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Single-cell transcriptomics reveals that glial 
cells integrate homeostatic and circadian 
processes to drive sleep–wake cycles

Joana Dopp    1,2,3, Antonio Ortega1,2,3, Kristofer Davie    1,3, 
Suresh Poovathingal1,3, El-Sayed Baz    1,3,4 & Sha Liu    1,2,3 

The sleep–wake cycle is determined by circadian and sleep homeostatic 
processes. However, the molecular impact of these processes and their 
interaction in different brain cell populations are unknown. To fill this gap, 
we profiled the single-cell transcriptome of adult Drosophila brains across 
the sleep–wake cycle and four circadian times. We show cell type-specific 
transcriptomic changes, with glia displaying the largest variation. Glia are 
also among the few cell types whose gene expression correlates with both 
sleep homeostat and circadian clock. The sleep–wake cycle and sleep drive 
level affect the expression of clock gene regulators in glia, and disrupting 
clock genes specifically in glia impairs homeostatic sleep rebound after 
sleep deprivation. These findings provide a comprehensive view of the 
effects of sleep homeostatic and circadian processes on distinct cell types 
in an entire animal brain and reveal glia as an interaction site of these two 
processes to determine sleep–wake dynamics.

Sleep is regulated by two independent processes: the circadian  
system and the sleep homeostatic system1. The circadian clock  
primarily regulates the timing of sleep, known as process C. It consists 
of a transcriptional–translational feedback loop of core clock genes2. 
At the cellular level, our current understanding of the circadian tim-
ing system focuses on the circadian pacemaker regions and neurons, 
such as the suprachiasmatic nucleus (SCN) in mammals3 and 150 clock  
neurons in Drosophila4. However, it is unclear whether and how  
process C affects the transcriptomes of any given brain cell popu-
lation apart from pacemaker regions and neurons.

The sleep homeostat monitors the sleep need that accumulates 
with the amount of time that an animal has been awake to determine 
the sleep drive, known as process S. Our understanding of the nature of 
the sleep homeostat is limited. The effects of the sleep–wake cycle and 
sleep homeostasis on the transcriptome have been studied in bulk brain 
tissue samples5 or bulk synaptosomes6 in mammals and whole-brain 
tissue in flies7,8. The results of these studies were inconsistent, possibly 
because of averaging transcriptomic changes of heterogeneous cell 

populations (Supplementary Fig. 1). Recently, single-cell RNA sequenc-
ing (scRNA-seq) was applied to study the transcriptional changes dur-
ing sleep homeostasis in mice9. However, these studies only focused 
on certain regions of the brain; a comprehensive and unbiased under-
standing of sleep/wakefulness and sleep homeostasis-associated tran-
scriptomic changes across cell populations of an entire brain is lacking.

In this study, we sampled adult Drosophila brains at different sleep, 
wakefulness and sleep pressure states at different circadian times, and 
performed scRNA-seq, thereby creating a comprehensive transcrip-
tional atlas of the sleeping animal brain (see https://www.flysleeplab.
com/scsleepbrain for the single-cell gene expression atlas and analyses 
links). We found that sleep/wakefulness states, sleep homeostasis and 
circadian rhythm have different transcriptional correlates depending 
on cell identity. Our data also suggest that gene expression in most 
cell populations correlates either with process C or process S, with  
the exception of glial cells, which instead are affected by both pro-
cesses simultaneously. We propose a model whereby homeostatic and  
circadian processes directly interact in glial cells to regulate sleep.
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reference panel (DGRP)11 line to each behavioral condition (Fig. 1b and 
Supplementary Table 1). The full genome of all DGRP lines has been 
sequenced, thus they can be distinguished from one another accord-
ing to their unique single-nucleotide polymorphisms (SNPs). Thanks 
to this natural genetic variation, RNA-seq data disclose the associated 
sleep or wakefulness states, which allows the pooling of brains from 
different behavioral conditions in a single batch (Fig. 1b and Methods). 
In addition to minimizing technical batch effects, we also counteracted 
potential genotype-specific effects by repeating the same conditions 
with different DGRP lines with similar sleep profiles in subsequent 
batches (Supplementary Table 1). To find the DGRP lines with the most 
similar sleep behavior, we carefully chose them by (1) preselecting 36 
DGRP lines based on sleep architecture metrics previously reported 
in a large collection of DGRP lines12 and (2) thoroughly screening those 
36 lines across several sleep parameters. The criteria for selection were 
(1) a robust amount of consolidated nighttime sleep and a low amount 

Results
Single-cell transcriptomes of sleep–wake and circadian times
We performed scRNA-seq with 10x droplet microfluidics on adult  
Drosophila central brains (without optic lobes), sampled at distinct 
points of the sleep–wake cycle across different circadian times (Fig. 1a).  
These sample points can be (1) grouped according to four Zeitgeber 
(ZT) times to analyze the transcriptional correlates of circadian 
rhythms; (2) grouped by ‘sleep’ and ‘wakefulness’ states according 
to the animal’s vigilance status at the time of sample collection to 
examine sleep/wakefulness correlates; and (3) selected and ordered 
according to the fly’s level of sleep drive to determine the molecular 
changes associated with the sleep homeostat. To minimize the techni-
cal batch effects that may mask true biological responses, we applied 
demultiplexing based on natural variation between wild-type geno-
types10. Specifically, instead of associating each batch to a different 
sleep or wakefulness state, we associated a different Drosophila genetic 
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Fig. 1 | Sampling flies at sleep and wakefulness states for subsequent 
transcriptional profiling. a, Flies were sampled at four different ZT times and 
11 different sleep or wakefulness states. Seven of the conditions were ordered 
according to accumulated sleep pressure. The corresponding downstream 
analyses of each of the three correlates are described in the corresponding figure 
(displayed in parentheses). b, In each of seven technical replicates (runs), each 

condition was linked to two or three DGRP lines. The link between condition and 
DGRP line was changed in every run. The flies’ central brains were dissected and 
the tissue was dissociated in a single tube, minimizing batch effects. Conditions 
were separated by demultiplexing the sequenced reads based on unique SNPs of 
DGRP lines.
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of daytime sleep, and (2) low between and within-genotype variability 
(Extended Data Fig. 1a). Principal component analysis (PCA) of these 
sleep parameters showed that the ten selected lines grouped together 
closer than the discarded lines (Extended Data Fig. 1b). Similar cluster-
ing of selected versus discarded lines was also visible when plotting the 
probabilities to transition from a wakefulness to a sleep state (pDoze) 
or vice versa (pWake), which indirectly assessed sleep drive and sleep 
depth in Drosophila13 (Extended Data Fig. 1c,d). The low variability 
between the sleep phenotype of the selected ten DGRP lines allowed us 
to repeat each condition with several lines in the same and in different  
batches (Supplementary Table 1). The success of this strategy is attested 
by the homogenous distribution of cells from different genotypes 
(Extended Data Fig. 2a), which blended within cell subtypes even with-
out applying batch integration algorithms (Extended Data Fig. 2b).

To obtain an overview of the captured cell types, we first per-
formed dimensionality reduction on all 106,762 cells combined and 
identified 214 clusters of cells (Fig. 2a). We annotated cells based on 
previously used marker genes in the fly brain cell atlas14,15, allowing us 
to successfully assign 22,988 cells to one of 25 known cell types (21.5%) 
(Fig. 2b and Supplementary Table 2), including five glial subtypes, 
Kenyon cells (KCs), clock neurons and cell types containing known 
sleep/wakefulness regulating circuits such as, non-protocerebral ante-
rior medial (PAM) dopaminergic neurons (DANs)16, tyraminergic (Tyr) 
and octopaminergic (Oct) neurons17,18, and ellipsoid body (EB) ring 
neurons19,20. Another cell type involved in sleep21, the dorsal fan-shaped 
body (dFB) neuron, was annotated by correlating the previously pub-
lished transcriptome of fluorescence-activated cell (FAC)-sorted dFB 
neurons14 with our gene expression data (Extended Data Fig. 3).

