3a), but post hoc comparisons 
were non-significant (all PTukey–Kramer > 0.138). Ripple frequency was not 
modulated by trial phase (repeated-measures ANOVA: F4,236 = 0.562, 
P = 0.690; Fig. 3a). These results demonstrate that the rate of human 
hippocampal ripples changed with the participants’ behavioral state 
in our associative object–location memory task.

We next examined the memory relevance and temporal stability of 
hippocampal ripple rates. To test whether ripple rates were correlated 
with memory performance, we computed a partial correlation between 
trial-wise ripple rate and memory performance for each channel, sepa-
rately for each trial phase (controlling for trial index and the interaction 
between memory performance and trial index). Across channels, we 
then tested whether the correlation values were significantly different 
from 0 using one-sample t-tests including Bonferroni correction for the 
number of trial phases. During the cue period, ripple rates correlated 
positively with memory performance—that is, with more frequent 
ripples predicting better memory performance in the subsequent 
retrieval period (one-sample t-test against 0: t(60) = 2.763, P = 0.038, 
Bonferroni corrected for five tests; Fig. 3b). During re-encoding, ripple 
rates correlated negatively with memory performance, meaning that 
higher ripple rates followed memory responses with lower memory 
performance (one-sample t-test against 0: t(60) = −4.181, P < 0.001, 
Bonferroni corrected for five tests; Fig. 3b). This result implicates 
hippocampal ripples in the formation, or updating, of associative 
memories as participants corrected/updated their memories by view-
ing the objects in their true locations during the re-encoding periods.

We also tested whether ripple rates were associated with trial index 
(that is, time within the task) using partial correlations as described 
above for memory performance (controlling for memory performance 
and the interaction between memory performance and trial index). 
This showed that ripple rates were largely stable across the course of the 
experiment, with a decrease of ripples over time during the feedback 
period (one-sample t-test against 0: t(59) = −3.178, P = 0.012, Bonferroni 
corrected for five tests; Fig. 3d).

To corroborate these results from the partial correlations (Fig. 3), 
we performed follow-up analyses using linear mixed models where we 
also controlled for the trial-wise prevalence of artifacts and obtained 
qualitatively identical results (Supplementary Tables 4 and 5). In these 
linear mixed models, ripple rates were entered as the dependent varia-
ble, and memory performance, trial index and trial phase were modeled 
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as fixed effects. We included channel index as a random effect. In the 
second linear mixed model (Supplementary Table 5), the trial-wise 
and phase-wise prevalence of artifacts (that is, IEDs and ripple-like 
events in the grand average signal) was included as a covariate. Both 
linear mixed models showed that ripple rates were higher during the 
cue period and lower during the retrieval, feedback and re-encoding 
periods as compared to the ITI period. As compared to the ITI period, 
ripple rates and memory performances were more positively correlated 
with each other during the cue period and more negatively correlated 
with each other during the re-encoding period. Furthermore, ripple 
rates during the cue period and the feedback period decreased with 
increasing trial index.

To describe the time course of ripple rates during the trial phases, 
we computed peristimulus time histograms for the occurrence of ripples 
relative to the start and end time of the different trial phases (that is, rela-
tive to the start for the cue and the feedback periods and relative to the 
end for the ITI, retrieval and re-encoding periods). For each hippocampal 
ripple channel, we computed the time course of instantaneous ripple 
rates during trials with good memory performance and bad memory 
performance (based on a median split of each participant’s memory 
performance values) and used two-sided cluster-based permutation 
tests in FieldTrip to evaluate whether time-resolved ripple rates changed 
during particular periods of the different trial phases between trials with 
good versus bad memory performance. Although the ITI, retrieval and 
re-encoding periods had variable durations across trials, we restricted 
our analysis of their time-resolved ripple rates to −3 s to +1 s relative to the 
end of these periods to examine ripple rates as a function of absolute time.

These time-resolved analyses showed that, during the cue period, 
the difference in ripple rates between good and bad trials (defined by 
a median split of each participant’s memory performance values) was 
strongest at 1.162–1.470 s after cue onset (cluster-based permuta-
tion test: tcluster = 1,023.281, P = 0.011), whereas the difference during 
re-encoding was broadly distributed over time (Fig. 3c). Ripple rates did 
not correlate with memory performance during the retrieval period, 
and ripple rates did not increase at a fixed interval before successful 
retrieval (Fig. 3b,c), which is presumably a result of the self-paced 
nature of the task.

