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Dopamine-independent effect of rewards on 
choices through hidden-state inference

Marta Blanco-Pozo    1,2  , Thomas Akam    1,2,3   & Mark E. Walton    1,2,3 

Dopamine is implicated in adaptive behavior through reward prediction 
error (RPE) signals that update value estimates. There is also accumulating 
evidence that animals in structured environments can use inference 
processes to facilitate behavioral flexibility. However, it is unclear how these 
two accounts of reward-guided decision-making should be integrated. Using 
a two-step task for mice, we show that dopamine reports RPEs using value 
information inferred from task structure knowledge, alongside information 
about reward rate and movement. Nonetheless, although rewards strongly 
influenced choices and dopamine activity, neither activating nor inhibiting 
dopamine neurons at trial outcome affected future choice. These data were 
recapitulated by a neural network model where cortex learned to track 
hidden task states by predicting observations, while basal ganglia learned 
values and actions via RPEs. This shows that the influence of rewards on 
choices can stem from dopamine-independent information they convey 
about the world’s state, not the dopaminergic RPEs they produce.

Adaptive behavior requires learning which actions lead to desired 
outcomes and updating this knowledge when the world changes. Rein-
forcement learning (RL) has provided an influential account of how this 
works in the brain, with RPEs updating estimates of the values of states 
and/or actions, in turn driving choices. In support of this framework, 
dopamine activity resembles RPEs in many behaviors1–4, and causal 
manipulations can reinforce or suppress behaviors consistent with 
dopamine acting functionally as an RPE5–8.

However, value learning is not the only way we adapt to changes in 
the environment. For example, we behave differently on weekdays and 
weekends, but this is clearly not because we relearn the value of going to 
work versus spending time with family each Saturday morning. Rather, 
although the world looks the same when we wake up, we understand 
that the state of the world is in fact different, and this calls for different 
behavior. Formally, the decision problem we face is partially observ-
able—our current sensory observations only partially constrain the 
true state of the world. In such environments, it is typically possible 
to estimate the current state better using the history of observations 
than using just the current sensory input9,10.

It is increasingly clear that this ability to infer hidden (that is, not 
directly observable) states of the world plays an important role even in 

simple laboratory reward-guided decision-making10–18. For example, in 
probabilistic reversal learning tasks where reward probabilities of two 
options are anticorrelated, both behavior and brain activity indicate 
that subjects understand this statistical relationship10,12,13,19. This is not 
predicted by standard RL models in which RPEs update the value of 
preceding actions, but is predicted by models which assume subjects 
understand there is a hidden state that controls both reward probabili-
ties. Intriguingly, brain recordings have shown that not only prefrontal 
cortex (PFC) but also the dopamine system can reflect knowledge of 
such hidden states13,19–23.

Integrating these two accounts of behavioral flexibility raises 
several pressing questions. If state inference, not RL, mediates flex-
ible reward-guided behavior, why does dopamine look and act like an 
RPE? Conversely, if value updates driven by dopaminergic RPEs are 
responsible, how does this generate the signatures of hidden-state 
inference seen in the data?

To address these questions, we measured and manipulated dopa-
mine activity in highly trained mice performing a two-step decision 
task. The task had two important features. First, reward probabilities 
were anticorrelated and reversed periodically, constituting a hidden 
state that could be inferred by observing where rewards were obtained. 
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mapping from this state estimate to the corresponding high-value 
first-step action24, but again this did not resemble the experimental 
data. These models failed because both predict a symmetric influence 
of reward and omission on choices, contrary to our experimental data; 
therefore, we modified each model to incorporate this asymmetry. 
For model-based RL, this was done using different learning rates for 
positive and negative RPEs. We also incorporated forgetting about the 
value of states that were not visited, as this was supported by model 
comparison (Extended Data Fig. 1). This approach was not possible for 
the inference model, as Bayesian updates do not have a learning rate 
parameter that can be different for reward and omission. We therefore 
implemented the asymmetry by modifying the observations received 
by the model, so that it treated reward obtained in the two second-step 
states as different observations, but treated reward omission as the 
same observation irrespective of the state where it occurred. Simulated 
on the task, both asymmetric models generated a pattern of stay prob-
abilities that closely matched subject’s data (Fig. 1i,j).

We adopted two different approaches to try and differentiate 
between these strategies: (i) likelihood-based model comparison (Sup-
plementary Tables 1 and 2), and (ii) fitting a mixture-of-strategies 
model incorporating both components to assess which explained 
most variance in subjects’ choices (Supplementary Table 3). Both 
analyses gave a consistent picture that it was not possible to arbitrate 
between the strategies using behavior alone (Extended Data Fig. 1). 
Critically, however, the two strategies make different predictions for 
how rewards update the estimated value of each second-step state 
(discussed below), and hence for dopaminergic RPE signaling. We 
therefore looked for evidence of inference-based value updates in 
dopamine activity.

Inferred values drive dopamine signals
We used fiber photometry to record calcium signals from 
GCaMP6f-expressing dopamine neuron cell bodies in the ventral 
tegmental area (VTA) and axons in the nucleus accumbens (NAc) and 
the dorsomedial striatum (DMS; Fig. 2a), and dopamine release using 
dLight1.1 expressed pan-neuronally in the NAc and DMS (Fig. 2b; see 
Extended Data Fig. 2 for placements). Dopamine activity fluctuated 
dynamically across the trial, as mice made their initial choice and 
received information about the second-step state reached and the 
trial outcome (Fig. 2d–f). Reward responses were prominent in all sig-
nals, although relatively weaker in DMS calcium. However, average 
DMS calcium activity masked a strong mediolateral gradient in reward 
response, with larger responses more laterally in the DMS (Extended 
Data Fig. 3). For the following analyses, we excluded the DMS site in two 

Second, inference and RL-based strategies could be differentiated by 
measuring how prior rewards affected dopamine activity. Behavior and 
dopamine signaling were consistent with mice tracking a single hidden 
state of the reward probabilities. However, while dopamine signals 
closely resembled RPEs, neither activating nor inhibiting dopamine 
neurons at trial outcome had any effect on subsequent choice. We 
show that these apparently paradoxical data can be reproduced by a 
neural network model in which cortex infers hidden states by predict-
ing observations and basal ganglia uses RL mediated by dopaminergic 
RPEs to learn appropriate actions.

Results
Mice behavior respects task causal structure
We trained dopamine transporter (DAT)-Cre mice (n = 18) on a sequen-
tial decision task, which required them to choose between two options—
left and right—to gain access to one of two reward ports—up or down 
(Fig. 1a). Each first-step choice led commonly (80% of trials) to one 
second-step state and rarely (20% of trials) to the other (Fig. 1b). Reward 
probabilities in each port changed in blocks between 0.8/0.2, 0.5/0.5 
and 0.2/0.8 on the up/down ports, respectively (Fig. 1c), and were 
therefore anticorrelated at the up and down ports, while transition 
probabilities remained fixed. This facilitates hidden-state inference 
strategies (also referred to as ‘latent-state’ inference24) because the 
state of the reward probabilities—whether up or down is rewarded with 
higher probability—fully determines which first-step action is best24,25.

Subjects tracked which option was currently best, performing 
348.70 ± 93.90 trials and completing 8.32 ± 3.24 blocks per session 
(mean ± s.d. across subjects; Fig. 1c). Reward following a common 
transition promoted repeating the same first-step choice on the next 
trial, while reward following a rare transition promoted switching to 
the other first-step choice (Fig. 1d,e; mixed-effects logistic regres-
sion—transition × outcome: β = 0.507, s.e. = 0.044, z = 11.468, P < 0.001), 
and these effects persisted over multiple trials (Fig. 1f). This pattern 
is adaptive because it corresponds to rewards promoting choice of 
first-step actions that commonly lead to the second-step states where 
they were obtained. However, the probability of repeating the same 
choice following a non-rewarded outcome was similar irrespective of 
whether a common or rare transition occurred (Fig. 1d,f).

To assess what strategy the animals used, we fitted a set of models 
to their choices and simulated data from the fitted models (Fig. 1g–j). 
Neither model-free nor model-based RL, commonly used to model 
two-step task behavior26, resembled subject’s choices (Fig. 1g,h). We 
also considered a strategy that used Bayesian inference to track the hid-
den state of the reward probabilities, combined with a fixed habit-like 

Fig. 1 | Two-step task behavior. a, Diagram of trial events. Each trial started with 
a central port lighting up, which mice poked to initiate the trial. This triggered 
either a choice state, where both left and right ports lit up (75% of trials), or a 
forced choice where either the left or the right port lit up (25% of trials). Poking 
an illuminated side port triggered a transition to one of two possible second-
step states, signaled by a 1-s auditory cue, in which either the top or the bottom 
port was illuminated. Poking the active reward port caused a 500-ms auditory 
cue indicating the trial outcome (reward or not), with reward delivered at cue 
offset. b, Diagram of the task state space, reward and transition probabilities. 
c, Example behavioral session. Top, moving average of choices (blue trace) 
with reward probability blocks shown by gray bars, indicating by their vertical 
position whether the reward probability was higher for the state commonly 
reached for the left or right choice or a neutral block. Bottom, reward probability 
at the up (blue) and down (red) ports. d, Probability of a choice being repeated as 
a function of the subsequent state transition (common or rare) and trial outcome 
(rewarded or unrewarded). Dots show individual subjects; error bars indicate 
the cross-subject mean ± s.e.m. e, Mixed-effects logistic regression predicting 
repeating choice as a function of the correctness of the choice (high reward 
probability; split as correct, incorrect or neutral), choice bias (left or right), 
the trial outcome (rewarded or not), state transition (common or rare) and the 

transition–outcome interaction. Error bars indicate the mixed-effects model 
estimate ± s.d.; statistical significance was assessed using a likelihood-ratio test 
with type 3 sums of squares. f, Lagged logistic predicting choice as a function 
of the history of different trial types defined by the transition and outcome. 
This strong asymmetry between the effect of reward and reward omission 
is surprising given that both outcomes are equally informative about future 
reward, but might reflect differences between task statistics and the demands 
of foraging in natural environments. Error bars indicate the cross-subject 
mean ± s.e.m. a–f, n = 18 mice, with a total 181,323 trials in 520 sessions; statistical 
significance was assessed using a two-sided t-test comparing the cross-subject 
distribution against zero, Bonferroni corrected. g–j, Single-strategy models: 
stay probability (as in d), error bars indicate the cross-subject mean ± s.e.m. 
(g and i); and lagged regression (as in f), error bars indicate the cross-subject 
mean ± s.e.m.; statistical significance was assessed using a two-sided t-test 
comparing the cross-subject distribution against zero, Bonferroni corrected  
(h and j), of simulated behavior from different RL models fitted to mouse 
behavior. g–j, N = 18 simulated subjects, with numbers of trials and sessions per 
subject matched to the corresponding mouse. *P < 0.05, **P < 0.01, ***P < 0.001. 
For exact P values, see Supplementary Table 5.
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animals where the fiber was most medial, and we observed a negative 
reward response (Extended Data Fig. 3).

A key feature of the state inference strategy is that it assumes that 
a single hidden variable controls both reward probabilities. Therefore, 
reward obtained in one second-step state not only increases the value 
of that state but also decreases the value of the other second-step state, 
unlike in standard model-based RL where the state values are learned 
independently (Fig. 3c). We can therefore leverage our photometry 
data to discriminate between these strategies by examining how the 

previous trial’s outcome influences dopamine activity and release when 
the second-step state reached on the current trial is revealed. Specifi-
cally, we can ask whether a reward obtained in one second-step state 
(for example, up-active), decreases the dopamine response to the other 
second-step step state (down-active) if it is reached on the next trial.

We aligned activity across trials and used linear regression to model 
dopamine fluctuations across trials and timepoints. We ran separate 
regression analyses for each timepoint, using predictors that varied 
from trial to trial but using the same value for all timepoints in each trial. 
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The time courses of predictor loadings across the trial, therefore, reflect 
when, and with what sign, each predictor explained variance in the activ-
ity (Fig. 3a). The key predictors for differentiating between strategies 
included one coding for the previous trial’s outcome on trials where 
the second-step state is the same as on the previous trial, and another 
coding for the previous trial’s outcome when the second step reached 
on the current trial was different (Fig. 3b). We also included regressors 
modeling the current trial outcome and other possible sources of vari-
ance (Methods and Extended Data Fig. 4). We focus on the GCaMP data 
in the main figures, but results from dLight were closely comparable, 
except where noted in the text (Extended Data Fig. 4).

When the second-step state was the same as on the previous trial, 
the previous trial’s outcome positively influenced dopamine when the 
second-step state was revealed, consistent with both model-based RL 
and inference (Fig. 3d,e and Extended Data Fig. 4). However, when the 
second-step state was different to the previous trial, the previous out-
come negatively influenced dopamine when the second-step state was 
revealed. This is at odds with the predictions of standard model-based RL 
but, crucially, is consistent with inference (Fig. 3d,e and Extended Data 
Fig. 4). In NAc, loading on these regressors reversed sign at outcome 
time. This biphasic response is exactly as predicted for an RPE; RPEs are 
computed from value differences between successive time steps, so if 
dopamine reports RPE, the value of the second-step state reached on the 
trial will drive a positive response when the state is revealed, followed by 
a negative response at the time of trial outcome27,28. Unexpectedly, this 
reversal was not observed in either the VTA or the DMS.

To ensure that this pattern of modulation by inferred value was not 
an artifact of confounding effects of trial history, we performed a lagged 
regression predicting the dopamine response to the second-step state 
cue. This confirmed that the dopamine response was driven by inferred 
state values, and that these integrated outcomes over multiple previous 
trials (less clearly in the DMS axonal calcium activity, but prominently 
in DMS dopamine release; Extended Data Fig. 5b).