Cycling of core circadian genes in clock neurons and glia
The expression levels of circadian clock gene transcripts cycle in a 
daily manner in clock neurons2. To validate our single-cell transcrip-
tomic dataset, we asked whether the data accurately captured the 
cycling expression of core clock genes between the four sampled 
ZT time points. Indeed, as reported previously in clock neurons22, 
period (per) and timeless (tim) transcripts were expressed at higher 
levels in the early night compared to the early day, while the opposite 
applied to cryptochrome (cry) and Clock (Clk) mRNA (Fig. 3a). Beyond 
validating our dataset, we examined whether and how the clock genes 
were cycling in all remaining cell populations. In mammals, cycling of 
clock gene expression in cell populations other than the SCN has been 

reported, for example, in cortical regions23. Interestingly, we report that 
the expression and cycling of these genes is restricted specifically to 
clock neurons and glial cells (Fig. 3a,b and Extended Data Fig. 4a–e); 
this is consistent with previous immunostaining results for clock pro-
teins in the fly brain24,25. To further confirm this, we tested the activity 
of the Clk regulatory network (regulon) across all cells by applying 
SCENIC26. This regulon was defined by the previously identified Clk 
binding element E-box sequence and its target genes, including tim, 
cry and vrille (vri)27. Our data show that the Clk regulon is only active  
in clock neurons and most glial subtypes, but not in other neurons  
(Fig. 3c), further indicating that core clock genes are expressed and 
cycle specifically in Drosophila clock neurons and glia. Interestingly, 
while Clk expression is restricted to the clock neurons and glia, other 
core clock genes, per, tim and Cycle (Cyc) are expressed across more cell 
types. The finding that no cell type expresses Clk without expression 
of other core circadian genes is consistent with the notion that Clk is  
a circadian master regulator28.

Fly glia were previously associated with the expression of clock 
genes, especially astrocyte-like glia (ALGs)25 and perineurial glia (PG)29. 
Interestingly, our data showed that the molecular clock runs with dif-
ferent phases depending on the cell type. Specifically, the expression of 
tim and per mRNA is high throughout the night in clock neurons, while 
in PG and ensheathing glia (EG), its expression was already decreased at 
ZT20 (Fig. 3b and Extended Data Fig. 4a–e). In contrast, tim expression 
in astrocytes only peaks at ZT20. The delayed clock in astrocytes com-
pared to neurons is also observed in the mouse SCN30. Taken together, 
the expression of key clock genes in glia in addition to clock neurons, 
suggests that these cells are directly involved in circadian regulation 
of rhythmic behaviors, including sleep.

Cyclers are more enriched in glia than neurons
Next, we comprehensively identified all transcripts (cyclers) oscillating 
in all cell types by applying the JTK cycle algorithm (Fig. 3d, Supplemen-
tary Table 3 and Methods)31. While the expression of the molecular clock 
was restricted to clock neurons and glial cells, most cell clusters (82.5%) 
had at least one cycler (Extended Data Fig. 4f) and 14 of the 19 annotated 
clusters had at least five cyclers (Fig. 3e). Like the analysis of core clock 
genes, glial cells stand out, this time by showing the highest number of 
cyclers, especially considering that they typically express fewer genes 
than neurons (Extended Data Fig. 4g). When comparing the overlap of 
cyclers between all cell types, we found that only between 20% and a 
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Fig. 2 | Cell-type annotations in a single-cell atlas of the sleeping fruit fly.  
a, t-Distributed stochastic neighbor embedding (t-SNE) plot of the entire 
dataset of 106,762 single cells with annotated clusters and expression of key 
marker genes of glial and neuronal cell types used to annotate the clusters. 

b, Marker gene expression across most of the clusters annotated in a. 5-HT, 
5-hydroxytryptamine (serotonergic) neuron; adPN, anterodorsal projection 
neuron; ALG, astrocyte-like glia; CXG, cortex glia; EG, ensheathing glia;  
PB, protocerebral bridge neuron; PG, perineurial glia.
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maximum of 50% of cyclers are shared. We identified a higher number  
of shared cyclers between closely related cell types, such as the  
three KC subtypes, and particularly between neuropil-associated  
glial subtypes (ALGs and EGs) (Fig. 3e). Similarly, gene ontology (GO) 
analysis of cyclers showed that glial subtypes shared more similar sign-
aling pathways compared to neuronal subtypes (Extended Data Fig. 4h).  
GO terms encompassed ‘mitochondrial electron transport, NADH 
to ubiquinone’, ‘sodium ion transport’, ‘chemical synaptic transmis-
sion’ and ‘extracellular region’, suggesting that many key functions of  
glia including metabolism, ionic homeostasis and gliotransmission, 
are affected by the circadian clock. In summary, these data suggest 
that different cell populations respond differently to process C, with 
glial cells being the most affected.

Sleep/wakefulness correlates differ between cell populations
Next, we asked whether we could detect transcript level changes across 
sleep/wakefulness states (referred to as sleep/wakefulness correlates), 
similarly to ZT times. We assigned each condition to a sleep or wake-
fulness group based on whether the animal had consolidated sleep or 
wakefulness before sampling (Figs. 1a and 4a and Methods). The sleep 
group included spontaneous sleep, recovery sleep after sleep depriva-
tion (SD), yoked control (YC) and gaboxadol (GBX)-induced sleep32. 
We grouped spontaneous wakefulness and forced wakefulness (SD) 
to regress out the unwanted effects of ZT time and the potential stress 
induced by mechanical SD. Then, we performed differential expression 
analysis between the two groups for each cell population separately and 
asked whether transcriptomic changes between sleep and wakefulness 
states differ between distinct cell populations. We found that 46.7% of 
all clusters and 57.9% of annotated clusters had sleep/wakefulness cor-
relates (Fig. 4b, Extended Data Fig. 5a,b and Supplementary Table 4). 
KCs and glia had the highest number of differentially expressed genes 
(DEGs) among the annotated cell types. Considering that glia express 
the lowest number of genes among all cell types (Extended Data Fig. 5b),  
these cells may be even more affected by sleep/wakefulness relative 
to their total expressed genes compared to neurons. Interestingly, 
most identified DEGs in each of the annotated cell types were unique 
to that cell type (Fig. 4b). On average only 12.8% or 13.5% of DEGs were 
shared within neuronal or glial subtypes, respectively. Like cyclers, the 
overlap of sleep/wakefulness-correlated transcripts was even smaller 
between neurons and glia, averaging between 3% and 4% only, with the 
exception of PAM DANs and protocerebral bridge (PB) neurons, which 
shared between 17% and 33% of their sleep/wakefulness-correlated 
genes with ALG and EG_1. This low overlap between closely related cell 
subtypes suggests that sleep–wake cycles affect their transcriptome 
in unique ways.

To further probe the differences between closely related KC and 
glial subtypes, we applied a complementary, independent approach to 
differential expression analysis. We asked whether a tree-based classi-
fier could learn the transcriptome makeup of one cell subtype during 
the sleep and wakefulness states and subsequently, how accurately 
this model would perform in classifying cells of another closely related 
subtype into either of these states (Fig. 4c). This approach was applied 
to the KC and glial cell subtypes separately. To ensure that the classi-
fier would discriminate between sleep and wakefulness states rather 
than cell identity, we excluded marker genes between either KC or glial 
subtypes up to the point that the subtypes merged into one another in 
the two-dimensional uniform manifold approximation and projection 
(UMAP) space (Extended Data Fig. 6a,b). The accuracy of the classifier 
is illustrated in a confusion matrix, where the color corresponds to the 
probability to accurately assign a sleep or wakefulness label per cell 
type. We found that the classifier performed better for the cell subtype 
it was trained on, than on other related ones (Fig. 4c). To ensure that 
the classifier’s improved performance was not driven by overfitting 
to the cell type (that is, learning cell identity features), we randomly 
shuffled the sleep and wakefulness labeling of cells within their subtype 

identity. Then, the classifier would not distinguish between the sleep 
and wakefulness states even in the same subtype, suggesting that the 
classifier truly learned sleep/wakefulness, rather than cell identity 
features (Extended Data Fig. 6c,d). Taken together, both the differential 
expression analysis and classification approach suggest that depending 
on their cell identity, different cell populations have different sleep/
wakefulness correlates.