These findings demonstrate that the rate of human hippocam-
pal ripples is associated with the participants’ behavioral state and 
memory performance in our associative object–location memory 
task. Increased ripple rates during the cue period preceded the suc-
cessful retrieval of associative memories, which implicates hippocam-
pal ripples in retrieval processes. Increased ripple rates during the 
re-encoding period followed the unsuccessful retrieval of associative 
memories, suggesting an additional role for hippocampal ripples in 
establishing or updating associative memories. These observations 
thus extend the previously established links between hippocampal 
ripples and memory processes in awake humans23,25–28,41,73,74.

Single-neuron recordings: spike detection and sorting
Neuronal spikes were detected and sorted using Wave_Clus 3 (ref. 76). 
We used default settings with the following exceptions9: ‘template_
sdnum’ was set to 1.5 to assign unsorted spikes to clusters in a more 
conservative manner; ‘min_clus’ was set to 60 and ‘max_clus’ was set 
to 10 to avoid over-clustering; and ‘mintemp’ was set to 0.05 to avoid 
under-clustering. All clusters were visually inspected and judged based 
on their spike shape and its variance, inter-spike interval (ISI) distribu-
tion and the presence of a plausible refractory period. If necessary, 
clusters were manually adjusted or excluded. Spike waveforms are 
shown as density plots in all figures. Spike times were aligned to the 
macroelectrode time axis using the trigger timestamps to investigate 
the relationship of single-neuron activity to events in the macroelec-
trode and behavioral data.

In total, we identified n = 1,063 clusters (also referred to as ‘units,’ 
‘neurons’ or ‘cells’ throughout the manuscript) across 27 experimental 

sessions from 20 participants who had microelectrodes implanted. 
We localized the tips of the depth electrodes to brain regions based 
on post-implantation MRI scans to assign neurons recorded from the 
corresponding microelectrodes to these regions (for example, Supple-
mentary Fig. 1). We recorded n = 340 neurons from the amygdala, n = 214 
neurons from the entorhinal cortex, n = 24 neurons from the fusiform 
gyrus, n = 213 neurons from the hippocampus, n = 2 neurons from the 
insula, n = 126 neurons from the parahippocampal cortex, n = 135 neu-
rons from the temporal pole and n = 9 from the visual cortex. Due to 
low numbers of neurons in fusiform gyrus, insula and visual cortex, we 
excluded these regions from region-specific analyses. Fourteen micro-
electrode participants in this study were also part of a previous study9.

For recording quality assessment (Supplementary Fig. 1), we cal-
culated the number of units recorded on each microelectrode (for 
all microelectrodes with at least one unit); the ISI refractoriness of 
each unit; the mean firing rate of each unit; and the waveform peak 
signal-to-noise ratio (SNR) of each unit9. The ISI refractoriness was 
assessed as the percentage of ISIs with a duration of <3 ms. The wave-
form peak SNR was determined as SNR = Apeak /SDnoise, where Apeak is the 
absolute amplitude of the peak of the mean waveform, and SDnoise is 
the standard deviation of the raw data trace (filtered between 300 Hz 
and 3,000 Hz).

Single-neuron recordings: neuronal activity during 
hippocampal ripples
We were interested in understanding how the firing rates of neurons 
in various MTL regions behaved during hippocampal ripples (Fig. 4d). 
Thus, in participants with single-neuron recordings, we computed 
instantaneous firing rates across the entire experiment (smoothed with 
a Gaussian filter with a kernel length of 0.2 s) and z-scored the firing 
rates across time. We then extracted the smoothed and z-scored firing 
rates during ±3 s relative to the hippocampal ripple peak timepoints 
and averaged across ripples afterward (separately for each neuron– 
ripple channel combination).

To test whether neuronal firing rates were significantly elevated 
during hippocampal ripples, we performed cluster-based permutation 
tests (1,001 surrogates). In these cluster-based permutation tests, we 
first performed a one-sample t-test against 0, separately for each time 
bin. We then identified contiguous clusters of time bins with uncor-
rected P values of P < 0.05 and calculated the sum t value for each cluster 
(tcluster-empirical). To create surrogate cluster statistics, we inverted the 
sign of a random subset of the neuronal firing rates 1,001 times. Using 
each set of surrogate data, we performed exactly the same steps as 
described above (time bin-wise one-sample t-tests against 0; identifi-
cation of contiguous clusters of time bins with uncorrected P values 
of P < 0.05; and calculation of the sum t value for each cluster). In each  
surrogate round, we kept the maximum sum t value (tmax-cluster-surrogate).  
We then considered tcluster-empirical significant if it exceeded the 95th 
percentile of all tmax-cluster-surrogate values. We separately tested for sig-
nificantly elevated neuronal firing rates during hippocampal ripples  
depending on the regions in which the neurons were located  
(Supplementary Fig. 8d).