To test whether the asymmetric influence of rewards and omis-
sions on subject’s choices was also reflected in dopamine activity, we 
ran a modified regression analysis using separate regressors for trials 
following rewarded and non-rewarded outcomes. In the VTA and NAc, 
the differential dopamine response to reaching the same versus dif-
ferent second-step state was much stronger following rewarded than 
non-rewarded trials, consistent with rewards updating second-step 
state values more strongly than omissions (Extended Data Fig. 5c). 
Dopamine activity at choice time was also higher when subjects chose 
an action that commonly led to the state where reward was obtained on 
the previous trial (Extended Data Fig. 4, inferred action value update), 
consistent with subjects inferring the value of the first-step action using 
knowledge of the task structure. Again, these effects were primarily 
driven by rewarded rather than omission trials (Extended Data Fig. 5d).

Together, these findings indicate that the mice understood that 
a single hidden variable controlled the reward probabilities in both 
ports and inferred its current state by observing where rewards were 
obtained. Reward predictions based on this then shaped dopamine 
responses to both task states.
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and dopamine receptor binding on rewarded and unrewarded trials with shaded 
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Dissociable influence of RPE, reward rate and movement on 
dopamine activity
Recent work has argued that dopamine fluctuations more closely 
reflect value than RPE29. To examine whether this was the case in our 
data, we used the same linear regression framework but with value 

estimates from the inference model for the chosen first-step action 
and second-step state as predictors (Fig. 4 and Extended Data Figs. 6  
and 7). As lateralized movements6 and average reward rate5,29 have 
also been reported to influence dopamine, we additionally included 
regressors for these variables.
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indicate effect size at timepoints where coefficients are statistically significant, 
assessed by a two-sided t-test comparing the cross-subject distribution against 
zero, Benjamini–Hochberg corrected for comparison of multiple timepoints.  
b, Schematic of the two regressors used to test the influence of previous trial 
outcome on the value of the same (dark red) or different (green) second-step state 
value reached on the current trial. c, Linear regression predicting second-step 
state value as a function of the previous trial outcome, and whether the current 
trial second-step state was the same or different from the previous trial, for the 
model-based (asym model-based) and Bayesian inference (asym Bayes inference) 
strategies. The regression also included the other predictors used to explain 
the photometry signal in a. Box plots show the distribution of cross-subjects 
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Whiskers represent minimum and maximum values. Rhomboids mark outliers. 
Statistical significance was assessed using a two-sided t-test against zero, Bonferroni 
corrected, ***P = 3.88 × 10−27 (asym model-based); P = 4.74 × 10−20, P = 1.02 × 10−10 
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d, Predicted dopamine modulation in the linear regression in a, based on the 
direction of the second-step value update from c under the assumption that 
dopamine modulation is consistent with the canonical RPE framework (where 
the value of the new state—that is, second-state value at second-step cue—has a 
positive influence on dopamine activity, while the value of the previous state—that 
is, second-state value at outcome time—has a negative influence on dopamine 
activity). e, Coefficients in the linear regression predicting dopamine activity for the 
predictors in b, showing the influence of previous trial outcome when the second-
step state was the same (dark red) or different (green) from the previous trial in the 
VTA, NAc and DMS (See Extended Data Figs. 4 and 5 for dopamine concentrations; 
dLight). The shaded area as in a indicates the cross-subject mean and s.e.m. Dots 
indicate effect size of the statistically significant timepoints, Benjamini–Hochberg 
corrected. Photometry group numbers are the same as in Fig. 2.
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In line with our above results, second-step state values drove 
a biphasic response in NAc GCaMP and dLight signals, with a posi-
tive influence when the second-step state was revealed followed 
by a negative influence at outcome, consistent with RPE not direct 
value coding (Fig. 4b). VTA GCaMP also showed this biphasic pat-
tern but with a smaller negative response at outcome time relative to 
the positive response to the second-step state. The time course was 
more complex in the DMS, with peaks following both the second-step 
cue and second-step port entry, although the former only survived 
multiple-comparison correction across timepoints in the dLight data 
(Extended Data Fig. 7). The chosen action value also had a strong posi-
tive influence on activity in all three regions around the time of the 
choice, which then reversed in all the regions when the second-step 
value was revealed, again consistent with RPE (Fig. 4c).

In addition to these RPE-like signals, dopamine was also transiently 
modulated by lateralized movement (Fig. 4d and Extended Data Figs. 4, 
6 and 7). Consistent with previous reports6, activity in the DMS but not 
the VTA or NAc was modulated after initiating a contralateral choice. 
Unlike previous studies, here the task necessitated a second lateral-
ized movement (in the opposite direction) from the choice port back 
to the centrally located second-step reward port. This did not evoke 
a response in DMS activity, but did in VTA and NAc activity (note the 
negative predictor loadings for the VTA and NaC in Fig. 4d following 
the choice indicate increased activity for contralateral movements 
from the choice port back to the second-step port).

Reward rate had a strong positive influence on dopamine in 
all three regions (Fig. 4e and Extended Data Figs. 4, 6 and 7). Unlike 
the influence of action/state values and rewards, which were tightly 
time-locked to trial events (Fig. 4a–c), reward rate positively influenced 
activity at all timepoints, with little modulation by specific trial events 
(Fig. 4e,f). This reward rate signal was also present in NAc dopamine 
concentrations, but negligible in DMS concentrations (Extended Data 
Fig. 7).

In sum, these data demonstrate that dopamine carries informa-
tion about (i) action and state values in a manner consistent with RPE 
signaling, (ii) lateralized movement and (iii) recent reward rate. While 
these signals exist in parallel, they can nonetheless be dissociated based 
on their timescale and their lateralization.

Dopamine does not mediate the reinforcing effect of task 
rewards
To assess the causal influence of dopamine on choices, we manipulated 
dopamine activity in a new cohort of mice expressing either channel
rhodopsin (ChR2; N = 7) or a control fluorophore (EYFP, N = 5; Fig. 5a 
and Extended Data Fig. 8a) in VTA dopamine neurons. We verified that 
our stimulation parameters (five pulses, 25 Hz, ∼8–10 mW power) were 
sufficient to promote and maintain intracranial self-stimulation in the 
ChR2 group compared to YFP controls (t(10) = 3.107, P = 0.011, 95% 
confidence interval (CI; 68.18, 414.07), Cohen’s d = 1.819) using an assay 
where optical stimulation was delivered contingent on nose-poking in 
a different context from the two-step task (Fig. 5b).

We then examined the effect on two-step task behavior of optoge-
netic stimulation at two different timepoints: (i) after the first-step 
choice, at the time of second-step cue onset, or (ii) at outcome-cue 

presentation (Fig. 5d,g; 25% stimulated trials, stimulation timepoint 
fixed for each session, counterbalanced across sessions and mice; 
N = 6–8 sessions per mouse and stimulation type). We again used a 
mixed-effects logistic regression approach (Fig. 1e), here adding stimu-
lation and its interaction with transition and outcome as regressors. 
Note that if the effects of rewards are mediated by dopamine, we would 
expect stimulation to act like a reward, causing positive loading on 
the transition × stimulation regressor, or, if stimulation interacts with 
outcome (reward/omission), on the transition × outcome × stimula-
tion regressor; if, however, optogenetic activation simply reinforces 
the previous choice, this would be evident as positive loading on the 
stimulation regressor (Fig. 5c).

Data from both groups (YFP and ChR2) and each stimulation type 
(non-stimulated trials, stimulation after first-step choice and stimu-
lation at outcome) were included in a mixed-effects logistic regres-
sion. This revealed a significant stimulation type 1-by-group effect 
(β = −0.053, s.e. = 0.024, z = −2230, P = 0.026; Extended Data Fig. 8b). 
To explore this effect, we performed separate logistic mixed-effects 
regressions for each group and each stimulation type (stimulation 
after first-step choice and stimulation at outcome).

In the ChR2 group, stimulating dopamine neurons after the 
first-step choice was reinforcing; it significantly increased the prob-
ability of repeating that choice on the next trial (β = 0.091, s.e. = 0.035, 
z = 2.645, P = 0.008, mixed-effects logistic regression; Fig. 5f). This 
stimulation did not significantly interact with either the transition or 
the outcome in its effect on next trial choice (all P > 0.069). This is in 
line with the intracranial self-stimulation result (Fig. 5b) and previous 
reports5,7,8,30 showing that dopamine activation promotes repeating 
recent actions.

Strikingly, stimulating dopamine neurons at the time of trial out-
come—where we observed large increases or decreases in dopamine 
following reward or omission, respectively—had no significant influ-
ence on the subsequent choice (Fig. 5i); it did not reinforce the pre-
ceding first-step choice (effect of stimulation: β = 0.041, s.e. = 0.030, 
z = 1.378, P = 0.168), nor act like a reward by interacting with the state 
transition (β = −0.011, s.e. = 0.030, z = −0.355, P = 0.723), nor modify 
the effect outcomes on choices (stimulation–transition–outcome 
interaction: β = −0.014, s.e. = 0.030, z = −0.464, P = 0.643). No effect 
of stimulation was found in the YFP group for either stimulation types 
(all P > 0.456). To evaluate the strength of this null result in the ChR2 
group, we computed a Bayes factor (B = 0.048) for whether dopamine 
stimulation acted like a task reward or had no effect. This indicated the 
manipulation result provides ‘strong evidence’ (using the classification 
in ref. 31) against dopamine stimulation recapitulating the behavioral 
consequences of rewards in this task.

By contrast, while stimulation after the first-step choice had 
no effect on the latency to initiate the next trial (Fig. 5e, t(6) = 0.347, 
P = 0.740, 95% CI (−30.25, 40.25), Cohen’s d = 0.034), stimulation at out-
come significantly reduced the latency to initiate the next trial (Fig. 5h,  
t(6) = 4.228, P = 0.0055, 95% CI (20.98, 78.6), Cohen’s d = 0.369). Again, 
there was no effect on this latency in the YFP group (Fig. 5e, stimula-
tion after choice: t(4) = 0.816, P = 0.460, 95% CI (−62.7, 114.9), Cohen’s 
d = 0.302; Fig. 5h, stimulation at outcome time: t(4) = 1.713, P = 0.162, 
95% CI (−9.87, 41.67), Cohen’s d = 0.141).

Fig. 4 | Simultaneous RPE, reward rate and lateralized movement signals 
in dopamine activity. a–e, Coefficients from the regression using the value 
estimates from the asymmetric Bayesian inference model, predicting dopamine 
activity for each timepoint in the trial for each region, showing the cross-subject 
mean and s.e.m. (shaded area). Dots indicate effect size at timepoints where 
coefficients are statistically significant, assessed by a two-sided t-test comparing 
the cross-subject distribution against zero, Benjamini–Hochberg corrected for 
comparison of multiple timepoints. a, Reward, current trial outcome. b, Value 
of the second step reached on the current trial derived from the asymmetric 
Bayesian inference model. c, Value of the chosen first-step action derived from 

the asymmetric Bayesian inference model. d, Contralateral first-step choice 
(coded according to the initial choice—left/right—relative to the hemisphere 
being recorded from). e, Recent reward rate (exponential moving average 
with tau = 8 trials—similar results were obtained using time constants of 5–15 
trials) and previous trial outcome. f, Mean z-score activity split by rewarded/
unrewarded trials and recent reward rate. Shaded area indicates the s.e.m. Blue 
denotes a high reward rate > 0.7 rewards/trial (exponential moving average with 
tau = 10 trials). Green denotes a medium reward rate (between 0.4 and 0.7). Red 
denotes a low reward rate (less than 0.4). Photometry group numbers are the 
same as in Fig. 2.
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To further corroborate that the reward effects observed in the 
behavior are independent of dopamine, we repeated the previous 
experiment, but now using either a soma-targeted anion-conducting 

ChR2 to inhibit VTA dopamine neurons (GtACR2, N = 7) or a control 
fluorophore (tdTomato, N = 5; Extended Data Fig. 8a). Our stimula-
tion parameters (1 s continuous, 5 mW) were effective at negatively 
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reinforcing an immediately preceding action in a two-alternative 
forced-choice control task (Extended Data Fig. 8c). Nonetheless, inhib-
iting dopamine neurons during the two-step task had no effect on 
performance (no effect of stimulation by opsin group either in isolation 
or interacting with other trial events, all P > 0.283). To corroborate this 
null result, we again calculated the Bayes factor for the GtACR2 group 
at outcome-time stimulation (B = 0.062), which indicated ‘strong evi-
dence’ against dopamine inhibition modulating the effects of outcome 
on subsequent choices.

Therefore, while optogenetic activation or inhibition of VTA dopa-
mine neurons was sufficient to promote or reduce the likelihood of 
repeating an immediately preceding action, respectively, it completely 

failed to recapitulate the behavioral consequences of natural rewards 
at outcome, despite reward delivery and omission driving the largest 
dopamine signals observed in the task.