Next, we asked what kind of genes are altered between sleep and 
wakefulness in glia and KCs. To gain confidence in the candidate gene 
list, we first trained another classifier to detect cell identity features 
between glial and KC subtypes. Then, we subtracted those cell identity 
features from those used by the sleep–wakefulness classifier (Fig. 4d,g). 
To reduce the false positive rate further, we considered genes as signifi-
cantly deregulated only if they remained after the filtering step above 
and if they were identified as significant in the differential expression 
analysis, leaving 30 and 39 sleep/wakefulness-correlated transcripts 
in glia and KCs, respectively (Fig. 4d,g). Among the filtered 39 sleep/
wakefulness correlates of KCs, we found Hr38, an activity-dependent 
gene in insects33. To validate its increased expression during SD and 
wakefulness compared to sleep in KCs specifically, we performed 
fluorescence in situ hybridization (FISH) during sleep and SD. In accord-
ance with our single-cell data, Hr38 mRNA in KCs increased expression 
after SD (Extended Data Fig. 7). The sleep/wakefulness correlates in 
glia included metabolism-related genes (CG9360, Cyp28a5, GstE12, 
GstE1, mdh1, Ssadh and Ugt86Dd), genes involved in protein synthesis 
and homeostasis (Rpl41, Cct2, CG34362, CG6770 and sm), and genes 
regulating the core circadian clock (CG31324 and vri) (Extended Data 
Fig. 5c and Supplementary Table 4). In contrast, sleep/wakefulness 
correlates in KCs included many genes involved in axon and synapse  
development and function: Ten-a, rho, pyd, hig, Gfrl, CG42674, Hasp  
and beat-IIIb (Extended Data Fig. 5c and Supplementary Table 4).

Template matching captures cell types involved in process S
While the sleep/wakefulness correlates detect how the transcriptome 
changes in a binary manner, we next assessed whether it also changed 
gradually with the level of sleep pressure (sleep drive correlates). We 
sampled flies at multiple sleep and SD states, which can be ordered 
according to their level of sleep drive, from 20 h of GBX-induced sleep 
to 20 h of SD (Fig. 5a). To detect transcripts whose expression correlated 
with the gradual increase of sleep drive, we adopted a feature selec-
tion method34. Like the JTK algorithm for the identification of cyclers, 
which calculates the correlations between measured gene expression 
and assumed sine waves, this method also asks whether gene expres-
sion changes according to a given pattern. More specifically, we tested 
whether the expression profile for each measured transcript across 
sleep drive states, significantly correlates with a predefined template. 
The template consisted of values from 0 to 1, where 0 corresponds to 
the condition of lowest sleep pressure and 1 to the highest. Another 
five conditions were assigned to continuous values between 0 and 1 
according to the respective level of sleep pressure the animal experi-
enced (Fig. 5a and Methods).

We found that 65.1% of all clusters and 68.4% of annotated clusters 
had at least one sleep drive correlate (Extended Data Fig. 8a and Sup-
plementary Table 5). Interestingly, the four annotated clusters with 
the highest amount of sleep drive correlates were cell populations 
associated with sleep homeostasis, spearheaded with 121 correlates by 
dFB neurons (Fig. 5b and Extended Data Fig. 8a,b), which we previously 
annotated (Extended Data Fig. 3). Similarly, wakefulness-promoting 
Oct, Tyr and non-PAM DAN neurons each had more than 100 sleep drive 
correlates (Fig. 5c–e and Extended Data Fig. 8a,b). Plotting the gene 
expression of sleep drive correlates from low to high sleep pressure 
conditions showed clear correlating patterns for dFB, Oct, Tyr and non- 
PAM DAN neurons (Fig. 5c–e). In contrast, the related dopaminergic  
subtype of PAM neurons only had 14 correlates (Extended Data  
Fig. 8a,b). Furthermore, the expression of non-PAM DAN sleep drive 
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correlates did not correlate with sleep pressure in PAM DAN neurons 
nor in all cells combined (pseudobulk) (Fig. 5f-g). Thus, in this study 
we demonstrated that the template-matching method was sufficiently 
sensitive and specific to capture sleep drive correlates of previously 
identified sleep circuits.

Analogous to asking whether cyclers and sleep/wakefulness  
correlates differed between cell populations, we next assessed whether 
molecular correlates of sleep drive varied depending on cell iden-
tity. We found that the specificity of sleep drive correlates to a cell  
type was even more pronounced compared to that of the sleep/ 
wakefulness correlates and cyclers. The highest overlap across all  
clusters was merely 8% between abp-KC and clock or ring_2 and between 
astrocytes (ALGs) and Tyr neurons (Fig. 5h). These data suggested that 
different cells responded to process S in unique ways.

Similarly, GO analysis revealed little overlap of sleep drive cor-
relates between cell types (Extended Data Fig. 8c). In dFB neurons, 
we found many sleep drive correlates that were involved in synaptic 
formation and function (unc-104, scramb1, dpr10, dpr19, syt1, sm, 

brp and CG8386). This is consistent with previous evidence linking 
neuronal activity of dFB neurons to levels of sleep pressure21. Our data 
also showed that the expression level of several mitochondria-related 
genes also correlated with sleep drive, including mRpL27, mRpL50, 
Sod2, CG32113 and Idh. This is in agreement with the notion that mito-
chondrial function in the dFB is critical for sleep homeostasis35.

R5 neurons have a high number of sleep drive correlates
We found that one subcluster of EB ring neurons (ring_2) had a sub-
stantial number of sleep drive correlates, while the other (ring_1) 
showed only a few (Fig. 5h). Therefore, we asked whether the previ-
ously identified sleep drive-regulating R5 neurons are part of the ring_2 
subcluster. R5 neurons contain only approximately 32 cells in an adult 
fly brain19. To identify them, we first selected all EB ring neurons that 
were annotated based on previously used marker genes15 and repeated 
dimensionality reduction exclusively on the EB ring neuron cluster 
to specifically analyze its subclusters. This reclustering resulted in 
at least three separate subclusters expressing unique transcriptomic 
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signatures (Fig. 6a). To identify R5 neurons among the three clusters, 
we focused on a subset of marker genes (Fig. 6b), whose expression 
pattern is known from T2A-Gal4 knock-in driver lines36,37. By cross-
ing relevant driver lines to chemically tagged effectors, we visualized  
the expression pattern of multiple marker genes in the EB ring  
neuron subclusters (Fig. 6c). EB ring neuron subtypes can be distin-
guished by their projection patterns into the ring-shaped EB structure38. 
This allowed us to map the subtype identities to some of our single- 
cell EB ring neuron subclusters. Ring_C differentially expressed cry  
and pdfR (Fig. 6b), two genes that are expressed specifically in 

neurons projecting into the R5 ring (Fig. 6c). Therefore, we identified 
cluster ring_C as R5. Remarkably, we found a high number of sleep 
drive-correlated genes specifically in R5 neurons, while few to no genes 
were identified in the other two subclusters (Fig. 6d,e and Extended 
Data Fig. 8a,b). Many of these transcripts were mitochondrial genes, 
including mt:ATPase6 and Pink1, as confirmed by GO analysis (Extended 
Data Fig. 8c and Supplementary Table 5). This finding suggested that 
mitochondrial function in R5 neurons is important for the role of these 
neurons in sleep homeostasis. Interestingly, we found that a gene 
encoding a potassium channel ether-à-go-go (eag) correlated negatively 
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with sleep drive in R5 neurons. Potassium channels, including Eag, 
reduce neuronal excitability39. This is consistent with the finding that 
the neuronal activity of R5 increases with the levels of sleep drive19.

Anatomic analyses showed that there were 11 subclusters of EB 
ring neurons40. Therefore, we asked whether our two bigger EB ring 
neuron clusters still contained multiple subpopulations and reclus-
tered them into another eight subclusters. Coloring each cell by its 
assigned run showed that no clusters were dominated by one run, 
thereby confirming that our EB ring subclusters were indeed driven by 
different cell subtype identities rather than by technical batch effects 
(Extended Data Fig. 2c,d). Matching the sleep drive template to these 
subclusters revealed that two of them had a high number of correlating 
genes in addition to R5 (Fig. 6f). This is in line with studies that identi-
fied additional ring neuron subtypes apart from R5 that regulate sleep 
amount and sleep fragmentation20,41. Importantly, the remaining six 
subclusters had no or few genes correlating with sleep drive (Fig. 6e), 
demonstrating the specificity of the template-matching method. This 
reclustering analysis also highlighted the importance of examining 
homogeneous populations.

Clock neuron subtypes differ in sleep drive correlate numbers
Clock neurons are a heterogenous population consisting of four dorsal 
neuron subtypes (DN1a, DN1p, DN2 and DN3) and three lateral neuron 
(LN) subtypes (LNv, LNd and LPN)42. Previous anatomical analyses and 
single-cell transcriptomic data also suggested that many of these clock 
neuron subtypes, especially DN1p, can be further divided into smaller 
clusters22,43. Importantly, some clock neuron subtypes are involved 
in sleep regulation, while others are not44–47. We aimed to investigate 
if we could detect this discrepancy in our data. To this end, we first 
subclustered our 494 clock neurons using an approach similar to that 
used with the EB ring neurons. We found clear subclusters emerging 
in the dimensionality reduction (Fig. 7a and Extended Data Fig. 2e,f). 
Like subclusters of the EB ring neurons, clock neuron subclusters were 
driven by different cell identities rather than by technical batch effects 
(Extended Data Fig. 2e,f).