We also examined the ripple-associated firing rates in different 
trial phases, separately for trials with good or bad memory perfor-
mance (Supplementary Fig. 10). We tested whether the ripple-locked 
firing rates were significantly different between trials with good 
versus bad memory performance using cluster-based permutation 
tests (1,001 surrogates) in FieldTrip71, by calculating surrogate clus-
ter statistics based on surrogate data that we created by randomly 
re-assigning ripple-locked firing rates to trials with good or bad mem-
ory performance.

Single-neuron recordings: object cells
We designed the analysis of object cells to identify neurons that exhib-
ited significant firing rate increases in response to one particular object 
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during the cue period. Hence, each object cell had to fulfill two criteria. 
(1) The absolute average firing rates during cue periods with the cell’s 
‘preferred’ object had to be significantly higher than the absolute aver-
age firing rates during cue periods with the other, ‘unpreferred’ objects. 
(2) The time-resolved firing rates during cue periods with the preferred 
object had to exhibit a significant cluster of timepoints in which the 
relative firing rates (relative to a 1-s baseline period immediately before 
the onset of the cue period) were significantly higher than during trials 
with the unpreferred objects. We used criterion (2) in addition to crite-
rion (1) to ensure that the cell’s preferred object was associated with a 
circumscribed firing rate increase during the cue period.

To evaluate criterion (1), we performed the following steps. We 
computed the average firing rate of the cell during each cue period; 
we designated the object with the highest grand average firing rate as 
the ‘preferred object’; we performed a two-sample t-test between the 
average firing rates from cue periods with the preferred object versus 
the average firing rates from cue periods with the unpreferred objects 
(tempirical); we created 1,001 surrogate statistics (tsurrogate) by performing 
the previous steps on randomly shuffled average firing rates (breaking 
up the assignment between average firing rates and object identity); 
and we then considered a cell as fulfilling criterion (1) if tempirical exceeded 
the 95th percentile of tsurrogate.

To evaluate criterion (2), we performed the following steps. We 
computed the time-resolved firing rates of the cell during each cue 
period (temporal resolution, 0.01 s; smoothing with a Gaussian filter 
with a kernel length of 0.5 s); we baseline corrected the time-resolved 
firing rates relative to a 1-s baseline period (immediately preceding the 
onset of the cue period); and we then used a cluster-based permutation 
test in FieldTrip71 to examine whether there was a time window during 
the cue period in which the baseline-corrected, time-resolved firing 
rates were significantly higher during cue periods with the preferred 
object as compared to cue periods with the unpreferred objects (1,001 
surrogates; one-sided α = 0.05). We then labeled a neuron as an object 
cell if both criteria were fulfilled. The cells’ preferred objects are indi-
cated by orange color in all object cell-related figures.

To characterize object cells in greater detail (Fig. 5b–e), we cal-
culated the percentage of object cells in the different MTL regions. To 
further understand their tuning, we calculated the sum of all significant 
time windows across object cells and their average time-resolved firing 
rates in response to the preferred and unpreferred objects. To examine 
the temporal stability of their tuning, we estimated each object cell’s 
time-resolved firing rate in response to the cell’s preferred object in 
the first and second half of the data and then compared the two tuning 
curves using a Pearson correlation across time. We present the results 
regarding the tuning strength and temporal stability of object cells 
mainly for illustration purposes because these analyses are not fully 
independent from our procedure of identifying the object cells.

Single-neuron recordings: place cells
We designed the analysis of place cells to identify cells that exhib-
ited significant firing rate increases when the participant was at a 
particular location of the virtual environment. Similar to previous 
single-neuron studies in humans9,49,61,62,77–79, the firing rate profiles of our 
human place cells were less specific than those of place cells in rodent 
studies, which is why human place cells are sometimes referred to as 
‘place-like cells’9,79. Our analysis nevertheless ensured that our human 
place cells exhibited distinct place fields in the virtual environment in 
which the cells’ firing rates were significantly higher than in the other 
parts of the environment. The weaker spatial tuning of human place 
cells is presumably due to several different reasons, including the fact 
that the patients with epilepsy did not physically navigate but, rather, 
performed virtual navigation.