Neural network model reproduces experimental data
Our behavioral and dopamine analyses demonstrate subjects inferred 
the hidden state of the reward probabilities by observing where rewards 
were obtained, while our optogenetic manipulations indicate these 
belief updates (changes in estimates of the hidden state) were not 
caused by dopamine. This raises several questions: How do subjects 
learn there is a hidden state that controls the reward probability at both 
ports? Where and how are beliefs about the hidden state represented 
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the interquartile range, with horizontal lines representing first quartile, median 
and third quartile, from bottom to top. Whiskers represent minimum and 
maximum values. Rhomboids mark outliers. *P = 0.011 two-sided independent 
samples t-test. c, Predictions on the effect of VTA dopamine (DA) optogenetic 
activation on animals’ subsequent choices. d–f, Effect of optogenetic stimulation 
200 ms after choice in the control (YFP) and ChR2 groups. g–i, Effect of 
optogenetic stimulation at time of the trial outcome cue. d,g, Optogenetic 

stimulation schematic. e,h, Mean latency to initiate a new trial after the center 
poke illuminates following stimulated and non-stimulated trials. Dots indicate 
individual animals, and error bars show the s.e. **P = 0.0055, two-sided paired 
t-test. f,i, Mixed-effects logistic regression predicting repeating the same 
choice on the next trial using the regression model from Fig. 1e, with additional 
regressors modeling the effect of stimulation and its interaction with trial events. 
Only regressors showing stimulation effects are shown here. See Extended 
Data Fig. 8 for the full model including both groups (YFP and ChR2) and the 
three stimulation types (non-stim, stim at choice, stim at outcome). Error bars 
mixed-effects model estimate ± s.d.; statistical significance was assessed using a 
likelihood-ratio test with type 3 sums of squares. •P = 0.069, **P = 0.008. YFP: n = 5 
animals, 13,079 trials (choice-time stimulation sessions), 15,419 trials (outcome-
time stimulation sessions); ChR2: n = 7 animals, 20,817 trials (choice-time 
stimulation sessions), 23,051 trials (outcome-time stimulation sessions).
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and updated? How does state inference interact with the prominent 
RPE signals we observe in dopamine activity?

One possibility is that recurrent networks in cortex learn to infer 
the hidden states by predicting observations, while RL mechanisms in 
basal ganglia learn the corresponding value and appropriate action. To 
test this hypothesis, we implemented a simple neural network model 
of cortex-basal ganglia circuits (Fig. 6).

The task was modeled as having five actions corresponding to the 
five nose-poke ports, and five observable states corresponding to trial 
events (for example, choice state or up-active), such that completing 
each trial required a sequence of three actions (Fig. 6a). PFC was mod-
eled as a recurrent neural network that received at each time step an 
observation Ot (the observable state) and the preceding action At-1. PFC 
activity and observations provided input to a feedforward network 
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rewards generated by the task, and actions selected by the model, across 
two simulated trials comprising six time steps. b, Diagram of model used in c 
and d. c, Stay probability analysis for behavior generated by network model 
shown in b. d, Activity of the PFC network in the task’s choice state across 
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h, Effect of trial outcome (rewarded versus non-rewarded) on the value of the 
second-step state where reward was received (same) and on the other second-
step state (different). ***P = 1.55 × 10−6 (same), **P = 0.00798 (different).  
i, Effect of simulated optogenetic stimulation of dopamine neurons, either 
immediately after taking the first-step choice (top) or at the time of trial 
outcome (bottom). Stimulation was modeled as modifying weights in the 
basal ganglia network as by a positive RPE. Extended Data Fig. 9 shows the 
analyses from h and i for the model shown in b. Individual dots reflect each 
simulated run (N = 12), and error bars indicate the s.e.m. Significance was 
assessed using a two-sided t-test against zero. ***P = 1.33 × 10−5.
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representing basal ganglia, comprising a single layer of rectified linear 
units with two output layers: a scalar estimate of the current value Vt (that 
is, expected discounted long-run reward) and a vector of action prob-
abilities that determined the next action At. The PFC network was trained 
using gradient descent to predict the next observation given the history 
of observations and actions. The basal ganglia network was trained using 
actor-critic RL to estimate the value and select actions given its current 
input. Network weights were updated gradually across training, and 
held constant for the simulations analyzed in Fig. 6, such that changes 
in network activity and behavior from trial to trial were mediated only 
by the changing input and recurrent activity it induced in PFC.

PFC activity tracked the hidden state of the reward probabili-
ties across trials. Notably, this was true in the choice state (Fig. 6d) 
even though the next observation in this state does not depend on 
the reward probabilities (as it is either up-active or down-active). How-
ever, to accurately predict trial outcomes, the network must carry 
information provided by previous outcomes forward through time 
in its recurrent activity, causing it to be present throughout the trial. 
The model’s choices tracked the high reward probability option (Fig. 
6d), demonstrating that the basal ganglia network was able to use 
the reward probability information present in its PFC input to select 
appropriate actions.

Stay probability showed a strong interaction between transition 
and outcome; that is, the model repeated choices following rewarded 
common transitions and non-rewarded rare transitions. While this is 
the pattern expected for an agent that infers the hidden state of the 
reward probabilities and has a fixed mapping from this to the first-step 
choice24 (Fig. 1g), it can also be generated by model-based RL prospec-
tively evaluating actions by predicting the states they will lead to24,26. 
However, that is not what is happening here: the PFC network only 
predicts the next observation after an action has been selected, and 
this prediction is used only for updating PFC network weights.

The model did not exhibit the asymmetric learning from reward 
and omission observed in the mice. We showed in Fig. 1i,j that models 
which use Bayesian inference to track the reward probabilities exhibit 
this asymmetry if they treat rewarded outcomes as distinct obser-
vations based on where they occur (that is, top/bottom port), but 
non-rewarded outcomes as the same observation irrespective of where 
they occur. We therefore asked if this mechanism could generate such 
asymmetry in the network model. We modified the input provided to 
the PFC network such that on each time step PFC received the observa-
tion gated by whether reward was received, such that on non-rewarded 
time steps the input was a zero vector (Fig. 6e). PFC activity and choices 
still tracked the task reward probabilities (Fig. 6g), but now the stay 
probabilities recapitulated the asymmetry between rewarded and 
non-rewarded outcomes seen in the mice (Fig. 6f). As with the explicitly 
Bayesian models (Fig. 3c), the network model reproduced the nonlo-
cal value updates we observed for the dopamine signal (Fig. 6h): that 
is, reward in one second-step state increased the value of that state 
(two-sided t-test, t(11) = 9.28, P < 0.001) but also decreased the value of 
the other second-step state (two-sided t-test, t(11) = −3.23, P = 0.008).

Finally, we asked how optogenetic stimulation of dopamine on 
individual trials would affect the model’s choice behavior, assum-
ing it acted by updating weights in the basal ganglia network as if it 
were a positive RPE (Fig. 6i). Stimulation following first-step choice 
increased the probability of repeating the choice on the next trial 
(two-sided t-test, t(11) = 7.41, P < 0.001) as observed experimentally. 
Crucially, stimulation at trial outcome had no effect on next trial choice 
(two-sided t-test, all |t(11)| < 0.30, P > 0.77), again recapitulating the 
data. This is because an RPE following an action updates the network 
weights to increase the probability of selecting the same action in the 
same state in future. Therefore, stimulation following a choice affects 
next trial choice, but stimulation following, for example, an up-poke 
in the up-active state has no effect on choosing left versus right in the 
next trial’s choice state.

In sum, the network model recapitulates our key experimental 
findings that both behavior and the value information that drives 
dopaminergic RPEs are consistent with state inference, but dopamine 
does not mediate the effect of rewards on subsequent choices.

Discussion
By recording and manipulating dopamine activity in a two-step deci-
sion task, we obtained results that support an integrated framework 
for understanding reward-guided decision-making. Rewards did not 
simply reinforce preceding choices, but rather promoted choosing the 
action that commonly led to the state where the reward was obtained, 
consistent with previous work with similar tasks25,32. Dopamine carried 
rich information about value, action and recent reward history, respond-
ing strongly and transiently to both rewards and states that predicted 
reward. The influence of state values on mesolimbic dopamine exhibited 
a key signature of an RPE27,28,33: a positive response when the state was 
entered followed by a negative response at trial outcome. Addition-
ally, rewards obtained in one second-step state negatively influenced 
the dopamine response upon reaching the other second-step state on 
the subsequent trial, consistent with an inferred value update. Strik-
ingly, however, neither optical activation nor inhibition of dopamine 
neurons at the time of trial outcome—when dopamine responses were 
maximal—influenced next trial choice, despite positive controls in the 
same subjects verifying the manipulations were effective.

These findings are not consistent with value updates driven by 
dopaminergic RPEs changing subject’s choice preference from trial 
to trial. The observed nonlocal value updates are consistent with the 
animals understanding that a single hidden variable controls both 
reward probabilities. However, if animals solve the task by state infer-
ence, how do they learn to track the hidden state, and what function 
do the observed dopaminergic RPEs serve34?

Our computational model suggests a possible answer. A recurrent 
network representing frontal cortex learned to track the hidden state 
of the reward probabilities by predicting observations. A feedforward 
network representing basal ganglia learned values and appropriate 
actions (‘policies’) over the observable and inferred state features using 
RL, generating choices that closely resembled those of the subjects. 
Crucially, the short-timescale effect of rewards on subsequent choices 
was driven by changes in recurrent activity in the PFC, not synaptic 
weight changes in either network. Consistent with this, two recent 
studies found that medial frontal and retrosplenial cortex activity 
tracks the reward probabilities during probabilistic reversal learning, 
not only at decision or outcome time, but also throughout the inter-
trial interval35,36. This is necessary if recurrent activity is responsible 
for carrying forward information about the recent reward history to 
guide choices. This simple model also reproduced our key findings of 
nonlocal value updates, and the sensitivity of choices to optogenetic 
stimulation at different timepoints.

This two-process account of reward-guided decision-making can 
help reconcile the burgeoning evidence for state inference regulating 
both behavior10,12–16 and neural activity in cortex13,37–42 and the dopamine 
system14,19–21,43,44, with the long-standing literature supporting dopamine 
activity resembling and acting like an RPE signal1–4. It also helps explain 
previous findings that although stimulating/inhibiting dopamine fol-
lowing an action can bidirectionally modulate the probability of repeat-
ing the action in future5–8, inhibiting dopamine at outcome time can fail 
to block the effect of rewards on subsequent choices5,6, and pharmaco-
logical manipulation of dopamine signaling in reward-guided decision 
tasks often has limited or no effect on learning10,45–47.

Our network model is related to a recent proposal that frontal cor-
tex acts as a meta-RL system48. In both models, synaptic plasticity acts 
on a slow timescale over task acquisition to sculpt recurrent network 
dynamics that generate adaptive behavior on a fast timescale. Unlike 
this previous work, our model differentiates between cortex and basal 
ganglia, both with respect to network architecture (recurrent versus 
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feedforward) and type of learning (unsupervised versus reinforce-
ment). This builds on long-standing ideas that the cortex implements 
a hierarchical predictive model of its sensory inputs49,50, while the basal 
ganglia implement temporal-difference RL2,51. It is also motivated by 
work in machine learning in which Markovian state representations 
(which integrate the observation history to track hidden states) are 
learned by predicting observations52–55, enabling RL to solve tasks 
where the current observation is insufficient to determine the cor-
rect action. There are also commonalities with connectionist models 
of learning phenomena where one stimulus changes the meaning of 
another, including occasion setting, configural and contextual learn-
ing56,57. These use hidden units between an input and output to allow 
modulatory interactions between stimuli58,59, just as in our model the 
hidden units in basal ganglia allow for nonlinear combination of the 
current observation and PFC activity to determine value and action.

Recent work has questioned the relative influence of value and RPE 
on dopamine activity and striatal concentrations4,5,29. We observed the 
biphasic influences of the values of first-step actions and second-step 
states, a key signature of RPE, in VTA, NAc and DMS calcium activity 
(Fig. 3 and Extended Data Figs. 4 and 6), and NAc and DMS dopamine 
concentrations (Extended Data Figs. 4 and 7). This biphasic pattern 
was most prominent in the NAc. Intriguingly, when evaluating only 
the influence of the most recent outcome on second-step state value, 
rather than the extended history, the biphasic pattern was prominent 
in the NAc but absent in the VTA (Fig. 3e). Differences between the 
VTA and striatal signals could reflect local modulation of terminals, 
for example, by cholinergic neurons60, or alternatively the VTA signal 
may be influenced by calcium activity in dendrites that is partially 
decoupled from spiking due to somatic inhibition.

In parallel, we observed two other important modulators associ-
ated with dopamine function—recent reward rate and movement—both 
of which accounted for separate variance from the value of trial events. 
Reward rate had positive sustained effects across the trial from before 
initiation to after outcome, unlike the influence of state and action 
values which were tightly time-locked to the corresponding behavio-
ral event. This appears broadly consistent with theoretical proposals 
that tonic dopamine represents average reward rate, which acts as the 
opportunity cost of time in average reward RL61. Reward rate signaling 
may mediate the effect of dopamine manipulations on motivation and 
task engagement observed in other studies46. The correlation between 
reward rate and NAc dopamine concentrations is consistent with recent 
reports5,29, but that with VTA calcium is unexpected given previous 
reports of no correlation with VTA spikes29.

By contrast, the influence of movement was transient, lateralized 
and exhibited distinct dynamics in the DMS and the VTA/NAc. Specifi-
cally, DMS, but not NAc or VTA, dopamine was selectively influenced at 
the time of the initial choice, with increased activity in the hemisphere 
contralateral to the movement direction consistent with previous 
studies6. Intriguingly, at the time of the second movement from the 
lateralized choice port to the reward port, significant modulations were 
instead observed in the NAc (with a similar pattern in the VTA), but not 
in the DMS, again with increased dopamine activity contralateral to 
the movement direction. This suggests that an interplay of dopamine 
dynamics across striatum might shape movement direction as animals 
proceed through a sequence to reward.