To clearly annotate our clock neuron subclusters, we trained a 
semi-supervised model (single-cell annotation using variational infer-
ence (scANVI))48 on the 2,615 single-cell transcriptome profiles of the 
published clock neurons by Ma et al.22. The model was then used to pre-
dict the clock subcluster identities of our 494 clock neurons (Fig. 7a).  
Ma et al.22 annotated 17 clock neuron subclusters with high confidence. 
We found 14 of the 17 high-confidence subclusters in our data (Fig. 7a).  
We confirmed the expression of some cluster-specific genes (Pdf  
for s_LNv, CCHa1 for DN1a, AstA and Rh7 for DN1p, and vGlut for all 
clusters except for all LN clusters and 4:DN1p) (Fig. 7b and Extended 
Data Fig. 9a,d). We also tested the expression of the top five marker 
genes identified by Ma et al.22 across all 14 annotated clusters. Like their 
findings, we observed that within the same subtype of DN1p neurons, 
six subclusters with distinct gene expression signatures emerged 
(Extended Data Fig. 9e). Furthermore, most of our subclusters that 
had emerged using dimensionality reduction were clearly mapped 
to individual clock neuron subtypes, particularly the LNs and DN1p 
subclusters (Fig. 7a). These findings indicate that we successfully 
annotated our clock neuron subclusters.

However, the prediction was less successful when separating 
the 19:DN2 subcluster because it clustered together with the 6:DN1p 
and 18:DN1p subtypes (Fig. 7a). Furthermore, the predicted 14:DN3 
cluster divided into multiple clusters (Fig. 7a), suggesting the exist-
ence of multiple DN3 subtypes that the study by Ma et al.22 may have 
missed. We propose that the larger number of DN3 neurons in our 
dataset (Fig. 7c,d) could be due to the difference in methodologies 
between the studies. Ma et al.22 FAC-sorted clock neurons by using 
the Clk856-Gal4 driver, which does not label most DN3 neurons. In 
contrast, our data were generated in an unbiased manner, that is, not 
by sorting a driver line. In accordance, the proportion of clock subtypes 

we yielded matches the number of cells that others have previously 
counted based on immunostaining of TIMELESS protein43,44 (Fig. 7e). 
In contrast, but as expected, the data sorted from the Clk856-Gal4 
driver consisted of only a small proportion of DN3 cells. Interestingly, 
compared to the anatomical cell counts, we lacked LNs (Fig. 7e). This 
is probably because these cells may have been removed together with 
the optic lobe when we dissected the central brains, as LNs are located 
close to the border between the central brain and optic lobes.

Like the homogenous R5 subcluster, we next asked whether we 
could identify sleep drive correlates in the more homogenous, anno-
tated clock neuron subclusters. However, while the template-matching 
method works well on homogenous populations, it still requires a 
minimum number of cells such that all template conditions are  
covered. This limitation resulted in the template matching to run 
only in three annotated clock subclusters, that is, 18:DN1p, 4:DN1p 
and 14:DN3. Interestingly, we identified significant sleep drive  
correlates only in the glutamatergic-positive cluster 18:DN1p, not in 
the glutamatergic-negative 4:DN1p subtype nor in 14:DN3 neurons 
(Fig. 7f–h). This is consistent with findings that glutamatergic DN1p 
neurons are involved in sleep/wakefulness regulation44,45. Among the 
sleep drive correlates of the 18:DN1p cluster are two genes that regulate 
the function of a potassium channel: slowpoke-binding protein (slob) 
and dyschronic (dysc) (Fig. 7f). This is consistent with the finding that 
the potassium channel (slowpoke) is important in glutamatergic DN1p 
neurons to regulate sleep quality49.

Homeostatic and circadian processes converge in glia
Previously, it was shown in flies that homeostatic and circadian 
processes interact indirectly by neuronal circuits connecting clock 
neurons with sleep homeostat circuits (EB ring neurons and dFB neu-
rons)44–46,50,51. We asked whether there is a more direct interaction of the 
two processes in the same cell and whether one process affects a cell 
type more than the other one. To this end, we compared the number 
of sleep drive correlates with the number of cyclers by cell population 
and assigned each cell type to either process or to both simultaneously 
(Methods). Surprisingly, in most cases, we found that a given cell type 
was more affected by only one process (Fig. 8a,b). For example, dFB, 
Oct/Tyr, non-PAM DANs and R5 neurons had many sleep drive correlates 
but few circadian cyclers. On the other hand, cell types with many circa-
dian correlates, for example, y-KCs, ab-KCs and PGs, had no sleep drive 
correlates. Remarkably, two subtypes of EB ring neurons, that is, R5 and 
ring_B were affected by either process in opposing ways, in accordance 
with previous findings, showing that R2/R4m neurons (probably part of 
ring_B) received circadian timing information from clock neurons51,52, 
while R5 neurons themselves encoded the sleep homeostat19. This  
suggested that the effect of either circadian or homeostatic  
process differs depending on the cell type and can vary even for closely 
related cell types. KC subtypes, except for abp-KCs, followed a pattern 
of high number of circadian cyclers, but few or no sleep drive correlates. 
Intriguingly, both the number of cyclers and sleep drive correlates  
were high in all glia with the exception of PGs, as opposed to few  
neuronal clusters with such high numbers. This demonstrated that a 
simultaneous convergence of both circadian and homeostatic pro-
cesses takes place in glial cells, as their transcriptome is affected by both.

Interestingly, we identified genes that regulate the core molecular 
clock, vri and CG31324, as sleep/wakefulness correlates in glia. Simi-
larly, the expression levels of E23, a regulator of the circadian rhythm, 
correlated with the sleep drive in glia specifically. Thus, process S 
may directly influence the core clock machinery in glial cells. Next, 
we asked whether the disruption of the circadian clock, specifically in 
glia, would result in impairment of the sleep homeostat. We expressed 
a dominant negative form of Cyc53 or conditionally knocked out tim54, 
vri or cry55 specifically in glial cells, while leaving all neurons, includ-
ing clock neurons, unaffected. To assess sleep homeostasis in these 
animals, we sleep-deprived flies for 12 h during the night and measured 
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rebound sleep, a hallmark of sleep homeostasis, the following morn-
ing. Flies with a disrupted glial clock showed significantly reduced 
rebound sleep after SD compared to control flies (Fig. 8c,d). Interest-
ingly, while disrupting expression of tim, vri and Cyc resulted in reduced 
sleep rebound, cry knockout did not. This is in accordance with cry 
participating in neither of the two core transcriptional–translational 
feedback loops in Drosophila. These data indicate that the glial clock 
is required for normal sleep homeostasis and suggest that processes 
S and C directly influence each other in glial cells to determine sleep–
wake cycles.

Interface for browsing gene expression correlates
Our correlational analyses (cyclers, DEGs between sleep and wakeful-
ness, and correlates of sleep drive) across all genes and clusters are 
accessible to explore visually within a user-friendly interface (https://
www.flysleeplab.com/scsleepbrain) as a complement to Supplemen-
tary Tables 3–5. The expression of a gene of interest can be compared 
across cell types (Extended Data Fig. 10a) or in relation to other genes 
of the same cell type (Extended Data Fig. 10b).

Discussion
The present study is the first to profile gene expression across dif-
ferent sleep and wakefulness states, degrees of sleep pressure and 

diurnal time points in an unbiased manner across all cell populations 
of an entire central brain. We show that sleep/wakefulness and sleep 
pressure as well as circadian cycling correlates can be found at the 
transcriptional level across the 214 clusters, including 20 annotated 
clusters. Few correlates overlap between clusters, which suggests 
that distinct cell populations are affected differently by sleep/wake-
fulness, sleep drive and circadian time. We further show that many 
correlates are only visible in homogenous populations and not in a 
pseudobulk sample, probably because correlates are largely unique 
to a specific (sub)cluster. Particularly for sleep drive correlates, 
the higher the granularity of a cluster, the more correlates are cap-
tured, again highlighting the importance of cluster homogeneity in  
such analyses. Further support for the notion that molecular  
correlates are only visible at single-cell resolution stems from  
the observation that the results of previous bulk transcriptomic  
studies22, which have profiled transcriptome changes across the sleep–
wake cycle in Drosophila, neither overlap with our results nor each  
other’s results. Similarly, our pseudobulk sleep/wakefulness cor-
relates only overlap by a maximum of 2% compared to their results 
(Supplementary Fig. 1).