To identify place cells in our dataset, we first resampled the 
behavioral information about the participant’s x–y position in the 
environment to a time resolution of 10 Hz (refs. 9,77) and calculated 

the neuronal firing rate (Hz) in each 0.1-s time bin. We then estimated 
the average firing rate within each bin of a 25 × 25 grid overlaid onto 
the environment (edge length of 400 vu) and excluded areas of the 
environment that the participant traversed fewer than two times. Time 
periods in which the participant did not move or did not turn around 
for more than 2 s were excluded from this firing rate map (to exclude 
periods when the participant was idle). The firing rate map was then 
smoothed with a Gaussian kernel (kernel size, 5; standard deviation, 1.5; 
using MATLAB’s ‘fspecial’ and ‘conv2’ functions). Next, we thresholded 
the firing rate map at the 75th percentile of the firing rate values and 
considered contiguous bins with firing rates above this threshold as 
candidate place fields. We kept the candidate place field with the high-
est sum firing rate as the potential place field of this cell. We quantified 
the strength of this potential place field as the t-statistic of a two-sample 
t-test comparing the firing rates when the participant was inside the 
place field with the firing rates when the participant was outside the 
place field. We considered the empirical t-statistic (tempirical) signifi-
cant if it exceeded the 95th percentile of 1,001 surrogate t-statistics  
(tsurrogate), which we obtained by performing exactly the same procedure 
as described above, with the only difference that we circularly shifted 
the firing rates relative to the behavioral data by a random lag (with 
the end of the session wrapped to the beginning), following previous 
studies (for example, refs. 9,62). If tempirical was above the 95th percen-
tile of all tsurrogate values, we considered the place field significant and 
designated the cell as a place cell.

To empirically estimate the false-positive rate of place cells in 
our data9, we applied this exact analysis procedure to surrogate data 
(obtained by circularly shifting the firing rates relative to the behavioral 
data by a random lag with the end of the session wrapped to the begin-
ning). We obtained 4.6% (n = 49) statistically significant outcomes (that 
is, false positives), which confirmed the a priori chosen alpha level of 5%.

To characterize place cells (Fig. 6b–h), we estimated the percent-
age of place cells in the different MTL regions. We also calculated the 
cumulative distribution of place fields across the virtual environment 
(relative to the cumulative distribution of the firing rate maps across 
the environment) and the size of the place fields across all place cells 
(expressed as percentages relative to the spatial extent of the firing rate 
maps). We quantified the ‘peripherality’ of place fields by calculating, 
for each place cell, the percentage of place field bins that were located 
at the edge of the firing rate map (relative to the total number of place 
field bins). The higher this percentage, the more peripheral the place 
field relative to the firing rate map. We also tested whether place fields 
were biased toward object locations by counting, for each place field, 
the number of objects whose locations were inside the place fields. 
To test for significance, we compared the empirical counts of objects 
inside place fields with surrogate counts that we obtained by calculat-
ing how often the objects were located inside surrogate place fields. For 
each empirical place field, we created 1,001 surrogate place fields that 
were of the same size as the empirical place field but covered a different 
part of the corresponding firing rate map. We furthermore estimated 
the average firing rate of place cells inside versus outside the place 
fields and quantified the temporal stability of the place cells by per-
forming a Pearson correlation between the firing rate map estimated 
using the first half of the data and the firing rate map estimated using 
the second half of the data. We assessed the statistical significance of 
the temporal stability values by performing a one-sample t-test of the 
correlation values against 0. We present the results regarding the tun-
ing strength and temporal stability of place cells mainly for illustration 
because these analyses are not fully independent from our procedure 
of identifying place cells.

Single-neuron recordings: conjunctive object–place cells
We defined conjunctive object–place cells as cells that exhibited 
significant place tuning only during trials with one particular object 
(but not during trials with any other object). To identify conjunctive 
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object–place cells, we performed the place cell analysis (as described 
above) eight times for each cell, each time considering only the trials 
with a particular object (for an example, see Supplementary Fig. 11a). 
If a cell exhibited significant place tuning at a Bonferroni-corrected 
alpha level of α = 0.05/8 for exactly one object, we considered the cell 
as a conjunctive object–place cell.