Conclusion
Our findings emphasize that flexible behavior involves two processes 
operating in parallel over different timescales: inference about the cur-
rent state of the world, and evaluation of those states and actions taken 
in them. The involvement of dopamine in updating values has rightly 
been a major focus of accounts of flexible decision-making. However, 
in the structured environments common both in the laboratory and 
the real world, it is only half the picture. Our data show that during 
reward-guided decision-making by experienced subjects, the effect 

of rewards on choices is due to the information they provide about the 
state of the world, not the dopaminergic RPEs they generate.
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References
1.	 Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for 

mesencephalic dopamine systems based on predictive Hebbian 
learning. J. Neurosci. 16, 1936–1947 (1996).

2.	 Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of 
prediction and reward. Science 275, 1593–1599 (1997).

3.	 Eshel, N. et al. Arithmetic and local circuitry underlying dopamine 
prediction errors. Nature 525, 243–246 (2015).

4.	 Kim, H. R. et al. A unified framework for dopamine signals across 
timescales. Cell 183, 1600–1616 (2020).

5.	 Hamid, A. A. et al. Mesolimbic dopamine signals the value of 
work. Nat. Neurosci. 19, 117–126 (2016).

6.	 Parker, N. F. et al. Reward and choice encoding in terminals of 
midbrain dopamine neurons depends on striatal target. Nat. 
Neurosci. 19, 845–854 (2016).

7.	 Steinberg, E. E. et al. A causal link between prediction errors, 
dopamine neurons and learning. Nat. Neurosci. 16, 966–973 (2013).

8.	 Ilango, A. et al. Similar roles of substantia nigra and ventral 
tegmental dopamine neurons in reward and aversion. J. Neurosci. 
34, 817–822 (2014).

9.	 Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. 
Orbitofrontal cortex as a cognitive map of task space. Neuron 81, 
267–279 (2014).

10.	 Costa, V. D., Tran, V. L., Turchi, J. & Averbeck, B. B. Reversal 
learning and dopamine: a bayesian perspective. J. Neurosci. 35, 
2407–2416 (2015).

11.	 Bartolo, R. & Averbeck, B. B. Inference as a fundamental process 
in behavior. Curr. Opin. Behav. Sci. 38, 8–13 (2021).

12.	 Vertechi, P. et al. Inference-based decisions in a hidden state 
foraging task: differential contributions of prefrontal cortical 
areas. Neuron 106, 166–176 (2020).

13.	 Hampton, A. N., Bossaerts, P. & O’Doherty, J. P. The role of the 
ventromedial prefrontal cortex in abstract state-based inference 
during decision making in humans. J. Neurosci. 26, 8360–8367 
(2006).

14.	 Wimmer, G. E., Daw, N. D. & Shohamy, D. Generalization of value in 
reinforcement learning by humans. Eur. J. Neurosci. 35, 1092–1104 
(2012).

15.	 Baram, A. B., Muller, T. H., Nili, H., Garvert, M. M. & Behrens, T. E. J.  
Entorhinal and ventromedial prefrontal cortices abstract and 
generalize the structure of reinforcement learning problems. 
Neuron 109, 713–723 (2021).

16.	 Samborska, V., Butler, J. L., Walton, M. E., Behrens, T. E. J. & Akam, T.  
Complementary task representations in hippocampus and 
prefrontal cortex for generalizing the structure of problems. Nat. 
Neurosci. 25, 1314–1326 (2022).

17.	 Gallistel, C. R., Mark, T. A., King, A. P. & Latham, P. E. The rat 
approximates an ideal detector of changes in rates of reward: 
implications for the law of effect. J. Exp. Psychol. Anim. Behav. 
Process. 27, 354–372 (2001).

18.	 Gershman, S. J. & Niv, Y. Learning latent structure: carving nature 
at its joints. Curr. Opin. Neurobiol. 20, 251–256 (2010).

19.	 Bromberg-Martin, E. S., Matsumoto, M., Hong, S. & Hikosaka, O. A 
pallidus–habenula–dopamine pathway signals inferred stimulus 
values. J. Neurophysiol. 104, 1068–1076 (2010).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01542-x


Nature Neuroscience | Volume 27 | February 2024 | 286–297 297

Article https://doi.org/10.1038/s41593-023-01542-x

20.	 Babayan, B. M., Uchida, N. & Gershman, S. J. Belief state 
representation in the dopamine system. Nat. Commun. 9, 1891 (2018).

21.	 Starkweather, C. K., Babayan, B. M., Uchida, N. & Gershman, S. J. 
Dopamine reward prediction errors reflect hidden-state inference 
across time. Nat. Neurosci. 20, 581–589 (2017).

22.	 Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. 
Dopamine neurons can represent context-dependent prediction 
error. Neuron 41, 269–280 (2004).

23.	 Lak, A. et al. Dopaminergic and prefrontal basis of learning  
from sensory confidence and reward value. Neuron 105,  
700–711 (2020).

24.	 Akam, T., Costa, R. & Dayan, P. Simple plans or sophisticated 
habits? State, transition and learning interactions in the two-step 
task. PLoS Comput. Biol. 11, e1004648 (2015).

25.	 Akam, T. et al. The anterior cingulate cortex predicts future  
states to mediate model-based action selection. Neuron 109, 
149–163 (2021).

26.	 Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J.  
Model-based influences on humans’ choices and striatal 
prediction errors. Neuron 69, 1204–1215 (2011).

27.	 Behrens, T. E. J., Hunt, L. T., Woolrich, M. W. & Rushworth, M. F. S.  
Associative learning of social value. Nature 456, 245–249 (2008).

28.	 Niv, Y., Edlund, J. A., Dayan, P. & O’Doherty, J. P. Neural prediction 
errors reveal a risk-sensitive reinforcement-learning process in 
the human brain. J. Neurosci. 32, 551–562 (2012).

29.	 Mohebi, A. et al. Dissociable dopamine dynamics for learning and 
motivation. Nature 570, 65–70 (2019).

30.	 Pan, W. X., Coddington, L. T. & Dudman, J. T. Dissociable 
contributions of phasic dopamine activity to reward and 
prediction. Cell Rep. 36, 109684 (2021).

31.	 Jeffreys, H. Theory of Probability (Clarendon Press, 1961).
32.	 Miller, K. J., Botvinick, M. M. & Brody, C. D. Dorsal hippocampus 

contributes to model-based planning. Nat. Neurosci. 20,  
1269–1276 (2017).

33.	 Rutledge, R. B., Dean, M., Caplin, A. & Glimcher, P. W. Testing  
the reward prediction error hypothesis with an axiomatic model. 
J. Neurosci. 30, 13525–13536 (2010).

34.	 Akam, T. & Walton, M. E. What is dopamine doing in model-based 
reinforcement learning? Curr. Opin. Behav. Sci. 38, 74–82 (2021).

35.	 Bari, B. A. et al. Stable representations of decision variables for 
flexible behavior. Neuron 103, 922–933 (2019).

36.	 Hattori, R. & Komiyama, T. Context-dependent persistency as 
a coding mechanism for robust and widely distributed value 
coding. Neuron 110, 502–515 (2022).

37.	 Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human 
orbitofrontal cortex represents a cognitive map of state space. 
Neuron 91, 1402–1412 (2016).

38.	 Klein-Flügge, M. C., Wittmann, M. K., Shpektor, A., Jensen, D. E. A.  
& Rushworth, M. F. S. Multiple associative structures created by 
reinforcement and incidental statistical learning mechanisms. 
Nat. Commun. 10, 4835 (2019).

39.	 Bradfield, L. A., Dezfouli, A., van Holstein, M., Chieng, B. & 
Balleine, B. W. Medial orbitofrontal cortex mediates outcome 
retrieval in partially observable task situations. Neuron 88, 
1268–1280 (2015).

40.	 Starkweather, C. K., Gershman, S. J. & Uchida, N. The medial 
prefrontal cortex shapes dopamine reward prediction errors 
under state uncertainty. Neuron 98, 616–629 (2018).

41.	 Bartolo, R. & Averbeck, B. B. Prefrontal cortex predicts state 
switches during reversal learning. Neuron 106, 1044–1054 (2020).

42.	 Jones, J. L. et al. Orbitofrontal cortex supports behavior and 
learning using inferred but not cached values. Science 338, 
953–956 (2012).

43.	 Gershman, S. J. & Uchida, N. Believing in dopamine. Nat. Rev. 
Neurosci. 20, 703–714 (2019).

44.	 Sadacca, B. F., Jones, J. L. & Schoenbaum, G. Midbrain dopamine 
neurons compute inferred and cached value prediction errors in a 
common framework. Elife 5, e13665 (2016).

45.	 Grogan, J. P. et al. Effects of dopamine on reinforcement learning 
and consolidation in Parkinson’s disease. Elife 6, e26801 (2017).

46.	 Korn, C. et al. Distinct roles for dopamine clearance mechanisms 
in regulating behavioral flexibility. Mol. Psychiatry 26, 7188–7199 
(2021).

47.	 Eisenegger, C. et al. Role of dopamine D2 receptors in human 
reinforcement learning. Neuropsychopharmacology 39, 2366–
2375 (2014).

48.	 Wang, J. X. et al. Prefrontal cortex as a meta-reinforcement 
learning system. Nat. Neurosci. 21, 860–868 (2018).

49.	 Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex:  
a functional interpretation of some extra-classical receptive-field 
effects. Nat. Neurosci. 2, 79–87 (1999).

50.	 Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. 
Lond. B. Biol. Sci. 360, 815–836 (2005).

51.	 Doya, K. Complementary roles of basal ganglia and cerebellum in 
learning and motor control. Curr. Opin. Neurobiol. 10,  
732–739 (2000).

52.	 Sutton, R. S. & Barto, A. G. Reinforcement Learning: an Introduction 
(MIT press, 2018).

53.	 Littman, M. & Sutton, R. S. Predictive representations of state. 
In Advances in Neural Information Processing Systems (eds. T. 
Dietterich et al.) 14 (MIT Press, 2001).

54.	 Lin, L. & Mitchell, T. M. Reinforcement learning with hidden 
states. In From Animals to Animats 2: Proceedings of the Second 
International Conference on Simulation of Adaptive Behavior (eds 
Meyer, J.-A., Roitblat, H. L., Wilson, S. W.) (MIT Press, 1993).

55.	 Igl, M., Zintgraf, L. M., Le, T. A., Wood, F. & Whiteson, S. Deep 
variational reinforcement learning for POMDPs. In Proceedings of the 
35th International Conference on Machine Learning 2117–2126 (2018).

56.	 Pearce, J. M. & Bouton, M. E. Theories of associative learning in 
animals. Annu. Rev. Psychol. 52, 111–139 (2001).

57.	 Fraser, K. M. & Holland, P. C. Occasion setting. Behav. Neurosci. 
133, 145–175 (2019).

58.	 Delamater, A. R. On the nature of CS and US representations in 
Pavlovian learning. Learn. Behav. 40, 1–23 (2012).

59.	 Schmajuk, N. A., Lamoureux, J. A. & Holland, P. C. Occasion setting: 
a neural network approach. Psychol. Rev. 105, 3–32 (1998).

60.	 Threlfell, S. & Cragg, S. J. Dopamine signaling in dorsal versus 
ventral striatum: the dynamic role of cholinergic interneurons. 
Front. Syst. Neurosci. 5, 11 (2011).

61.	 Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity 
costs and the control of response vigor. Psychopharmacology 191, 
507–520 (2007).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended use 
is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder. To view 
a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natureneuroscience
http://creativecommons.org/licenses/by/4.0/


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01542-x

Methods
Subjects
All procedures were performed in line with the UK Animal (Scientific 
Procedure) Act 1986 and in accordance with the University of Oxford 
animal use guidelines. They were approved by the local ethical review 
panel at the Department of Experimental Psychology, University 
of Oxford, and performed under UK Home Office Project Licence 
P6F11BC25. Twelve DAT-Cre heterozygous mice (DAT-Cre+/−, 7 females 
and 5 males) were used for the GCaMP photometry recordings, 6 
wild-type C57BL/6 mice (DAT-Cre−/−, 3 females and 3 males) for the 
dLight recordings, and 12 DAT-Cre mice (DAT-Cre+/−, YFP: 2 females and 
3 males; ChR2: 4 females and 3 males) for the optogenetic activation 
experiment, and 12 DAT-Cre mice (DAT-Cre+/−, tdTomato: 3 females and 
2 males; GtACR2: 4 females and 3 males) for the optogenetic inhibi-
tion experiment. All animals were bred by crossing DAT-Cre male with 
C57BL/6 female mice (Charles River, UK). Mice were aged 8–16 weeks 
at the start of behavioral training. Animals were typically housed in 
groups of 2–4 throughout training and testing. Temperature was kept 
at 21 ± 2 °C under 55% ± 10% humidity on a 12-h light–dark cycle. Animals 
were tested during the light phase.

Behavioral setup
The task was run in custom-built 12 × 12 cm operant boxes (design files 
at https://github.com/pyControl/hardware/tree/master/Behaviour_
box_small/) controlled using pyControl62. Five nose-poke ports were 
located on the back wall of the boxes—a central initiation port flanked 
by two choice ports 4 cm to the left and right and two second-step ports 
located 1.6 cm above and below the central poke. The second-step ports 
each had a solenoid to deliver water rewards. A speaker located above 
the ports was used to deliver auditory stimuli. Video data were acquired 
from an FLIR Chameleon 3 camera positioned above each setup 
using a Bonsai based workflow (https://github.com/ThomasAkam/
Point_Grey_Bonsai_multi_camera_acquisition/)63.