While providing an unbiased view of all cell types in the fly brain, 
droplet-based scRNA-seq methods as used in this study are known to 
have less sequencing depth and power to detect rare cell populations 
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visualized in the t-SNE. Middle, The t-SNE shows the merge of left and right t-SNE,  
highlighting the clusters assigned to both groups in green. b, Number of 
correlating genes with circadian or sleep drive template across all annotated 
clusters that have correlates for either process. The color indicates their  
assigned group (yellow, cyclers; blue, sleep drive correlates; green, both).  
c, Sleep amount 4 h after SD compared to the baseline sleep of the same fly in 
the same ZT time period before SD in flies expressing conditional knockout of 
vri (n = 30), tim (n = 47) and cry (n = 35) in pink and control flies (repo-Gal4>iso31 

(n = 58); repo-Gal4>UAS-Cas9.P2 (n = 30); repo-Gal4>UAS-sgRNA-vri (n = 41); repo-
Gal4>UAS-sgRNA-tim (n = 26); and repo-Gal4>UAS-sgRNA-cry (n = 41)) in purple. 
d, Sleep amount 4 h after SD compared to baseline sleep of the same fly in the 
same ZT time period before SD of flies expressing a dominant negative form of 
Cyc (n = 48) in pink and control flies (repo-Gal4>iso31 (n = 58)) in purple. c,d, The 
statistical method used was a Wilcoxon rank-sum test, with Bonferroni-corrected 
P value adjustment for multiple-comparisons testing. The boxplots indicate 
the minimum, median, maximum, and first and third quartiles. The error bars 
represent the first (third) quartile ± 1.5 times the interquartile range. Adjusted 
*P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant.
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compared to well-based methods55. Well-based methods specifically 
target cell types by prepurifying them with a driver line. Despite the 
limitations of droplet-based methods, we successfully subclustered 
and identified sparse neuronal subtypes in the brain from our data-
set, including dFB, R5 and different clock neuron subclusters, such as 
sLNv neurons, which contain only eight cells per brain. Clock neuron 
subclusters and dFB neurons were annotated by making use of pub-
licly available datasets generated with well-based technologies. In the 
future, an approach that combines both types of isolation methods will 
be important to identify additional rare subpopulations in our dataset.

We found that the core clock machinery exists only in clock neu-
rons and glial cells, but not in other neurons in the fly brain. This is 
consistent with a previous report of the absent expression of core clock 
genes in Drosophila DANs56 and KCs57. At the same time, most of the neu-
rons express cyclers. These cyclers in non-clock neurons are probably 
driven by cells containing the molecular clock, including clock neurons 
and glial cells. Glial cells may be a more suitable candidate for this role, 
considering their large numbers and coverage across the entire brain, 
in contrast to approximately 150 clock neurons, whose processes cover 
only a small proportion of the brain. Supporting this idea, the glial clock 
in mice has been shown to drive the circadian clock gene expression 
in the SCN and is sufficient to initiate and sustain circadian locomo-
tor rhythms58. Similarly, in flies, perturbing glial release results in loss  
of circadian rhythmic morphological plasticity of pacemaker small 
ventral LNs18,58. Thus, the circadian cyclers in many non-clock neurons 
in flies may be driven by the molecular clock in nearby glial cells.

By using single-cell transcriptomics and template matching, we 
detected gene expression changes associated with different sleep 
drive levels in real time, while sleep pressure accumulates for all cell 
types separately. Surprisingly, many clusters showed a high num-
ber of transcriptional sleep drive correlates, including R5 and dFB 
neurons, which are directly involved in sleep homeostasis, and the 
wakefulness-promoting Tyr, Oct and non-PAM DANs, as well as a sub-
set of glutamatergic DN1p clock neurons that interact with the sleep 
homeostat. Furthermore, many sleep drive correlates are captured 
in glial cells, several subtypes of which have previously been shown 
to regulate sleep/wakefulness or sleep homeostasis in Drosophila18,59. 
Our findings of sleep drive correlates illustrate the high specificity  
of the method to identify relevant sleep homeostasis regulating  
circuits, even when they are small (sub)populations. Therefore, other 
yet unannotated clusters with a high number of sleep drive correlates 
may also be involved in the homeostatic regulation of sleep; it will be 
interesting to determine their identity to ultimately examine their 
sleep-regulating function.

Sleep homeostasis and circadian rhythms are two distinct behav-
ioral processes and probably affect different cells in the brain. Accord-
ingly, we found that most cells in the fly brain have either a high number 
of sleep drive correlates but a low number of circadian cyclers, or the 
reverse. However, although the homeostatic and circadian processes 
are known to function independently, increasing evidence suggests 
a cross talk between these two processes60,61. In flies, recent studies 
suggested a model in which the sleep homeostat and the circadian 
clock interact indirectly through neuronal circuit connections. Several 
circuits convey the circadian time information from clock neurons to 
the sleep homeostat centers EB and dFB44,45,52. Reciprocally, hugin+ 
neurons act downstream of dFB neurons and modulate clock neu-
rons50. However, our data argue for a parallel regulatory mechanism, 
in which sleep homeostatic and circadian processes interact directly 
in glial cells to regulate the sleep–wake cycle. In addition, this glial 
mechanism and the previously identified neuronal mechanisms may 
also reciprocally interact with one another to integrate processes C 
and S in sleep–wake regulation. In this glial mechanism, we propose 
that the sleep–wake cycle affects the regulators of core clock genes in 
glia, and that the molecular clock in glia is required for sleep homeo-
stasis. How do these two processes interact in glial cells? We and others 

previously demonstrated that glial Ca2+ signaling encodes the level of  
sleep needed18,59. In addition, Ca2+ signaling has an important role  
in regulating the oscillation of core clock genes, with many Ca2+  
channels and transporters rhythmically expressed in mammalian 
clock neurons62. Thus, the reciprocal interaction between Ca2+ signal-
ing and the molecular clock in glia may be the molecular substrate of 
the interaction of homeostatic and circadian processes to ultimately 
instruct downstream neurons and appropriate behavior.

Online content
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butions and competing interests; and statements of data and code avail-
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Methods
Animals
The following Drosophila strains were obtained from the Bloomington 
Drosophila Stock Center: DGRP 88, 287, 303, 313, 359, 379, 441, 646, 892 
and 908; 5-HT1A-Gal4 (strain no. 84588); Pdfr-Gal4 (strain no. 84684); 
cry-Gal4 (strain no. 24514); UAS-Cyc Δ (strain no. 36317); iso31 (strain 
no. 5905); repo-Gal4 (strain no. 7415); and UAS-sgRNA-tim3x (strain no. 
90768). UAS-3x-vri-g and UAS-3x-cry-g were a gift from M. Rosbash55. 
5-HT2B-T2A-Gal4 and 5-HT7-T2A-Gal4 were a gift from S. Kondo37.

Sleep behavior
After entraining male flies for 3 days, 4–8-day-old single flies were loaded 
during the active period between ZT0 and ZT2; sleep was recorded  
in 12:12 light–dark conditions in a constant environment of 55–65% 
humidity and 22 °C. Locomotion was tracked in a high-resolution 
video-based Raspberry Pi-enabled device (ethoscope)63. Targeted 
mechanical SD was delivered in a feedback loop triggered by 10 s of 
quiescence of a fly by the rotation of the respective tube. Sleep analysis 
was performed with adaptations to the rethomics pipeline in R.

For sleep profiling of the DGRP lines, 36 DGRP lines were selected 
based on sleep architecture metrics previously reported in 168 DGRP 
lines12. For the 36 lines, we thoroughly compared sleep amount, latency, 
fragmentation and depth. We selected those lines with sleep patterns 
similar within and between the lines. PCA and analysis of pDoze and 
pWake13 were performed in R. The plots in Extended Data Fig. 1 were 
created in Python and R. Flies that slept less than 50% of the average 
amount of their genotype were excluded (4.5%, 37 of 812 flies).