To characterize conjunctive cells (Supplementary Fig. 11b–d), we 
estimated the percentage of conjunctive cells in different MTL regions 
and estimated their overlap with object cells and place cells. To provide 
supplemental evidence for the fact that conjunctive cells exhibited spa-
tial tuning that was specific to trials with one particular object—instead 
of demonstrating overall spatial tuning as in place cells—we estimated 
the pairwise similarity of the spatial firing rate maps between trials 
with different objects using Pearson correlations (and averaged the 
similarity values across all pairwise comparisons afterward). We then 
performed one-sample t-tests against 0 to show that these similarity 
values were not significantly above 0 for conjunctive cells (in line with 
spatial tuning being specific to trials with a particular object) but sig-
nificantly above 0 for place cells (in line with spatial tuning being stable 
across time and, thus, independent of particular objects).

Single-neuron recordings and intracranial EEG: coactivity of 
object cells and place cells during hippocampal ripples
Our main hypothesis pertained to the question of whether object and 
place cells activated together during the same hippocampal ripples. 
To answer this question, we performed the following analysis. For each 
neuron–ripple channel combination (n = 1,716), we first estimated 
whether the neuron was active in various time bins relative to the rip-
ple peaks (301 time bins at −0.75 s to 0.75 s relative to the ripple peaks 
with a bin width of 0.1 s and a step size of 0.005 s; 95% overlap between 
neighboring time bins). In total, there were 192 neuron–ripple channel 
combinations in which the neuron was an object cell, and there were 
182 neuron–ripple channel combinations in which the neuron was a 
place cell.

Next, for each simultaneously recorded pair of an object cell and 
a place cell, we quantified the coactivity of both cells using a previ-
ously developed coactivity z-score80. For a given combination of time 
bins used to estimate the activations of both cells, we calculated the 
coactivity z-score as:

z =
nAB −

nAnB

N

√
nAnB(N−nA)(N−nB)

N2(N−1)

where N is the total number of ripples; nA is the number of ripples in 
which cell A spiked; nB is the number of ripples in which cell B spiked; 
and nAB is the number of ripples in which both cells spiked. An illustra-
tion of the coactivity score and simulations regarding the relation-
ship between coactivity scores and cellular firing rates are shown 
in Supplementary Fig. 13. Because we estimated the activity of each 
cell at various timepoints relative to the ripple peaks (see above), we 
were able to compute the coactivity z-score for various combinations 
of time bins (that is, for all possible time bins iA and jB of cell A and  
cell B, respectively). By considering all possible time bin combinations, 
this procedure resulted in a two-dimensional time-by-time coactivity  
map for each cell pair that showed the cells’ coactivity at various time-
points relative to the hippocampal ripple peaks. Example coactivity 
maps of individual cell pairs are shown in Supplementary Fig. 17.

We estimated the coactivity maps for different conditions by 
computing the coactivity z-scores across those ripples that occurred 
during that condition. Specifically, for estimating coactivity during 
retrieval, we selected those ripples that occurred in the time periods 
between the onsets of the retrieval phases and the onsets of the feed-
back phases (across both movement and non-movement periods). To 
estimate coactivity during re-encoding, we selected those ripples that 

occurred in the time periods between the onsets of the re-encoding 
phases and the onsets of the next ITI phases (again across both move-
ment and non-movement periods). We proceeded the same way for all 
other conditions (for example, for ‘retrieval late ripples’, we only used 
ripples n / 2 + 1 to n that occurred during the retrieval periods, where 
n is the total number of ripples).

To statistically evaluate the coactivity maps across all associative 
object cell–place cell pairs, we used a series of cluster-based permuta-
tion tests. During retrieval, associative cell pairs were selected as cell 
pairs in which the participant’s response location in response to the 
object cell’s preferred object was inside the place field of the place cell. 
During re-encoding, associative cell pairs were selected as the pairs 
in which the correct location of the preferred object of the object cell 
was inside the place field of the place cell. We used the cluster-based 
permutation tests to compare the coactivity maps (±0.25 s around the 
ripple peaks) against chance (denoted as ‘> 0’ or as ‘> surrogates’ in the 
figure legends); against coactivity maps from a baseline period (0.75 s 
to 0.25 s before the ripple peaks and 0.25 s to 0.75 s after the ripple 
peaks, averaged across these two time windows, denoted as ‘> base-
line’ in the figure legends); and against the coactivity maps of object 
cell–place cell pairs encoding non-associative information (denoted 
as ‘> pref. object and response location outside place field’ or ‘> pref. 
object and object location outside place field’ in the figure legends). 
We reasoned that the combination of these three tests would provide 
robust information about the significance of ripple-locked coactivity 
of object and place cells.