Behavioral task and training
The behavioral task was adapted from the human two-step task26. Each 
trial started with the central initiation port lighting up. Subjects initi-
ated the trial by poking the illuminated port, which caused the choice 
ports to illuminate. On free-choice trials (75% of trials), both the left and 
right port lit up, allowing subjects to choose, while on forced-choice 
trials only one randomly selected choice port lit up, forcing animals 
to select that specific port. Poking a choice port was followed, after 
a 200-ms delay, by the second-step port lighting up and 1-s presenta-
tion of one of two auditory cues (‘second-step cue’, either a 5-kHz or 
a 12-kHz tone depending on whether the top or bottom second-step 
port became active, counterbalanced across animals). Each choice 
port was commonly (80% trials) associated with transitioning to one 
second-step state (up or down) and rarely (20% trials) to the other. The 
transition structure was fixed for each animal across all sessions, and 
was counterbalanced across animals, that is, the task had two possible 
transition structures: transition type A, where a left choice commonly 
led to the up second-step port, and a right choice commonly led to the 
down second-step port; and the opposite for transition type B. The 
second-step port only became responsive to pokes after cue offset. 
Poking the second-step port triggered a 200-ms delay, after which a 
500-ms auditory cue signaled whether the trial was rewarded or not 
(same 5-kHz or 12-kHz tone as the second-step cue, counterbalanced 
across animals, with pulses delivered at 10 Hz on rewarded trials, white 
noise on unrewarded trials). Reward was delivered at the offset of this 
cue. To ensure mice knew when they had made a nose poke, a click 
sound was presented whenever the subject poked a port that was active 
(for example, the initiation port during the initiation state).

Reward probabilities for the two second-step ports changed in 
blocks. In non-neutral blocks, one second-step port had 80% reward 
probability and the other had 20% probability, while in neutral blocks 

both second-step ports were rewarded with 50% probability. Block 
transitions from non-neutral blocks were triggered 5 to 15 trials after 
mice crossed a threshold of 75% ‘correct’ choices (that is, choosing the 
higher reward probability), computed as the exponential moving aver-
age with a time constant of 8 free-choice trials. Transitions from neutral 
blocks were triggered after 20–30 trials. An intertrial interval of 2–4 s 
in duration started once the subject remained out of the second-step 
port for 250 ms after the trial outcome.

Training
Behavioral training took 4–6 weeks. Animals were put on water restric-
tion 48 h before starting training, and received 1 h ad-lib water access 
in their home cage 24 h before starting training. On training days (typi-
cally 6 d per week) animals usually received all their water from the 
task, but were topped up outside the task as necessary to maintain 
a body weight of >85% of their pre-restriction baseline. On days off 
from training, mice received 1 h ad-lib water access in their home cage. 
Water reward size was decreased from 15 µl to 4 µl across training to 
increase the number of trials performed and blocks experienced on 
each session.

Training consisted of multiple stages with increasing com-
plexity (Supplementary Table 4). At the first training stage 1.1, only 
the second-step ports were exposed, with all other ports covered. 
Second-step ports were illuminated in a pseudorandom order with an 
intertrial interval of 2–4 s. Poking an illuminated port delivered reward 
with 100% probability, with no auditory cues. When animals obtained 
>50 rewards on this stage, they transitioned to stage 1.2, where the 
auditory cues for second-step state and reward were introduced. Once 
animals obtained >70 rewards in a session, they were switched to stage 2 
on the next session. At stage 2, the choice ports were introduced, but all 
trials were forced choice, such that only one choice port lit up on each 
trial. Mice were switched to stage 3 when they obtained >70 rewards 
on a single session. At stage 3, the initiation poke was introduced, and 
when they obtained >70 rewards on a single session, they transitioned 
to stage 4 on the next training session. Stage 4 consisted of multiple 
substages where progressively more free-choice trials were introduced, 
and the reward probabilities gradually changed until reaching the final 
task parameters. Mice were transitioned to the next substage after 
two training sessions of 45 min or a single 90-min session, until they 
reached substage 4.6. Subjects were only transitioned to the final stage 
(full task) when they completed at least 5 blocks in a single session.

Surgery
Mice were anesthetized with isoflurane (3% induction, 0.5–1% main-
tenance), and injected with buprenorphine (0.08 mg per kg body 
weight), meloxicam (5 mg per kg body weight) and glucose saline 
(0.5 ml). Marcaine (maximum of 2 mg per kg body weight) was injected 
into the scalp and before placing mice into the stereotaxic frame. Mice 
were maintained at ∼37 °C using a rectal probe and heating blanket 
(Harvard Apparatus). Surgery proceeded as described below for the 
different experiments. After surgery, mice were given additional doses 
of meloxicam each day for 3 d after surgery, and were monitored care-
fully for 7 d after surgery.

GCaMP photometry
Mice were intracranially injected with 1 µl of saline containing a 1:10 
dilution of AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 (titer of 6.22 × 1012 viral 
genomes per ml (vg/ml), Penn Vector Core) and a 1:20 dilution of AAV1.
CAG.Flex.tdTomato.WPRE.bGH (AllenInstitute864; titer of 1.535 × 1012 
vg/ml, Penn Vector Core) at 2 nl s−1 in VTA (anteroposterior (AP): −3.3, 
mediolateral (ML): ±0.4, dorsoventral (DV): −4.3 from bregma) in one 
hemisphere for mesolimbic dopamine recordings in the VTA and NAc 
and VTA/substantia nigra pars compacta (AP: −3.1, ML: ±0.9, DV: −4.2 
from bregma) in the other hemisphere for DMS recordings. Three 
200-µm-diameter ceramic optical fibers were implanted chronically 
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in each animal in the VTA (AP: −3.3, ML: ±0.4, DV: −4.3 from bregma) 
and the NAc (AP: +1.4, ML: ±0.8, DV: −4.1 from bregma) in the same 
hemisphere, and DMS (AP: +0.5, ML: ±1.5–1.7, DV: −2.6 from bregma) 
in the contralateral hemisphere.

dLight photometry
Mice were intracranially injected with 500 nl of saline containing a 1:5 
dilution of pAAV5-CAG-dLight1.1 (titer of 1.4 × 1012 vg/ml; Addgene) 
and a 1:5 dilution of pssAAV-2/5-hSyn1-chI-tdTomato-WPRE-SV40p(A) 
(titer of 4.9 × 1011 vg/ml; ETH Zurich) at 2 nl s−1 in the NAc (AP: +1.4, ML: 
±0.8, DV: −4.1 from bregma) and DMS (AP: +0.5, ML: ±1.5/1.7, DV: −2.6 
from bregma) in opposite hemispheres. Two 200-µm-diameter ceramic 
optical fibers were implanted chronically in the injection sites.

Optogenetic manipulation
For optical activation experiments, mice were injected bilaterally with 
500 nl per hemisphere of saline containing either AAV2-EF1a-DIO-EYFP 
(titer of >1 × 1012 vg/ml, UNC Vector Core; YFP group) or rAAV2/
Ef1a-DIO-hchR2(E123t/T159C)-EYFP (titer of 5.2 × 1012 vg/ml, UNC Vec-
tor Core; ChR2 group) at 2 nl s−1 in the VTA (AP: −3.3, ML: ±0.4, DV: −4.3 
from bregma). For optical inhibition experiments, mice were injected 
bilaterally with 500 nl per hemisphere of saline containing a 1:10 dilu-
tion of either ssAAV-1/2-CAG-dlox-tdTomato(rev)-dlox-WPRE-bGHp(A) 
(titer of 7.9 × 1012 vg/ml; ETH Zurich; tdTomato group) or AAV1-hSy
n1-SIO-stGtACR2-FusionRed (titer of 1.9 × 1013 vg/ml; Addgene) 
(GtACR2 group) at 2 nl s−1 in the VTA (AP: −3.3, ML: ±0.4, DV: −4.3 from 
bregma). For both sets of experiments, two 200-µm-diameter ceramic 
optical fibers were implanted chronically targeting the injection sites 
at a 10° angle.

Histology
Mice were terminally anesthetized with sodium pentobarbital and 
transcardially perfused with saline and then 4% paraformaldehyde 
solution. Then, 50-µm coronal brain slices were cut, covering stria-
tum and VTA, and immunostained with anti-GFP and anti-TH primary 
antibodies, and Alexa Fluor 488 and Cy5 secondary antibodies. For the 
animals used on the optogenetic inhibition experiment, only anti-TH 
and Cy5 primary and secondary antibodies, respectively, were used. 
An Olympus FV3000 microscope was used to image the slices.

Photometry recordings
Dopamine calcium activity (GCaMP) and release (dLight) were recorded 
at a sampling rate of 130 Hz using pyPhotometry64. The optical sys-
tem comprised a 465-nm and a 560-nm LED, a five-port minicube and 
fiber-optic rotary joint (Doric Lenses) and two Newport 2151 photore-
ceivers. Time division illumination with background subtraction was 
used to prevent cross-talk between fluorophores due to the overlap 
of their emission spectra, and changes in ambient light from affecting 
the signal. Synchronization pulses from pyControl onto a digital input 
of the pyPhotometry board were used to synchronize the photometry 
signal with behavior64.

Photometry signals were pre-processed using custom Python 
code. A median filter (width of five samples) was first used to remove 
any spikes due to electrical noise picked up by the photodetectors. 
Afterwards, a 5-Hz low-pass filter was used to denoise the signal. To 
obtain motion correction of the signals, we band-passed the denoised 
signals between 0.001 Hz and 5 Hz, and used linear regression to predict 
the GCaMP or dLight signal using the control fluorophore (tdTomato) 
signal. The predicted signal due to motion was subtracted from the 
denoised signal. To correct for bleaching of the fiber and fluorophores, 
detrending of signals was performed using a double exponential fit to 
capture the temporal dynamics of bleaching: a first fast decay and a 
second slower one (Extended Data Fig. 10). Finally, the pre-processed 
dopamine signal was z-scored for each session to allow comparison 
across sessions and animals with different signal intensities.

For GCaMP, we recorded data from 12, 11 and 12 mice in VTA, NAc 
and DMS, respectively (in one animal, the fiber targeting the NAc did 
not exhibit any GCaMP modulation, which later histological analysis 
confirmed was caused by the fiber being in the anterior commissure). 
In the DMS, two animals—the two with most medial coordinates—were 
excluded from the main analyses of the effects of reward on subsequent 
dopamine activity as they presented a negative modulation to reward 
(Extended Data Fig. 3).

For dLight, we recorded data from 5 and 6 mice in the NAc and 
DMS, respectively (one mouse in the NAc did not present any dLight 
modulation; subsequent histological analysis confirmed that the fiber 
was misplaced into the ventricle).

Sessions in which there were large artifacts (large step change in 
recorded signals) introduced through a malfunctioning of the rotary 
joint or disconnection of the patch cord from the fiber, or where there 
was a complete loss of signal on one of the channels due to discharged 
battery during recording, were excluded. A total of 46 sessions (∼9% 
of the total) were removed from the analyses.

Optogenetic activation
VTA dopamine neurons were stimulated bilaterally using two 465-nm 
LEDs (Plexon Plexbright) connected to 200-µm 0.66-NA optical fiber 
patch cords. All stimulation experiments used stimulation parameters 
of five pulses at 25 Hz, 25% duty cycle and ∼8–10 mW optical power at 
the fiber tip.

First, as a positive control, we performed an intracranial 
self-stimulation assay in which mice were presented with either 4 or 
2 nose-poke ports, one of which triggered optical stimulation when 
poked. A minimum 1-s delay was imposed between stimulations. Mice 
were tested on intracranial self-stimulation during 40–60-min ses-
sions for 4 d.

We then tested the effect of optogenetic activation during the 
two-step task. On each stimulation session, we either stimulated (i) 
200 ms after the first-step choice at the time of second-step cue onset, 
or (ii) at outcome-cue onset. Stimulation occurred on 25% of the trials, 
under the constraints that (i) the trial after stimulation was always a 
free-choice trial, and (ii) there were always at least two non-stimulated 
trials after each stimulation. The stimulation sessions were inter-
spersed with baseline no-stimulation sessions (data not shown). The 
timing of stimulation was fixed within a session, with the session 
order counterbalanced across animals (for example, no-stimulation 
session → second-step cue stimulation session → outcome stimula-
tion session → no-stimulation session → outcome stimulation ses-
sion → second-step cue stimulation session).

Optogenetic inhibition
VTA dopamine neurons were inhibited bilaterally using two 465-nm 
LEDs (Plexon Plexbright) connected to 200-µm 0.66-NA optical fiber 
patch cords. All inhibition experiments used stimulation parameters 
of 1-s continuous light at ∼5 mW optical power at the fiber tip.

We first tested the effect of optogenetic inhibition on the two-step 
task. As in the stimulation experiment, on each inhibition session, 
we either inhibited (i) 200 ms after the first-step choice at the time 
of second-step cue onset, or (ii) at outcome-cue onset; baseline ses-
sions with no stimulation were interspersed with the stimulation ses-
sions (data not shown). Inhibition occurred on 25% of the trials under 
the same constraints as in the optogenetic activation experiment  
(see above).