For the scRNA-seq experiments, around 200 flies were loaded 
belonging to different combinations of the behavioral conditions 
linked to one or two of the ten DGRP lines in each of seven runs. Flies 
belonged to 2–4 conditions and 5–9 DGRP lines. The link between con-
dition and DGRP line was shuffled in every run. Flies were preselected 
based on the recorded baseline sleep and wakefulness behavior on the 
day before dissection. Immediately before dissection, a final selection 
of 40 flies was decided based on the previous day’s preselection and 
the sleep or wakefulness behavior up to the point of dissection in real 
time. Dissection, dissociation and 10x processing followed immediately 
after selection.

To validate candidate sleep/wakefulness correlates, flies (DGRP 
379/iso31) were collected at ZT0 either after 12 h of normal sleep or 
12 h of targeted SD in ethoscope devices. Fly selection and monitoring 
of their sleep were performed as described above. Brain dissection 
and whole-mount FISH (see details below) followed immediately after 
fly collection; both conditions were processed in parallel. For each 
candidate gene, the brains of at least four 5–7-day-old male flies per 
condition were processed.

Sleep rebound was assessed after 12 h of targeted SD between 
ZT12 and ZT24 and one or two prior baseline days in 4–7-day-old mated 
females in constant darkness conditions. Each genotype was tested 
in a least four independent experiments. Genotypes were distributed 
randomly across ethoscopes, ensuring that each genotype was never 
exclusively tested in a single ethoscope, thereby avoiding potential 
technical effects. Gained (or recovery) sleep was calculated as the dif-
ference between the minutes asleep during the first 4 h after SD and the 
minutes asleep during the same 4-h circadian time period (ZT0–ZT4) 
from the two (average) or one baseline days. Genotypes were compared 
with each other by performing a nonparametric Wilcoxon rank-sum 
test. Multiple-comparisons testing was Bonferroni-corrected. We 
excluded animals that slept more than 0.25% of the time during the SD 
period and flies that slept less than 30% of the average sleep amount of 
their genotype during the baseline days.

Brain dissociation into single cells
In each of seven replicates, around 40 central brains were dissected in 
ice-cold Schneider’s medium with 30 mM of the transcription inhibitor 

actinomycin D (catalog no. A1410, Sigma-Aldrich). The number of brains 
per run was chosen based on previous work14; this number ensured that 
the main cell types would be represented. Within 45 min after starting 
the dissections, the brains were dissociated with an enzyme mixture of 
dispase (3 mg ml−1), collagenase (100 mg ml−1) and trypsin-EDTA (0.05%) 
in a thermoshaker at 25 °C for 15 min. The dissociation was reinforced 
by pipetting the solution at least four times during the incubation. 
After washing with PBS with 15 mM actinomycin D the cell pellet was 
resuspended in 100–200 ml PBS with 0.04% BSA and filtered with a 
10-mM pluriStrainer (catalog no. 435001050, ImTec Diagnostics).

10x Genomics
Library preparations for the scRNA-seq was performed using the  
10x Genomics Chromium Single Cell 3′ Kit v.3.1 NextGEM chemistry  
(10x Genomics). The cell count and viability of the samples were assessed 
using a LUNA Dual Florescence Cell Counter (Logos Biosystems).  
For each sample, a targeted cell recovery of 10,000 cells was aimed for. 
The dissociated cells from a fly brain are typically quite small (averaging 
between 1 and 4 µm); this affects counting accuracy. To get consistent 
counting accuracy, the average of cell counts from three independent 
measurements were considered for loading the fly cells to the 10x 
controller. After the cell count and quality check, samples were imme-
diately loaded onto the Chromium Controller. scRNA-seq libraries  
were prepared according to the manufacturer’s recommendations 
(Single Cell 3′ Kit v.3.1 user guide; CG000204 Rev D); at the different  
check points, library quality was assessed using a Qubit (Thermo Fisher 
Scientific) and Bioanalyzer (Agilent Technologies). For a targeted  
sequencing saturation of 50–60%, sequencing was performed at a 
depth of 30,000–60,000 reads per cell; single-cell libraries were 
sequenced either on Illumina’s NovaSeq 6000 platform or HiSeq  
2500 platform using a paired-end sequencing workflow and with  
recommended 10x v.3.1 read parameters (28-8-0-91 cycles).

10x Genomics data preprocessing
The 10x data were mapped to the Drosophila melanogaster (BDGP6 
assembly) genome using CellRanger v.3.1.0. SNP data for the DGRP 
lines was downloaded from http://dgrp2.gnets.ncsu.edu/. liftOver 
was used to convert these to dm6 coordinates. SNPs were then filtered 
to include only those present uniquely in one of the lines used. This 
VCF file was used to run demuxlet from the popscle package (https://
github.com/statgen/popscle) with default parameters; tools from 
https://github.com/aertslab/popscle_helper_tools were used to speed 
up computation.

Data processing
Scanpy v.1.4.4 was used to process the 10x libraries; samples were 
first loaded and cells were annotated with the genotypes deter-
mined by demuxlet. Demuxlet determined any doublets; ambigu-
ous cells were removed and any cells assigned to a genotype not 
present in that experiment were also removed. Finally, scrublet was 
used to remove any remaining doublets using an expected doublet 
rate determined by the following formula based on the known dou-
blet rate of the 10x Chromium device and the number of doublets 
expected to be remaining after demuxlet (within-genotype doublets): 
(0.008 × (n_cells/1000)) × (num_lines/(num_lines2)).

After doublet removal, cells with fewer than 200 genes were 
removed, as well as cells with more than 20–30% unique molecular 
identifiers assigned to mitochondrial genes (the thresholds can be 
found in Supplementary Table 7); cells belonging to the ZT2 Wake 
condition were also removed. All remaining cells were combined into 
a single sample for further processing. Cells were normalized to a total 
of 10,000 counts per cell and log-transformed; highly variable genes 
were identified using default parameters and the number of counts and 
percentage mitochondrial reads were regressed out. Finally, counts 
were scaled to unit variance with a zero mean with a maximum value 
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of 10. A PCA was performed on the data. The pcacv workflow from the 
vsn-pipelines v.0.25.0 (https://doi.org/10.5281/zenodo.3703108) was 
used to determine the number of principal components (58) to con-
tinue with further dimensionality reduction and clustering. Both UMAP 
and t-SNE dimensionality reductions were computed and clusters were 
determined using the Louvain algorithm at various resolutions (Sup-
plementary Table 2). Final anndata (v.0.7.8) objects were converted to 
Loom files for visualization in SCope14.

Multiplexing strategy
DGRP lines can be distinguished from one another by their unique  
SNPs. Their natural genetic variation from each other allowed us to 
determine the condition for each cell from the sequenced data10. This 
strategy has the added advantage of removing around 90% of droplets 
that enclose two cells instead of one from the dataset. This multiplexing 
strategy minimizes technical variation and batch effects, otherwise 
arising from separate complementary DNA library preparations.

Integration of Smart-seq2 data of dFB neurons
To identify the cell cluster containing dFB neurons in our dataset, we 
made use of the publicly available transcriptome data of a FAC-sorted 
dFB subset genetically targeted with the R23E10-Gal4 driver. The raw 
data processed with a standard Smart-seq2 protocol was downloaded 
from the Gene Expression Omnibus (GEO) (accession no. GSE107451)47. 
Reads were cleaned using fastp v.0.20.0 and mapped to the BDGP6 D. 
melanogaster and quantified using STAR v.2.7.9a. A non-negative least 
squares regression model was used to match dFB Smart-seq2 cells to 
their corresponding cluster in our atlas (Extended Data Fig. 3); it was 
performed as described previously48, with the top ten marker genes 
(determined according to z-score) per cluster from resolution 0.8 
being used as the gene subset.

Clock cell subtype annotation with public dataset and scANVI
Raw data from Ma et al.22 were downloaded from GEO (accession no. 
GSE157504). Data were normalized to a total of 1 × 106 reads per cell, 
log-normalized and the top 2,000 variable genes were identified using 
the ‘experiment’ annotation as a batch key. Annotations were obtained 
from the authors and a scANVI model64 was trained using these labels 
according to the scArches recommendations65. Briefly, an scVI model66 
was first trained with ‘experiment’ as the batch key and raw counts as the 
input using the following parameters: use_layer_norm = ‘both’, use_batch_
norm = ‘none’, encode_covariates = True, dropout_rate = 0.2, n_layers = 2, 
early_stopping = True, train_size = 0.8 and check_val_every_n_epoch = 1; a 
scANVI model was then initialized using the pretrained scVI weights, with 
the annotations as a label key and unlabeled categories set to ‘unknown’. 
Next, clock neurons were subset into their own adata object from the 
main dataset by selecting cluster 84 from a Louvain clustering with a 
resolution of 8.0. The trained scANVI model was then updated online; 
clock neurons and labels were predicted per cell. An integrated view of 
the two datasets was created by using the X_scANVI latent representation 
to calculate a neighborhood graph and subsequent UMAP.