The different cluster-based permutation tests are illustrated in 
Supplementary Fig. 14. When using cluster-based permutation tests to 
compare the coactivity maps against chance, we proceeded as follows. 
We performed a one-sample t-test of the coactivity z values against 
zero across all object cell–place cell–ripple channel combinations, 
separately for each bin of the two-dimensional time-by-time coactiv-
ity maps. We next identified clusters of contiguous bins, for which the 
uncorrected P value was significant (α = 0.05) and the t-statistic was 
above zero (given our a priori hypothesis of increased object cell–place 
cell coactivity during hippocampal ripples). For each cluster, we then 
computed the sum of all t values (tcluster-empirical) and compared these 
empirical cluster statistics against 2,001 surrogate statistics. To obtain 
each of the surrogate statistics, we inverted the sign of the coactivity 
z values of a random subset of the empirical coactivity maps. We then 
estimated the surrogate cluster statistics exactly as for the empirical 
data and kept the maximum surrogate cluster statistic (tmax-cluster-surrogate; 
n = 2,001). For each empirical cluster statistic (tcluster-empirical), we finally 
tested whether it exceeded the 95th percentile of all maximum sur-
rogate cluster statistics (tmax-cluster-surrogate). If so, the empirical clus-
ter was considered significant. We also performed a variant of this 
cluster-based permutation test against chance (Supplementary  
Fig. 15), where we subtracted a surrogate coactivity map from each cor-
responding empirical coactivity map before calculating the statistics 
across cell pairs. The surrogate coactivity map of a given cell pair was 
estimated by circularly shifting the ripple-locked activity levels of the 
object cell relative to the ripple-locked activity levels of the place cell 
by a random latency before calculating the two-dimensional coactivity 
map. The statistics across associative cell pairs were then performed 
as described above for the comparison against zero.

When using cluster-based permutation tests to compare the coac-
tivity maps of associative object cell–place cell–ripple channel combi-
nations (set A) against baseline data or against the coactivity maps of 
non-associative object cell–place cell–ripple channel combinations 
(set B), we proceeded as follows. We performed a two-sample t-test 
between the coactivity z values of the two sets of coactivity maps, 
separately for each bin of the two-dimensional time-by-time coactiv-
ity maps. We next identified clusters of contiguous bins, for which the 
uncorrected P value was significant (α = 0.05) and the t-statistic was 
positive. For each cluster, we then computed the sum of all t values 
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(tcluster-empirical) and compared these empirical cluster statistics against 
2,001 surrogate statistics. To obtain each of the surrogate statistics, 
we swapped a random subset of the set A and set B coactivity maps 
(when comparing the coactivity maps against baseline coactivity 
maps) or randomly reassigned the coactivity maps to the two sets A 
and B (when comparing the coactivity maps against coactivity maps 
of non-associative cell pairs). We then estimated cluster statistics 
exactly as for the empirical data and kept the maximum cluster statistic 
(tmax-cluster-surrogate). For each empirical cluster statistic (tcluster-empirical), we 
finally tested whether it exceeded the 95th percentile of all maximum 
surrogate cluster statistics (tmax-cluster-surrogate). If so, the empirical cluster 
was considered significant.

To further describe the data underlying the coactivity maps in 
Fig. 7, Supplementary Fig. 16 shows the number of object cell–place 
cell–ripple channel combinations contributing to the coactivity maps 
(which can vary between the bins in the coactivity maps); the total 
number of ripples underlying the coactivity maps (which can also 
vary between the different bins in the coactivity maps); the individual 
coactivity z-scores underlying the maxima in the coactivity maps; and 
the brain regions of the object cells and place cells contributing to the 
maxima in the coactivity maps. To validate our method of using z-scores 
to compute coactivations (Fig. 7), we also computed the coactivations 
using Pearson correlations (between the activity vectors of object 
cells and place cells) and obtained qualitatively identical results  
(Supplementary Fig. 18).