As a positive control, we then performed a two-alternative 
forced-choice bias assay. Mice were presented with three ports: a cen-
tral initiation port, and left and right choice ports. Mice initiated each 
trial by poking the illuminated center port. This triggered either both 
the left and right ports to light up (free-choice trials, 50% of total) or 
just one choice port to illuminate. Poking an illuminated choice port 
led, after a 200-ms delay, to 500-ms presentation of an outcome cue 
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(5-kHz or 12-kHz tone—left or right frequency tone counterbalanced 
across animals—pulsed with 10 Hz on rewarded trials, white noise 
on unrewarded trials), after which, on rewarded trials, reward was 
delivered. The reward probability associated with choice of either 
the left or right port was fixed at 50% throughout. After 3 d of training 
without optical stimulation and once animals showed a consistent bias 
toward one of the choice ports for at least two consecutive days (termed 
the animal’s preferred choice), stimulation sessions commenced. In 
these, 1 s of continuous light stimulation was delivered coincident 
with the outcome cue on any trial when the preferred choice port was 
selected (on both free-choice and forced-choice trials). After 4 d, the 
light stimulation was then switched to be paired with selection of the 
other choice port for four more days. Each day, animals were tested on 
a single 60-min session.

Analysis
All behavioral and photometry analysis was performed using custom 
Python and R code.

Behavioral logistic regression model. The logistic regression analysis 
shown in Fig. 1e predicted repeating choices (or ‘staying’) as a function 
of the subsequent trial events, considering only free-choice trials, 
implemented as a mixed-effects model using the afex package65 in R 
programming language. The model formula was:

stay = correct + bias + transition × outcome + (randomeffects|subject)

For the analysis of two-step optogenetic manipulation (Fig. 5f,i 
and Extended Data Fig. 8), we added stimulation (stim) and group 
and its interaction with trials events as additional predictors, giving 
the formula:

stay = correct + bias + transition × outcome × stim × group

+(random effects||subject)

We used orthogonal sum-to-zero contrasts, and likelihood-ratio 
test to calculate P values. The maximal random effect structure66,67 with 
subject as a grouping factor was used.

The predictors were coded as:

•	 Correct: Three-level categorical variable indicating whether the 
previous choice was correct, incorrect or in a neutral block.

•	 Bias: Binary categorical variable explaining whether the previous 
choice was left or right.

•	 Outcome: Binary categorical variable indicating whether the previ-
ous trial was rewarded or not.

•	 Transition: Binary categorical variable indicating whether the 
previous trial had a common or a rare transition.

•	 Stimulation: Three-level categorical variable indicating whether 
the previous trial was non-stimulated, stimulated after choice or 
stimulated at outcome time.

•	 Group: Binary categorical variable indicating whether the data 
are from the control or manipulation subject. YFP and ChR2 were 
used for the stimulation experiment, and tdTomato and GtACR2 
were used for the inhibition experiment.

For the optogenetic manipulation analysis, we performed a single 
regression for the activation experiment including both experimental 
groups (YFP and ChR2) and both stimulation times (after choice and 
outcome). We did the same for the inhibition experiment (tdTomato 
and GtACR2). To ensure stimulated and non-stimulated trials had 
matching histories, we only included trials where stimulation could 
have potentially been delivered, that is, excluding the two trials fol-
lowing each stimulation where stimulation was never delivered. As 
a follow-up analysis, we performed separate regressions per group 

(YFP, ChR2, tdTomato and GtACR2) and stimulation time (after choice 
and outcome).

To test the strength of evidence of our null results, we performed 
Bayes factor calculation using R as:

B = p(data|H1)
p(data|H0)

We defined the data likelihood as a normal distribution with the 
mean and standard deviation of the transition × stimulation regres-
sion coefficient. For the optogenetic activation experiment, the 
alternative hypothesis, H1, was that dopamine activation acted like a 
natural reward, defined as a uniform distribution between 0 and the 
transition × outcome regression coefficient. For the optogenetic 
inhibition experiment, H1 was that dopamine inhibition reduced the 
effects of natural rewards, defined as a uniform distribution between 
0 and minus the transition × outcome regression coefficient. Finally, 
the null hypothesis, H0, was set to 0. We used the classification in 
ref. 31 to assess the strength of evidence for the alternative or null 
hypothesis.

The lagged logistic regression analysis (Fig. 1f,h) assessed how 
subjects’ choices were affected by the history of trial events over the 
last 12 trials. The regression predicted subjects’ probability of choosing 
left, using the following predictors at lags 1, 2, 3–4, 5–8, 9–12 (where 
lag 3–4, for example, means the sum of the individual trial predictors 
over the specified range of lags).

•	 Common transition: rewarded at lag n: +0.5/−0.5 if the nth previ-
ous trial was a left/right choice followed by a common transition 
and reward, and 0 otherwise.

•	 Rare transition: rewarded at lag n: +0.5/−0.5 if the nth previous trial 
was a left/right choice followed by a rare transition and reward, 
and 0 otherwise.

•	 Common transition: unrewarded at lag n: +0.5/−0.5 if the nth previ-
ous trial was a left/right choice followed by a common transition 
and no reward, and 0 otherwise.

•	 Rare transition: unrewarded at lag n: + 0.5/−0.5 if the nth previous 
trial was a left/right choice followed by a rare transition and no 
reward, and 0 otherwise.

The lagged regression was fitted separately for each subject as a 
fixed-effects model. The cross-subject mean and s.e. for each predictor 
coefficient were plotted. Significance of coefficients was assessed using 
a two-sided t-test comparing the distribution of the individual subjects’ 
coefficients against zero, and Bonferroni multiple-comparison correc-
tion was performed.

Single-strategy models. We evaluated the goodness of fit to subjects’ 
choices for a set of different RL agents created by combining one or 
more of the following learning strategies.

Model-free. The model-free strategy updated value QMF(c) of the cho-
sen action and value V(s) of second-step state as:

QMF(c)←(1 − α)QMF(c) + α((1 − λ)V(s) + λr)

V(s)←(1 − α)V(s) + αr

Where α is the learning rate, λ is the eligibility trace parameter and  
r is the outcome.

A variation of this model was the asymmetric model-free strategy, 
which included different learning rates for positive and negative out-
comes, and included forgetting of the non-experienced states, so both 
the non-experienced action and second-step state decayed towards 
neutral value (0.5).
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Model-based. The model-based strategy updated value V(s) of the 
second-step reached, and both first-step action values QMB(a) as:

V(s) ← (1−α)V(s) + αr

QMB(a) = ∑
s
P(s|a)V(s)

Where α is the learning rate, r is the outcome, and P(s|a) is the transi-
tion probability of reaching second-step state s after taking action  
a (that is, 0.8 or 0.2).

A variation of this model was the asymmetric model-based strat-
egy, which included different learning rates for positive and negative 
outcomes, and included forgetting of the non-experienced second-step 
state, which decayed toward a neutral value (0.5). In addition, we tested 
another model in which the forgetting rate decayed to 0 (asymmetric 
model-based + forget to 0).

Bayesian inference. The Bayesian inference strategy treated the task 
as having a binary hidden state h ∈{up_good, down_good}, which deter-
mined the reward probabilities given the second-step state reached 
on the trial as:

The strategy maintained an estimate P(up_good) tracking the 
probability the task was in the up_good hidden state, updated following 
each trial’s outcome using Bayes rule as:

P(up_good) ← P(r|s,up_good)P(up_good)
P(r)

Where

P(r) = P(r|s,up_good)P(up_good)

+P(r|s,down_good)P(down_good)

P(up_good) was also updated in each trial based on the probability 
a reversal occurred as:

P(up_good) ← (1 − P(reversal))P(up_good) + P(reversal)P(down_good)

Where P(reversal) is the probability a block reversal occurred.
The value of second-step states and first-step actions was deter-

mined by P(up_good) as:

Vinf(s) = P(r = 1|s,up_good)P(up_good)

+P(r = 1| s,down_good)P(down_good)

Qinf(a) = ∑
s
P (s|a)Vinf (s)

Note that although the equation relating first-step action values 
Q(a) to second-step state values V(s) is the same for the inference and 
model-based RL strategies, the mechanistic interpretation is different: 
For the inference strategy, the action values are assumed to have been 

learned gradually over task acquisition using temporal difference 
RL operating over a state representation combining the observable 
state s and belief state P(up_good). This learning process was mod-
eled explicitly in the network model (Fig. 6), which generated choice 
behavior similar to the inference model (Fig. 1). For the model-based 
RL strategy, the first-step action values are assumed to be computed 
online by predicting the states the actions will lead to.

We also used a variant of the inference strategy designed to capture 
the asymmetric influence of reward and omission on subject’s choices. 
This treated rewards in each second-step state as different observa-
tions but treated reward omission at the up and down second-step 
states as the same observation; implemented as a generative model, 
which determined the joint probability of reward and second-step state 
conditioned on the hidden state:

The corresponding Bayesian update to P(up_good) given each 
trial’s outcome was given by:

P(up_good) ← P(r, s|up_good)P(up_good)
P(r, s)

Where

P(r, s) = P(r, s|up_good)P(up_good)

+P(r, s|down_good)P(down_good)

State and action values (Vinf (s) and Qinf (a)) for the asymmetric 
inference strategy were computed as for the standard inference 
strategy.

Combined action values. A set of different candidate models was cre-
ated by combining one of more of the above strategies in a weighted 
sum with (optionally) bias and perseveration parameters, to give net 
action values:

Qnet (a) = ∑
i
wiQi(a) + K(a)

Where wi is the weight assigned to strategy i whose first-step action val-
ues are given by Qi (a), and K(a) is the modifier to the value of first-step 
action a due to any bias or perseveration terms included in the model. 
In models where bias was included, this increased the value of the left 
action by an amount determined by a bias strength parameter on all 
trials. In models where perseveration was included, this increased the 
value of the first-step action chosen on the previous trial by an amount 
determined by a perseveration strength parameter.

The combined action values determined choice probabilities via 
a softmax decision rule as:

P (a) = eQnet(a)

∑a eQnet(a)

Model fitting and comparison. We generated a total of 59 different 
individual models from the following classes:

Outcome r

P(r|s,up_good) Rewarded Unrewarded

Second-step 
state s

Up 0.8 0.2

Down 0.2 0.8

Outcome r

P(r|s,down_good) Rewarded Unrewarded

Second-step 
state s

Up 0.2 0.8

Down 0.8 0.2

Outcome r

p(r,s|up_good) Rewarded Unrewarded

Second-step 
state s

Up 0.4
0.5

Down 0.1

Outcome r

p(r,s|down_good) Rewarded Unrewarded

Second-step state s
Up 0.1

0.5
Down 0.4
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Model-free (MF): These models used only the model-free strategy, 
and varied with respect to whether they had asymmetric learning rates 
for positive and negative outcomes (together with forgetting toward 
neutral), and whether they included perseveration or multi-trial per-
severation and/or bias.

Model-based (MB): These models used only the model-based strat-
egy, and varied with respect to whether they had asymmetric learning 
rates for positive and negative outcomes (together with forgetting to 
either neutral or zero), and whether they included perseveration or 
multi-trial perseveration and/or bias.

Hybrid (MF + MB): These models used both the model-based 
and model-free strategies, and varied with respect to whether they 
had asymmetric learning rates for positive and negative outcomes 
(together with forgetting toward neutral), and whether they included 
perseveration or multi-trial perseveration and/or bias.

Bayesian inference: These models used the Bayesian inference 
strategy, and varied with respect to whether they included an asym-
metric updating based on the outcome received, and whether they 
included perseveration or multi-trial perseveration and/or bias.

Bias increased the value of the left action by an amount determined 
by a bias strength parameter. Perseveration increased the value of the 
first-step action chosen on the previous trial by an amount determined 
by a perseveration strength parameter; in the case of multi-trial perse-
veration, an exponential moving average of previous choices was used 
rather than just the previous choice, with a time constant determined 
by the alpha multi-trial perseveration parameter.

Each model was fit separately to data from each subject using 
maximum likelihood. The optimization was repeated 30 times start-
ing with randomized initial parameter values drawn from a beta dis-
tribution (α = 2, β = 2) for unit range parameters, gamma distribution 
(α = 2, β = 0.4) for positive range parameters and normal distribution 
(σ = 5) for unconstrained parameters, and the best of these fits was 
used. Model comparison was done using both Bayesian information 
criterion (Extended Data Fig. 1a and Supplementary Tables 1 and 2) and 
cross-validated log likelihood using 10 folds (Extended Data Fig. 1b).

To compare data simulated from the single-strategy models with 
real data (Extended Data Fig. 1g–j), we simulated the same number of 
sessions for each animal (28.9 ± 1.6 sessions, mean ± s.d.) of their aver-
age number of trials for each session (351.6 ± 93.0 trials, mean ± s.d.), 
using parameters values from each animal’s fits.

Mixture-of-strategies model. We created a mixture-of-strategies 
model, which contained the different behavioral strategies from the 
single-strategy models (model-free RL, model-based RL and Bayesian 
inference) as components (Extended Data Fig. 1c–f and Supplementary 
Table 3). All three components included asymmetric updating from 
rewards and omissions.

This mixture-of-strategies model combined the action values of 
the three strategies in a weighted sum with bias and multi-trial perse-
veration to give net action values as:

Qnet(a) = ∑
i
wiQi(a) + K(a)

Where wi is the weight assigned to strategy i whose first-step action val-
ues are given by Qi(a), and K(a) is the modifier to the value of first-step 
action a due to bias and multi-trial perseveration. The combined action 
values determined choice probabilities via a softmax decision rule like 
in the single-strategy models.

This model was fit separately to data from each subject using maxi-
mum a posteriori probability, with priors: beta distribution (α = 2, β = 2) 
for unit range parameters, gamma distribution (α = 2, β = 0.4) for posi-
tive range parameters and normal distribution (σ = 5) for unconstrained 
parameters. The optimization was repeated 50 times starting with ran-
domized initial parameter values drawn from the prior distributions.

To test whether behavior generated by the model-based 
and inference strategies could be differentiated, we fitted 
the mixture-of-strategies model to data simulated from each 
single-strategy model using parameters fit to subjects’ data (Extended 
Data Fig. 1c,d).