Downstream analyses
All analyses (differential expression analysis, sleep drive template 
matching and identification of cycling genes), except for the EBM 
classifier, were performed on all clusters with a high resolution of 8.0 
of the Louvain clustering, except for those clusters annotated in a dif-
ferent resolution (Supplementary Table 2). Also, we excluded genes 
that displayed obvious expression differences between different runs 
for all analyses (Supplementary Table 6).

Validation of circadian clock-related genes with SCENIC
Gene coexpression analysis was performed with single-cell regulatory 
network inference and clustering (SCENIC) using the scenic_multi-
runs workflow (pySCENIC v.0.11.2) from the vsn-pipelines in two steps  

(to decrease computational time). First, ten runs were performed with 
a list of all transcription factors; any transcription factors linked to a 
motif or track that were detected as a regulon by SCENIC were used to 
perform a second step of an additional 90 SCENIC runs only looking 
for these transcription factors. The area under the curve (AUC) value 
quantifies the presence of that motif in a cell type. We compared AUC 
values of the Clk regulon across all cell types.

Identification of cycling genes
To identify cycling genes between ZT2, ZT8, ZT14 and ZT20, we used 
the JTK algorithm of the MetaCycle v.1.2.0 package (https://github.com/
gangwug/MetaCycle)66. As MetaCycle takes a matrix of three replicates 
for each time point, we treated each cell in a cluster as a replicate and 
randomly assigned it to one of three pseudo-replicates for each ZT time 
point. The mean expression value for each combination of cluster and ZT 
time point replicate was calculated according to transcript. This matrix 
served as input for the JTK algorithm. The matrix was filtered to test only 
genes that had a maximum expression of 0.8 counts per million and an 
expression amplitude of at least 1.5-fold between time points, similar to 
a previous study67. We repeated the random allocation three times. Only 
clusters for which matrix generation was successful in all three technical 
replicates were considered for further analysis, leaving 183 of the 214 
initial clusters. Matrix generation was successful in all annotated clusters.  
A gene was labeled as significantly cycling (Benjamini–Hochberg- 
corrected two-tailed P = 0.05) in a cluster only if it was detected as such in 
all three technical replicates. The threshold set to assign a cluster to the 
cyclers group (Fig. 8a) was 3.72, which is the mean of the square root of 
the number of cycling correlates for all 195 clusters.

Differential expression analysis
The Wilcoxon rank-sum test was used to compare groups of cells for 
differential expression analysis; this was performed using the rank_
genes_groups function from Scanpy, where n_genes is the number 
of genes in the dataset. Reference and test groups were set per differ-
ential expression analysis. Transcripts were considered DEGs if their 
Benjamini–Hochberg false discovery rate (FDR)-corrected P < 0.05. All 
cells except for KCs were divided into either cholinergic, GABAergic, 
glutamatergic or unknown based on their expression of VAChT, Gad1 
and VGlut above a value of 0.5, 0.4 and 0.5, respectively.

Tree-based modeling of sleep and wakefulness states
We performed a binary classification task to learn to map the transcrip-
tome of single cells to the behavioral labels ‘wakefulness’ or ‘sleep’. 
Specifically, we trained separate instances of the EBM, using identical 
training settings and hyperparameters, implemented in the interpret.
glassbox.ebm.ExplainableBoostingClassifier class with default settings 
or as declared in scikit-learn v.1.0.2 and interpret v.0.2.7. Each instance 
was trained on a different cell subtype within a group of related cell 
types or ‘backgrounds’, specifically the glia or KC subtypes. Marker 
genes were excluded from the training to prevent classification based 
on cell identity as opposed to behavioral state. Marker genes were 
determined by performing differential expression analysis of either 
the glia or KC subtypes. This analysis resulted in excluding those genes 
with a log fold change greater than 3.5 (glia) and 2 (KCs) during training 
(Extended Data Fig. 6a,b). The trained models were then used to predict 
behavioral state on test datasets of each glial or KC subtype to compare 
classification performance on the same and different cell subtypes.

Finding shared genes between DEA and EBM
The cutoff of the top features that resulted from the EBM classi-
fier outlined above was decided by calculating the mean plus 2 s.d. 
across all features per subtype. Features falling above this threshold  
were regarded as significantly contributing to the classifier’s decision. 
The same thresholding was applied to the features used by the control 
classifier that predicted cell subtype identity. The resulting control 
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features were then merged with the feature subsets generated in the 
first step. The remaining genes were then merged with all significant 
corrected P values of the DEGs from the differential expression analysis 
(see above) on either glia or KCs.

Sleep drive template matching
Expression of all transcripts across different conditions were tested for 
a significant Pearson r2 correlation with a sleep drive template for each 
cluster separately. Sleep drive correlates below a Benjamini–Hochberg 
FDR-corrected P = 0.05 were considered significant. The template 
consisted of seven conditions ordered according to their respective 
amount of sleep or SD. A value between 0 and 1 was assigned to each 
condition according to that order with even intervals. Gene expression 
matrix generation across the seven conditions failed for 19 of the 214 
clusters, although none of the annotated clusters. For the remaining 
195 cell populations, for each transcript, we assessed whether there 
was a significant correlation between the sleep drive template and the 
expression value of each gene across the sleep and SD conditions (Fig. 
5a). The threshold set to assign a cluster to the sleep drive correlate 
group (Fig. 8a) was 3.72, which is the mean of the square root of the 
number of sleep drive correlates for all 195 clusters.

GO analysis
To identify the overarching GO terms of the resulting lists of significant 
correlates (cyclers, sleep/wakefulness or sleep drive correlates), we 
used the gprofiler2 R package v.0.2.1 with, as custom background, the 
detected genes of our sequencing data. Significant genes were ordered 
according to log fold change or Benjamini–Hochberg FDR-corrected 
P for sleep/wakefulness correlates, cyclers and sleep drive correlates, 
respectively. GO analysis was performed for each cluster separately 
for each of the three correlates. GO terms were subsequently grouped 
according to parent terms based on semantic similarity as calculated 
using the ‘Wang’ method68 in the mgoSim() function of the GOSemSim 
R package v.2.20.0 and the reduceSimMatrix() function in the rrvgo 
package v.1.6.0. Plotting was done with the go_reduce() and go_plot() 
functions of the rutils package v.0.99.2.

Single-molecule FISH
Custom probes with hybridization chain reaction (HCR) technology 
were acquired from Molecular Instruments. The protocol was opti-
mized based on the protocol for zebrafish larvae (from Molecular 
Instruments) and a whole-mount adult fly FISH protocol68. Briefly, 
brains were dissected in S2 medium, fixed in 2% paraformaldehyde 
(PFA) in PBS for 55 min, washed three times for 15 min in PBS with 0.5% 
Triton X-100, sequentially dehydrated and incubated overnight in 100% 
ethanol. After rehydration, brains were washed five times in PBS with 
0.1% Triton X-100 for 15 min at room temperature. Subsequently, they 
were incubated in probe hybridization buffer at 37 °C on a rotator for 
1.5 h and incubated in probe hybridization buffer and relevant probes 
overnight. Probes (HR38 with HCR amplifier B2-488 and eyeless with 
HCR amplifier B3-647) were washed with probe wash buffer five times 
for 15 min and five times for 15 min in 5× SSC with 0.1% Triton X-100 at 
room temperature. Then, brains were incubated for 30 min at room 
temperature in amplification buffer and overnight in heat-shocked 
amplification probes diluted in the same buffer at room temperature 
on a rotator. After incubation, brains were washed five times for 15 min 
in 5× SSC with 0.1% Triton X-100 and finally incubated in VECTASHIELD 
at 4 °C overnight before mounting and imaging with a ZEISS Airyscan 
880 confocal microscope. Images were analyzed with ImageJ v.1.53t.