In our main results (Fig. 7c–h), we separately considered early and 
late ripples (that is, ripples 1 to n / 2 and ripples n / 2 + 1 to n, respec-
tively, where n is the total ripple number) and computed the coactivity 
maps separately for the group of early ripples and the group of late 
ripples. To understand whether this distinction mainly followed a 
distinction between ripples occurring before the initial formation 
and ripples occurring after the initial formation of associative mem-
ories, we performed a separate analysis in which we estimated the 
trial in which the participant exhibited the strongest improvement in 
memory performance, separately for each object. We identified the 
object-specific trial of strongest memory improvement by (1) esti-
mating the memory performance on each trial; (2) smoothing these 
performance values with a running average of three trials (to attenuate 
the effect of potential outliers); (3) iteratively computing a two-sample 
t-test between the memory performance values from trials (i + 1):n and 
those from trials 1:i, where i is the current trial index and n is the total 
number of trials; and (4) identifying the trial with the largest t-statistic 
(where the t-statistics of the first and last trial were not considered, to 
exclude the possibility that they were selected as the trial with the larg-
est t-statistic). We considered all ripples occurring before or in the trial 
with the largest t-statistic as ripples occurring ‘before initial memory 
formation’. All other ripples (occurring after the trial with the largest 
t-statistic) were considered as ripples occurring ‘after initial memory 
formation’. The results for ripples occurring before initial memory 
formation and those occurring after initial memory formation were 
very similar to the results for early versus late ripples (Supplementary  
Fig. 22), suggesting that the significant object cell–place cell 
coactivations during late ripples were at least partly dependent on an 
initial formation of the associative memories.

To understand whether the main coactivity results (Fig. 7e,h) 
were driven by ripples occurring during movement or during 
non-movement, we categorized each timepoint of the task accord-
ing to whether or not the subject was moving and analyzed the data 
separately for both conditions. We defined movement periods as 
those periods in which the participant’s movement speed was above 
0.001 virtual units per second (vu s−1). The movement profile of two 
example trials is shown in Supplementary Fig. 23. All other periods 
were defined as non-movement (rest) periods. We observed that the 
cellular coactivations were mainly driven by ripples occurring during 
non-movement periods (Supplementary Fig. 23).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data to recreate the figures are available at https://github.com/Neu-
roLuke/KunzNatureNeuroscience2024. Raw data are not publicly 
available because they could compromise research participant privacy, 
but they are available upon reasonable request from the corresponding 
author. Researchers requesting the data will have to sign an agreement 
that they will not try to de-identify the data and that they will use the 
data for scientific purposes only. Any additional information required 
to reanalyze the data reported in this paper is available from the cor-
responding author upon reasonable request.

Code availability
All custom MATLAB code generated during this study for 
data analysis are available at https://github.com/NeuroLuke/
KunzNatureNeuroscience2024.
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The memory task was programmed using Unreal Engine 2 (Epic Games, Cary, NC, USA). Neurophysiological data were collected using a 

NeuroPort System (Blackrock Microsystems, Salt Lake City, UT, USA) and hybrid depth electrodes (Ad-Tech, Racine, WI, USA). See the Methods 

section for a detailed description.

Data analysis Data analyses were carried out in MATLAB 2020b and 2021b (The MathWorks, Inc., Natick, MA, USA), using MATLAB toolboxes and custom 

MATLAB code. Custom MATLAB code can be downloaded from https://github.com/NeuroLuke/KunzNatureNeuroscience2024. Circular 

statistics were performed using the CircStat toolbox, version 1.21.0.0 (Berens, 2009). Local field potentials were analyzed using FieldTrip 

(version 20210614). Spike sorting was done using Wave_Clus 3 (Chaure et al., 2018). MNI coordinates of depth electrodes were determined 

using PyLocator (v1.0). See the Methods section for a detailed description.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data to recreate the figures can be downloaded from https://github.com/NeuroLuke/KunzNatureNeuroscience2024. Raw data are not publicly available because 

they could compromise research participant privacy, but are available upon request from the corresponding author, Lukas Kunz. Any additional information 

required to reanalyze the data reported in this paper is available from the corresponding author upon request. Requests will typically be answered within one week. 

Researchers requesting the data will have to sign an agreement that they will not try to de-identify the data and that they will use the data for scientific purposes 

only. 