Photometry analysis. Photometry signals were aligned across trials 
by linearly time-warping the signal at the two points in the trial where 
timings were determined by subject behavior; between initiation and 
choice, and between the second-step port illuminating and being poked 
(Fig. 2b). Activity at other time periods was not warped.

For the analyses presented in Figs. 3 and 4 and Extended Data  
Figs. 4–7, we used Lasso linear regression to predict trial-by-trial dopa-
mine activity at each timepoint in a trial as:

y(i, t) = ∑
p
βp(t)Xp(i) + βo(t) + ε(i, t)

where y(i, t) is the calcium z-scored activity on trial i at timepoint t, βp(t) 
is the weight for predictor p at timepoint t , Xp(i) is the value of the 
predictor p on trial i, βo(t) is the intercept at timepoint t, and ε(i, t) is 
the residual unexplained variance.

The linear regression was fit separately for each subject to obtain 
the coefficient time courses βp(t). The penalty used for the Lasso 
regularization was found for each individual regression through 
cross-validation. When regularization was used, predictors were 
standardized by centering the mean at 0 and scaling to a variance of 1. 
For each predictor, we plotted the mean and s.e. across subjects. The 
statistical significance of each predictor at each timepoint was assessed 
using a t-test comparing the distribution of coefficients across subjects 
with zero, with Benjamini–Hochberg correction for comparison of 
multiple timepoints. Effect sizes were computed using Cohen’s d at 
each timepoint as:

Cohen′s d = Mean regression coefficient
Standarddeviationof regression coefficient

The linear regressions in Fig. 3 and Extended Data Fig. 4 used the 
following predictors:

•	 Reward: +0.5 if current trial is rewarded, and −0.5 otherwise.
•	 Previous reward: +0.5 if previous trial is rewarded, and −0.5 

otherwise.
•	 Good second step: +0.5/−0.5 if the second step reached on the cur-

rent trial has high/low reward probability, and 0 if neutral block.
•	 Previous good second step: +0.5/−0.5 if the second step reached 

on the previous trial has high/low reward probability, and 0 if 
neutral block.

•	 Correct choice: +0.5/−0.5 if subject current trial choice commonly 
leads to the high/low reward probability second-step port, and 0 
if neutral block.

•	 Repeat choice: +0.5 if same choice as previous choice, and −0.5 if 
different choice to previous trial.

•	 Direct reinforcement action value update: +0.5/−0.5 if current 
choice is the same as the previous choice and the previous trial 
was rewarded/not rewarded, and 0 if different choice from previ-
ous trial.

•	 Inferred action value update: +0.5/−0.5 if current choice com-
monly leads to the previous second step when it was rewarded/
not rewarded, and −0.5/+0.5 if current choice rarely leads to the 
previous second step when it was rewarded/not rewarded.

•	 Previous reward, same second step: +0.5/−0.5 if current second 
step is the same as in the previous trial and previous trial was 
rewarded/unrewarded, and 0 if current second step is different 
from the second step on the previous trial.
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•	 Previous reward, different second step: +0.5/−0.5 if current second 
step is different from the previous second step and previous trial 
was rewarded/unrewarded, and 0 if current second step is the 
same as the second step on the previous trial.

•	 Common transition: +0.5 if a common transition occurs on the 
current trial, and −0.5 if a rare transition occurs.

•	 Forced choice: +0.5 if a forced-choice trial occurs on the current 
trial, and −0.5 if a free-choice trial occurs.

•	 Reward rate: exponential moving average of the recent reward 
rate (tau = 10 trials).

•	 Contralateral choice: +0.5 if the current choice is in the contralat-
eral side from the recording site, and −0.5 if the current choice is 
in the ipsilateral side.

•	 Up second step: +0.5 if the current second step is up, and −0.5 if 
current second step is down.

The linear regression in Extended Data Fig. 5c,d included the same 
predictors as above (Fig. 3 and Extended Data Fig. 4) except predic-
tors ‘same second step’, ‘previous reward’, ‘different second step’ and 
‘inferred action value update’, which were replaced with predictors 
split by outcome as:

•	 Same versus different second step, previously rewarded: +0.5/−0.5 
if current second step is the same/different as in the previous trial 
and the previous trial was rewarded, and 0 if the previous trial was 
not rewarded.

•	 Same versus different second step, previously non-rewarded: 
+0.5/−0.5 if current second step is the same/different as in the 
previous trial and the previous trial was not rewarded, and 0 if the 
previous trial was rewarded.

•	 Inferred action value update from rewarded trials: +0.5/−0.5 if 
current choice commonly/rarely leads to the previous second 
step and the previous trial was rewarded, and 0 if the previous 
trial was not rewarded.

•	 Inferred action value update from unrewarded trials: −0.5/+0.5 
if current choice commonly/rarely leads to the previous second 
step and the previous trial was not rewarded, and 0 if the previous 
trial was rewarded.

The linear regressions used in Fig. 4 and Extended Data Figs. 6 and 
7 used the above-described reward, previous reward, reward rate, con-
tralateral choice, up second step, common transition and forced-choice 
regressors with the following additional regressors:

•	 Second-step value: the value Vinf(s) of the second step reached on 
the current trial from the asymmetric Bayesian inference model.

•	 Chosen action value: the value Qinf(c) of the first-step action chosen 
on the current trial from the asymmetric Bayesian inference 
model.

Finally, the lagged photometry regression in Extended Data  
Fig. 5b predicted dopamine response (500 ms at the end of the 
second-step cue, baseline subtracted using the 500 ms before choice) 
to the second-step cue as a function of the extended history of trials 
over the previous 12 trials. No regularization was used in this linear 
regression. The analysis included the above-described regressors: 
‘previous reward, same second step’, ‘previous reward, different second 
step’, ‘direct reinforcement action value update’ and ‘inferred action 
value update’ regressors at different lag n, with the following additional 
regressors to correct for correlations in the signal:

•	 Same versus different second step: +0.5/−0.5 if current second 
step is the same/different as in the n th previous trial.

•	 Reward on trial −1 (not lagged): +0.5 if previous trial is rewarded, 
and −0.5 otherwise.

Neural network model
For the neural network modeling (Fig. 6), the task was represented as 
having five observable states—choice state, up-active, down-active, 
reward-at-up, reward-at-down and no reward—and five actions corre-
sponding to the five ports—poke-left, poke-right, poke-up, poke-down 
and poke-center. Completing each trial therefore required a sequence 
of at least three states and actions (for example, choice-state, 
poke-left → up-active, poke-up → reward-at-up and poke-center), but 
could take more steps if the agent chose actions that were inactive in 
the current state (for example, poke-left in the up-active state).

The neural network model consisted of a recurrent network rep-
resenting PFC and a feedforward network representing basal ganglia, 
implemented using the Keras Tensorflow API (https://keras.io/). The 
PFC network was a single fully connected layer of 16 gated recurrent 
units68. In the version of the model shown in Fig. 6b–d, the PFC network 
received as input on each time step an observation OOOt  (the observable 
task state) and the preceding action AAAt−1, both coded as one-hot vec-
tors. In the version of the model shown in Fig. 6e–i, the PFC network 
received as input a vector OOOg

t  which was the observation OOOt  gated by 
whether reward was received on that time step: On rewarded time steps 
the input was a one-hot vector indicating the observation (OOOg

t = OOOt), 
while on non-rewarded time steps the input was a 0 vector (OOOg

t = 000).
The basal ganglia network received as input the observation OOOt  

and the activity of the PFC network units. It comprised a layer of ten 
rectified linear units with two outputs: a scalar-valued linear output 
for the estimated value Vt  (that is, the expected discounted future 
reward from the current time step) and a vector-valued softmax output 
for the policy (that is, the probability of choosing each of the five 
actions on the next time step).

The model was trained using episodes which terminated after 100 
trials or 600 time steps (whichever occurred first), with network 
weights updated between episodes. For the version of the model used 
in Fig. 6b–d the PFC network was trained to predict the observation OOOt  
given the preceding observations and actions. For the version of the 
model used in Fig. 6e–i, the PFC network was trained to predict the 
reward-gated observation OOOg

t , which it received as input, given this 
input on preceding time steps. In both cases, PFC network weights were 
updated using gradient descent with backpropagation through time, 
with a mean-squared-error cost function, using the Adam optimizer69 
with learning rate = 0.01. The basal ganglia network was trained using 
the advantage actor-critic RL algorithm70. Hyperparameters for train-
ing the basal ganglia network were: learning rate = 0.05, discount  
factor = 0.9 and entropy loss weight = 0.05.

For each version of the model, we performed 12 simulation runs, 
each of 500 episodes, using different random seeds. We used these runs 
as the experimental unit for statistical analysis (that is, the equivalent 
of subjects in the animal experiments). Data from the last 10 episodes 
of each run were used for analyses. We excluded any runs that did not 
obtain reward above chance level in the last 10 episodes, excluding 2 
runs of the model version shown in Fig. 6b–d and no runs of the model 
variant shown in Fig. 6e–i.

To visualize how the activity of PFC units tracked the reward 
probability blocks, we took the activity of the PFC units in the task’s 
‘choice state’ on each trial of an episode, yielding an activity matrix of 
shape (n_units, n_trials). We used principal component analysis to find 
the first principal component of the activities’ variation across trials  
(a vector of weights over units), then projected the activity matrix onto 
this, giving the time series across trials (Fig. 6d,g).

To evaluate how rewards modified the value of the second-step 
states (Fig. 6i), we used the model to evaluate both the second-step 
state that was actually reached on each trial, and the value the other 
second-step state would have if it had been reached. We then com-
puted how the trial outcome (reward versus omission) changed the 
value of the second-step state where it was received, and the other 
second-step state.

http://www.nature.com/natureneuroscience
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To simulate the effects of optogenetic stimulation of dopamine 
neurons (Fig. 6i), we randomly selected 25% of trials and for each of 
these trials computed the update to the basal ganglia network weights 
that would be induced by a positive RPE occurring either following 
either the choice action (choice-time stimulation) or the second-step 
action (outcome-time stimulation). We evaluated how these weight 
updates affected behavior using linear regression to model the prob-
ability of repeating the choice on the next trial (stay probability) as a 
function of the transition, outcome and whether the trial was stimu-
lated or not.

Statistics and reproducibility
Sample size was determined using power analyses with signifi-
cance = 0.05 and power = 0.8, using effect sizes based on our own 
preliminary data.

As described in ‘Photometry recordings’ and ‘Neural network 
model’, data were excluded as follows: (i) no data were recorded from 
the NAc in two animals as they did not present any GCaMP or dLight 
modulation, and subsequent histology confirmed the fiber targeting 
the NAc was misplaced in these two mice (over the anterior commis-
sure); (ii) sessions with large artifacts or signal loss due to technical 
issues during recording sessions (total of 46 sessions, representing 
∼9% of the total); and (iii) during simulations using the neural network 
model, runs that did not obtain reward above chance level in the last ten 
episodes were excluded (total of two runs in the model from Fig. 6b–d).

The presented GCaMP data were obtained using two different 
cohorts run at different times. dLight data were obtained from a cohort 
of mice run alongside the second GCaMP cohort. Optogenetic activa-
tion and inhibition experiments were also obtained at different times.

Auditory cues and transition probability structure were rand-
omized and counterbalanced across animals and sexes. For the optoge-
netic assays, group allocation was also randomized. In both activation 
and inhibition optogenetics, stimulation sessions were interspersed 
with baseline no-stimulation sessions. The order of stimulation ses-
sions (whether stimulation happened at choice or outcome time) was 
counterbalanced across animals.

Data collection and analysis were not performed blind to the con-
ditions of the experiments, but the behavioral apparatus and optoge-
netic stimulation were fully automated, minimizing experimenter 
influence.

For the statistical reporting, data distribution was assumed to be 
normal, but this was not formally tested. Where possible, individual 
data points are shown.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All raw data and pre-processed variables from the manuscript are avail-
able on OSF at https://osf.io/u6xrc/.