Whole-mount brain staining
After dissection in S2 medium, fly brains were fixed in 4% PFA for 
30 min. Then, brains were washed in PBS with 0.5% Triton X-100 two 
times for 15 min. Subsequently, brains were incubated in SNAP-tag 
at a dilution of 1:1,000 in PBS with 0.3% Triton X-100 for 30 min and a 

further 30 min with the addition of the Halo-tag at the same dilution. 
Lastly, brains were washed in PBS with 0.5% Triton X-100 two times 
for 15 min and incubated in VECTASHIELD overnight at 4 °C. Brains 
were mounted in VECTASHIELD and imaged on a ZEISS Airyscan 880 
confocal microscope.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The scRNA-seq data have been deposited in the Gene Expression Omni-
bus (GEO) under accession no. GSE221239. Publicly available data used 
in this study are available under the following GEO accession nos.: Davie 
et al.14 (GSE107451); Ma et al.22 (GSE157504). Gene expression across 
all cell populations are visualized at https://scope.aertslab.org/#/
Fly_Brain_Sleep/Fly_Brain_Sleep%2FFly_Sleep.loom/gene. Transcript 
expression plots for all correlates and clusters are available at https://
joana-dopp.shinyapps.io/Fly_Sleep_Single_Cell_v1/. Source data are 
provided with this paper.

Code availability
The custom code associated with this study is available at https://
github.com/shaliulab/Single_Cell_Sleep.
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Extended Data Fig. 1 | Sleep behavior screening of 36 DGRP lines to select 
suitable DGRP lines for single cell transcriptomics. a. Clustered heatmap of 
quantified sleep amount during day and night, sleep bout length and number, 
latency to first and longest sleep bout during nights across all tested DGRP lines. 
Based on these parameters ten DGRP lines were selected (n = 355, yellow) and 

26 dismissed (n = 425, purple). b. Principal Component Analysis on mean and 
standard deviation per sleep parameter and DGRP line. c-d. Scatterplot showing 
the probability to switch from a wake to a sleep state (pDoze) or vice versa 
(pWake) averaged across flies of the same DGRP line.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Bias analysis of (sub)clusters. a. Normalized number of 
cells coloured by genoype for each cluster in resolution 8. Most clusters have a 
relatively similar number of cells from each genotype. b. tSNE of all cells coloured 
by genotype shows cells of different DGRP lines mix well. c, e. tSNE displaying 

cells colored by assignment to their run reveals that there are no technical batch 
effects for EB ring (c) and clock neuron (e) subclustering. d, f. Proportion of cells 
in each cluster colored by their assignment to their run for EB ring (d) and clock 
neuron (f) subclusters.
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Extended Data Fig. 3 | Annotation of dFB cluster. a. Heatmap of those 12 
clusters of our 10x data that map to at least one R23E10-Gal4 FAC-sorted cell 
from the publicly available scRNA-seq data by Davie et al.14. Cluster 198 from this 
study shows the highest correlation for the majority of sorted cells, indicating 

a positive match for this cluster with dFB cells. Similarity between FAC-sorted 
data and clusters of this study was calculated with a non-negative least-squares 
regression model (NNLS) (Stanescu et al., 2017). b. Annotation of cluster 198 as 
dFB in tSNE of all cell types.
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Extended Data Fig. 4 | Oscillation of core circadian genes in glia and number 
and gene ontology of cyclers across cell types. a-e. Circadian expression levels 
of core clock genes per, tim, cry and Clk for each glial subtype. f Number of cyclers 
across all clusters with at least three correlates. g. Correlation between number 

of genes and number of cyclers for pseudobulk samples, neuronal and glial 
cell types. h. Gene ontology parent terms enriched across annotated clusters. 
Number of child terms per parent term in brackets. Size of dot indicates fraction 
of child terms associated with the parent term.
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Extended Data Fig. 5 | Sleep/wakefulness correlates across all clusters. 
a. Number of sleep/wakefulness correlates across all clusters with at least 
one correlate. b. Correlation between number of genes and number of sleep/

wakefulness correlates for pseudobulk samples, neuronal and glial cell types. 
Dot size indicates average log2 fold change (LFC) across all significant sleep/
wakefulness correlates for the respective cluster.
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closer to each other in a UMAP space, because marker genes above certain log 
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glia and KC, respectively were excluded for training the tree-based EBM classifier. 
c, d. Assigning the sleep or wakefulness label randomly results in random 
performance of the classifier for the same cell subtype.
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Data collection

Data analysis

To collect sleep behaviour data, ethoscopes were used (Geissmann et al., 2017). To sequence cDNA libraries, 10x Genomics Chromium Single 
Cell 3' Kit (v3.1) NextGEM chemistry was used. To capture confocal images a Zeiss Airyscan 880 confocal microscope was used.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The scRNA-seq data has been deposited in GEO under accession code GSE221239. Publicly available data utilized in this study are available 
under the following GEO accession codes: Davie et al. (2018): GSE107451; Ma, Przybylski et al. (2021): GSE157504. Gene expression across all 
cell populations are visualized at https://
scope.aertslab.org/#/Fly_Brain_Sleep/Fly_Brain_Sleep%2FFly_Sleep.loom. Transcript expression plots for all correlates and clusters are available 
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Sample size In 7 runs, a total of 282 flies were collected across 11 different behavioural conditions and four circadian times, outlined in Supplementary 
Table 1. With around 40 brains per run, we aimed to acquire 10K cells per experimental run (see Supplementary Table 7), since previous 
work (Davie et al., 2018) showed that with this number the main cell types would be represented.

Data exclusions 10x data were filtered according to the Data Processing steps outlined in the text, including doublet removal, removal of cells expressing less 

than 200 genes or 20-30% UMIs assigned to mitochondrial genes.

Replication

Randomization

10x experiments were repeated 7 times with variations in combination of genotype and condition. Validation of main findings was performed by 
FISH (at least 4 brains per condition, 5-7 days old male flies with consistent results) and sleep rebound behaviour (at least 4 independent 
experiments per genotype, 4-7 days old mated females).

For each of seven technical replicates, genotype and conditions were randomly shuffled.

Blinding Investigators were not blind to group assignment. Each group of flies was sampled at different points of behavioural state and circadian time 

point. The investigator needed to know the group assignment to select the animals to be sampled.

Reporting for specific materials, systems and methods
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DGRP (88, 287, 303, 313, 359, 379, 441, 646, 892 and 908), repo-Gal4>iso31 (n=58), repo-Gal4>UAS-Cas9.P2 (n=30), repo-Gal4>UAS-
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Ethics oversight Ethical approval is not required for Drosophila research in the EU. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Single-cell transcriptomics reveals that glial cells integrate homeostatic and circadian processes to drive sleep–wake cycl ...
	Results
	Single-cell transcriptomes of sleep–wake and circadian times
	Cycling of core circadian genes in clock neurons and glia
	Cyclers are more enriched in glia than neurons
	Sleep/wakefulness correlates differ between cell populations
	Template matching captures cell types involved in process S
	R5 neurons have a high number of sleep drive correlates
	Clock neuron subtypes differ in sleep drive correlate numbers
	Homeostatic and circadian processes converge in glia
	Interface for browsing gene expression correlates

	Discussion
	Online content
	Fig. 1 Sampling flies at sleep and wakefulness states for subsequent transcriptional profiling.
	Fig. 2 Cell-type annotations in a single-cell atlas of the sleeping fruit fly.
	Fig. 3 Oscillating transcripts in neurons and glia.
	Fig. 4 The transcriptomes of glia and KCs change differently between sleep and wakefulness.
	Fig. 5 Analysis of molecular correlates of sleep drive.
	Fig. 6 Identification of EB R5 neurons and sleep drive correlates across EB ring neuron subtypes.
	Fig. 7 Analysis of sleep drive correlates in clock neuron subtypes.
	Fig. 8 Homeostatic and circadian processes converge on glial cells.
	Extended Data Fig. 1 Sleep behavior screening of 36 DGRP lines to select suitable DGRP lines for single cell transcriptomics.
	Extended Data Fig. 2 Bias analysis of (sub)clusters.
	Extended Data Fig. 3 Annotation of dFB cluster.
	Extended Data Fig. 4 Oscillation of core circadian genes in glia and number and gene ontology of cyclers across cell types.
	Extended Data Fig. 5 Sleep/wakefulness correlates across all clusters.
	Extended Data Fig. 6 Controlling sleep/wake state classifier by removing marker genes between subtypes of KC or glia.
	Extended Data Fig. 7 Validation of candidate sleep/wake correlate HR38 in KC.
	Extended Data Fig. 8 Sleep drive correlates across all clusters.
	Extended Data Fig. 9 Marker genes of clock neuron subtypes.
	Extended Data Fig. 10 Webtool to browse gene expression across sleep conditions and ZT times.