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The final sample of participants comprised 30 subjects (16 female and 14 male). The findings of this study, which are about 

the neural mechanisms underlying associative memory in humans, presumably apply equally to all individuals and sex/gender 

was therefore not considered in the study design. Sex/gender was determined based on the self-reported data of the 

subjects.

Population characteristics We tested N = 35 human subjects, who were epilepsy patients undergoing treatment for pharmacologically intractable 

epilepsy at the Freiburg Epilepsy Center, Freiburg im Breisgau, Germany. Of those, 5 patients had to be excluded because of 

technical issues (n = 1); no hippocampal electrode contacts (n = 2); hippocampal channels that were close to the resection 

border of a previous surgery (n = 1); and a very low number of ripples (n = 1). This resulted in a final sample of n = 30 subjects 

(16 female; age range, 19–61 years; mean age ± SEM, 36 ± 2 years), contributing a total of n = 41 experimental sessions with 

intracranial EEG recordings including the left and/or right hippocampus (n = 62 hippocampal bipolar channels). For 20 of 

these 30 subjects, additional single-neuron recordings from various MTL regions were available (n = 27 sessions; n = 43 

hippocampal bipolar channels). Further subject information is presented in Table S1.

Recruitment Subjects undergoing invasive electrophysiological recordings for clinical purposes were recruited and consented to 

participate in this study. Subjects who were capable of and willing to perform the task were recruited. There may be effects 

of self-selection bias or other biases, but they are unlikely to affect the study results, as this study is about basic neural 

mechanisms underlying associative memory in humans.

Ethics oversight Experimental procedures were approved by the Ethics Committee of the University of Freiburg, Freiburg im Breisgau, 

Germany, and all participants provided written informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our single-neuron analyses were based on 1063 neurons recorded across 27 sessions from 20 subjects. Analyses of hippocampal ripples were 

based on 62 hippocampal channels across 41 sessions from 30 subjects. No statistical method was used to predetermine sample size. Instead, 

sample sizes were determined based on typical sample sizes in the field that are deemed sufficient for statistical analyses (e.g., Norman et al., 

Science, 2019; Qasim et al., Nature Neuroscience, 2019; Kutter et al., Neuron, 2018; Rutishauser et al., Nature, 2010). See the Methods for 

details.

Data exclusions No data were excluded. See also "Population characteristics" above.

Replication All analyses were performed on the entire available data and significant effects replicated across the underlying samples. No separate 

replication study was performed.

Randomization All subjects were in the same experimental group and no randomization of the subjects was required.
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Blinding Subjects were not aware of the goals of the study. There was no subjective measurement or decision that the investigator needed to make 

during the experiment. All data were analyzed off-line. Data collection and analyses were not performed blind to the conditions of the 

experiments as conditional information was required for further analyses.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type MRI were acquired purely for clinical purposes to indicate electrode placement, and were not a part of the experiment.

Design specifications MRI were acquired purely for clinical purposes to indicate electrode placement, and were not a part of the experiment.

Behavioral performance measures MRI were acquired purely for clinical purposes to indicate electrode placement, and were not a part of the experiment.

Acquisition

Imaging type(s) Structural MRI.

Field strength 3T before electrode implantation; 1.5T after electrode implantation.

Sequence & imaging parameters Pre-implant 3D T1-weighted MPRAGE (Siemens Prisma, Germany): TR 2,000 ms; TE 2.26 ms; flip angle 12; 1 mm 

isotropic resolution; 256 x 256 x 160 matrix. 

Post-implant 3D T1-weighted MPRAGE (Siemens Avanto, Germany): TR 1,300 ms; TE 2.33 ms; flip angle 15; 0.5 x 0.5 x 1 

mm resolution; 512 x 512 x 176 matrix.

Area of acquisition Whole brain.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software SPM (https://www.fil.ion.ucl.ac.uk/spm/).

Normalization Normalization was performed using SPM.

Normalization template Normalization was performed using the SPM template.

Noise and artifact removal No noise or artifact removal was used.

Volume censoring No volume censoring was used.

Statistical modeling & inference

Model type and settings No statistical modeling was used as MRI scans were only acquired for clinical purposes to indicate electrode placement.

Effect(s) tested No effects were tested as MRI scans were only acquired for clinical purposes to indicate electrode placement.

Specify type of analysis: Whole brain ROI-based Both
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Statistic type for inference
(See Eklund et al. 2016)

No statistical analyses were performed.

Correction No statistical analyses were performed and no correction was applied.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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