Code availability
Complete code used to implement the pyControl task, pre-process 
the data and generate the Figs. 1–5 is available at https://github.
com/Mblancopozo/two-step_dopamine (https://doi.org/10.5281/
zenodo.10093116).
The code used to simulate the model and generate Fig. 6 is available 
at https://github.com/ThomasAkam/PFC-BG_model (https://doi.
org/10.5281/zenodo.10079814).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Model comparison and mixture-of-strategies model. 
A-B) Model-comparison for single-strategy models; statistical significance, two-
sided Wilcoxon signed-rank test (with normal approximation due to ties) with 
Bonferroni correction. a) BIC score model-comparison of all the models tested 
(see Supplementary Table  1 for details of each model). Colours indicate the 
model’s strategy. Each strategy was tested both with and without choice bias and 
multi-trial perseveration. Additionally, models were tested with both symmetric 
and asymmetric learning from reward and omission outcomes (see Methods). 
Model-free and model-based RL strategies were tested with and without 
forgetting about the values of not-visited states and not-chosen actions. Two 
variants of forgetting were tested: one implemented forgetting as value decay 
towards a neutral value of 0.5, the other as value decay towards 0. Insets show 
the best-fitting model of each model class. Fitted parameter values for the best 
model in each class are presented in Supplementary Table 2. b) Cross-validated 
log likelihood of the same models as in A. Inset, as in A, best fitting model of 
each category. Both model comparison approaches indicate that asymmetric 
inference and asymmetric model-based RL with forgetting to 0 strategies 
explain the data equally well, and better than other strategies considered. 
c-f ) Mixture-of-strategies model: choices were determined by a weighted 
combination of the asymmetric versions of model-free RL, model-based RL, 
and Bayesian inference. We tested two different mixture-of-strategies models 
differentiated by how forgetting was implemented for the RL components: In 
C) forgetting was implemented as value to decay towards a neutral value of 0.5, 
while in D) forgetting was implemented as value decay towards 0. C) Mixture-of-
strategies model with forgetting towards neutral value. Left panel: influence of 
each model component on choices, evaluated using the fit of the model to each 

subject’s data. The influence on choices was quantified as the standard deviation 
across trials of the difference between the two first-step action values due to a 
given component, divided by the total standard deviation of the value difference 
due to all components. Each coloured dot represents a single mouse. Centre 
and Right panels: influence of each model component for fits of the mixture-
of-strategies model to behaviour simulated from either a model-based (centre 
panel) or Bayesian inference (right panel) single-strategy model with parameters 
fit to each subject’s choices. The fit correctly assigned high weight to the strategy 
that generated the simulated data and low weight to the other strategies. D) As 
in C but with forgetting towards 0. When forgetting was implemented as decay 
towards 0, the mixture-of-strategies model fit to simulated data did not correctly 
identify which strategy generated simulated data. Therefore, consistent with 
the model comparison, we cannot arbitrate between asymmetric inference 
and asymmetric model-based RL with forgetting to 0 strategies using the 
mixture-of-strategies model. Statistical significance, two-sided paired t-test, 
Bonferroni corrected. E,F) Value decay of the non-experienced second-step state 
over consecutive trials when forgetting decayed towards neutral (light green) or 
zero (dark green) in E) the asymmetric model-based model and F) in the mixture-
of-strategies model. Boxplots show the distribution of the data across subjects. 
Grey box represents the interquartile range, with horizontal lines representing 
first quartile, median and third quartile, from bottom to top. Whiskers represent 
minimum and maximum values. Rhomboids mark outliers. N=18 simulated 
subjects, numbers of trials and sessions per subject matched to corresponding 
mouse. n.s. non-significant, *P<0.05, **P<0.01, ***P<0.001. For exact p-values,  
see Supplementary Table 6.
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Extended Data Fig. 2 | Fibre placement for photometry experiments. a) NAc, b) DMS, and c) VTA. Green, GCaMP6f; blue, dLight1.1 animals.
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Extended Data Fig. 3 | Medio-lateral gradient in reward modulation in 
DMS. a) Dopamine activity measured through GCaMP. b) Dopamine receptor 
binding measured through dLight. Left, mean reward coefficient (from the linear 
regression model) at the time of outcome cue; Right, mean contralateral choice 
coefficient pre-choice. Top, correlation between mean coefficient and  

medio-lateral (ML) or antero-posterior (AP) location of the optic fibre.  
Two-sided Wald test against 0. Bottom, mean z-scored activity split by outcome 
or lateralised choice for animals with medial or lateral placement in DMS. Dashed 
line in the correlation plots shows how animals were divided into two groups 
(medial and lateral).
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Extended Data Fig. 4 | Regression coefficients from all the predictors used 
in the behavioural logistic regression model predicting VTA, NAc and DMS 
dopamine activity (GCaMP recordings) and NAc and DMS dopamine receptor 
binding (dLight recordings). Traces reflect mean regression coefficients across 

subjects; shaded area indicates cross-subject standard error. Dots indicate 
effect size of the statistically significant timepoints, two-sided t-test comparing 
the cross-subject distribution against 0, after Benjamini-Hochberg multiple 
comparison correction.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01542-x

Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Value update regressors. a) Coefficients in the linear 
regression predicting dopamine activity showing the influence of previous trial 
outcome when the second-step was the same (dark red) or different (green) from 
the previous trial for NAc and DMS dLight signals. b) Linear regression predicting 
the dopamine response to the second-step cue as a function of the extended 
history of trial events over the previous 12 trials. Error bars cross subject mean ± 
s.e.m. Bottom left, Schematic of dopamine signal, yellow shaded area represents 
the predicted activity. Two-sided t-test comparing the cross-subject distribution 

against 0, Bonferroni corrected. For exact p-values, see Supplementary Table 6. 
c) Second-step value update regressors, whether the current second-step was 
the same or different from the previous trial, split by rewarded and not rewarded 
outcome on the previous trial. d) Inferred action value update split by outcome 
on the previous trial. Shaded area indicates cross-subject standard error. Dots 
indicate effect size of the statistically significant timepoints, two-sided t-test 
comparing the cross-subject distribution against 0, after Benjamini-Hochberg 
multiple comparison correction.
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Extended Data Fig. 6 | Regression model using second-step and action 
values derived from the asymmetric Bayesian inference model predicting 
dopamine activity (GCaMP) in VTA (left), NAc (centre) and DMS (right). Traces 
reflect mean regression coefficients across subjects; shaded area indicates  

cross-subject standard error. Dots indicate effect size of the statistically 
significant timepoints, two-sided t-test comparing the cross-subject distribution 
against 0, after Benjamini-Hochberg multiple comparison correction.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Regression model and reward rate effect in dopamine 
concentrations. a) Regression model using second-step and action values 
derived from the asymmetric Bayesian inference model predicting dopamine 
concentrations (dLight) in NAc (left) and DMS (right). Traces reflect mean 
regression coefficients across subjects; shaded area indicates cross-subject 
standard error. Dots indicate effect size of the statistically significant timepoints, 

two-sided t-test comparing the cross-subject distribution against 0, after 
Benjamini-Hochberg multiple comparison correction. b) Mean z-score activity 
split by rewarded/unrewarded trials and recent reward rate. Shaded area 
indicates cross-subject standard error. Blue – high reward rate, > 0.7 rewards/
trial (exponential moving average with tau = 8 trials). Green, medium reward rate 
(between 0.4 and 0.7). Red, low reward rate (< 0.4).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Optogenetic manipulation. a) Left, fibre placement. 
Yellow, YFP animals from the optogenetic activation experiment; blue, ChR2 
animals; orange, tdTomato animals from the optogenetic inhibition experiment; 
pink, GtACR2 animals. Right, photomicrograph showing injection and fibre 
placement. Photomicrograph comes from an example GtACR2 mouse, stained 
for TH (Tyrosine Hydroxylase, blue) and FusionRed (red fluorescent protein, 
red). b) Mixed-effects logistic regression predicting stay/switch behaviour in the 
optogenetic activation experiment. Analysis included data from both groups 
(YFP and ChR2) and three stimulation types (non-stimulated, stimulation after 
first-step choice, and stimulation at outcome). Error bars mixed effect model 
estimate ± s.d.; statistical significance, likelihood-ratio test with Type 3 sums 
of squares. For exact p-values, see Supplementary Table 6. c–e) Optogenetic 
inhibition experiment. C) 2-alternative forced choice control task showing 
percentage of choices to the initially preferred side in the tdTomato (red) and 
GtACR2 (pink) groups. Following baseline sessions without stimulation (sessions 
1-3), optical stimulation (1s continuous, 5mW) was delivered from sessions 4 to 7 
when mice poked their initial preferred choice (preferred side in sessions 1-3).  

From sessions 8 to 11 the side of optical stimulation was reversed, now to 
be coincident with choice of their initial non-preferred side. Boxplot show 
the distribution of cross-subjects regression estimates; box represents the 
interquartile range, with horizontal lines representing first quartile, median 
and third quartile, from bottom to top. Whiskers represent minimum and 
maximum values. Rhomboids mark outliers. **P<0.01, ***P<0.005, two-sided 
t-test with Bonferroni multiple comparison correction. For exact p-values, 
see Supplementary Table 6. D, E) Inhibition effects on the two-step task. D) 
Mean latency to initiate a new trial after the centre poke illuminates following 
stimulated and non-stimulated trials. Dots indicate individual animals, error bars 
show standard error. E) As in B, but for the optogenetic inhibition experiment, 
mixed-effects logistic regression including both groups (tdTomato and GtACR2) 
and three stimulation types (non-stimulated, stimulation after first-step choice, 
and stimulation at outcome). N: tdTomato: 5 animals, 12,555 trials (choice-time 
stimulation sessions); 13,373 trials (outcome-time stimulation sessions); GtACR2: 
7 animals, 14,789 trials (choice-time stimulation sessions), 15,491 trials (outcome-
time stimulation sessions). For exact p-values, see Supplementary Table 6.
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Extended Data Fig. 9 | Value updates and simulated dopamine stimulation 
for version of PFC-basal ganglia network model shown in Fig. 6b. a) Effect of 
trial outcome (rewarded vs non-rewarded) on the value of the second-step state 
where reward was received (same) and on the other state (different). ***P = 1.41e-7 

(same), P=2.00e-7 (different), respectively. b) Effect of stimulated optogenetic 
stimulation after choice (top panel), or at outcome time (bottom panel). 
Stimulation was modelled as modifying weights in the basal ganglia network as 
by a positive RPE. N: 10 simulation runs. Two-sided t-test against 0. ***P = 1.36e-4.
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Extended Data Fig. 10 | Photometry signal pre-processing. a, b) Pre-
processing steps in an example session. A) Whole recording session. B) Zoomed 
signal from the dashed area in A. Top, raw GCaMP and tdTomato signal. Middle, 

Signal after motion correction, and black line reflects the double exponential 
fit that will be used for the bleaching correction. Bottom, Motion and bleaching 
corrected signal.
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Software and code

Policy information about availability of computer code

Data collection pyControl v1.8.1 (reference 62) was used to control the behavioural task, acquire behavioural data and manage the optogenetic stimulation. 

Fibre photometry data was acquired using pyPhotometry v0.3.3 (reference 64).

Data analysis Data analysis was performed using custom written code in Python (v3.10.0) and R (v4.1.2). 

Python packages: matplotlib=3.5.1; pingouin=0.5.1; seaborn=0.11.2; numpy==1.22.3; numba==0.55.0; pandas==1.4.1; patsy==0.5.2; 

parse=1.19.0; rpy2=3.4.5; scikit-learn=1.0.1; scipy=1.7.3; statannotations=0.4.4; statsmodels=0.13.0; more-itertools=8.5.0. 

R packages: afex=0.28-1; bayesplay=0.9.2. 

 

Code is available at: https://github.com/Mblancopozo/two-step_dopamine (doi: 10.5281/zenodo.10093116) and https://github.com/

ThomasAkam/PFC-BG_model (doi: 10.5281/zenodo.10079814)
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Sample size We used power analyses with significance = 0.05 and power = 0.8, using effect sizes based on our own preliminary data.

Data exclusions No data was recorded from NAc in 2 animals as they did not presented any GCaMP or dLight modulation. Later histological confirmed these 

two mice had the fibre targeting  NAc misplaced.  

Sessions in which there were large artifacts (large step change in recorded signals) introduced through a malfunctioning of the rotary joint or 

disconnection of the patch cord from the fibre, or where there was a complete loss of signal on one of the channels due to discharged battery 

during recording, were excluded.  A total of 46 sessions (~9% of the total) were removed from the analyses.

Replication Data presented was obtained using two different cohorts at different times. Therefore, the results were replicated internally.

Randomization Auditory cues and transition probability structure were randomised and counterbalanced across animals and sexes. For the optogenetic 

assays, group allocation was also randomised. In both activation and inhibition optogenetics, stimulation sessions were interspersed with 

baseline no stimulation sessions. The stimulation sessions order (whether stimulation happened at choice or outcome time) was 

counterbalanced across animals.

Blinding Data collection and analysis were not performed blind to the conditions of the experiments, but the behavioural apparatus and optogenetic 

stimulation was fully automated minimising experimenter influence.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Primary antibodies: Rabbit Anti-Tyrosine Hydroxylase Antibody (dil. 1:1000, Sigma-Aldrich, CAT AB152) and Chicken Anti-Green 

Fluorescent Protein Antibody (dil. 1:500, Aves Labs, CAT GFP-1020). 

Secondary antibodies: Cy5 Donkey Anti-Rabbit (dil. 1:500, Jackson ImmunoResearch, CAT 711-175-152) and Alexa Fluor 488 Donkey 

Anti Chicken (dil. 1:1000, Jackson ImmunoResearch, CAT 703-545-155).
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Validation Both primary and secondary antibodies were validated by the manufacturer, and has been cited previously (peer-reviewed citations, 

CAT AB152: 1064; CAT GFP-1020: 747;  CAT 711-175-152: 412; CAT 703-545-155: 864). Additionally, all the antibodies were validated 

internally in the lab.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 12 dopamine transporter (DAT)-Cre heterozygous mice (7 females and 5 males) were used for the GCaMP photometry recordings, 6 

WT C57BL/6 mice (3 females and 3 males) for the dLight recordings, 12 DAT-Cre mice (YFP: 2 females and 3 males; ChR2: 4 females 

and 3 males) for the optogenetic activation experiment, and 12 DAT-Cre mice (tdTomato: 3 females and 2 males; GtACR2: 4 females 

and 3 males) for the optogenetic inhibition experiment.  Mice were aged 8-16 weeks at the start of behavioural training. Animals 

were typically housed in groups of 2-4 throughout training and testing.  Temperature was kept at 21 ± 2°C under 55 ± 10% humidity 

on a 12h light/dark cycle. Animals were tested during the light phase. 

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve field-collected samples.

Ethics oversight All procedures were performed in line with the UK Animal (Scientific Procedure) Act 1986 and in accordance with the University of 

Oxford animal use guidelines.  They were approved by the local ethical review panel at the Department of Experimental Psychology, 

University of Oxford and performed under UK Home Office Project Licence P6F11BC25.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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