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Distributional reinforcement learning in 
prefrontal cortex

Timothy H. Muller    1,2  , James L. Butler1,2, Sebastijan Veselic1,2,3, 
Bruno Miranda    2,4, Joni D. Wallis    5, Peter Dayan    6,7, 
Timothy E. J. Behrens    3,8,9, Zeb Kurth-Nelson    10,11   & 
Steven W. Kennerley    1,2,8 

The prefrontal cortex is crucial for learning and decision-making. Classic 
reinforcement learning (RL) theories center on learning the expectation 
of potential rewarding outcomes and explain a wealth of neural data in 
the prefrontal cortex. Distributional RL, on the other hand, learns the 
full distribution of rewarding outcomes and better explains dopamine 
responses. In the present study, we show that distributional RL also better 
explains macaque anterior cingulate cortex neuronal responses, suggesting 
that it is a common mechanism for reward-guided learning.

The prefrontal cortex (PFC) is critical for learning and decision- 
making1–6. RL offers a computational framework for understanding 
learning and decision-making processes7 and explains many neural 
responses throughout the PFC8,9. ‘Classic’ RL models7,10 learn to predict 
the expectation—or mean—of the distribution over possible rewarding 
outcomes after a stimulus or action. However, by learning only the 
expected reward, some knowledge of the underlying reward distribu-
tion, which may be important for risk-sensitive decision-making, is lost. 
Furthermore, as all neurons learn to predict the same expected reward, 
the classic RL framework is unable to account for substantial diversity 
in reward-related responses across PFC neurons8,11,12.

A recent modification to classic RL—distributional RL—learns 
the full reward distribution and offers a candidate an explanation for 
neuronal diversity13–15. Unlike classic RL models, in distributional RL 
different neurons learn to predict different parts of the reward dis-
tribution. Some neurons encode value predictions above the mean 
of the reward distribution and others below the mean—referred to as 
optimistic and pessimistic neurons, respectively. Thus, across the pop-
ulation of neurons the full distribution of possible rewards is encoded 
and neuronal diversity is predicted. By explaining such diversity, dis-
tributional RL better explains responses of midbrain dopaminergic 

neurons15—famously known to encode reward prediction errors (RPEs) 
that drive learning of reward predictions16.

The PFC is engaged during risk-sensitive decisions17 and encodes a 
diversity of learning- and decision-related computations8,18,19, including 
RPEs8,20, temporal scales and learning rates8,21–23. Given this, and that 
PFC receives dopaminergic input24–26, we examined whether distribu-
tional RL explains reward responses in primate PFC in two different 
decision tasks. In the first dataset, we found key signatures of distri-
butional RL analogous to those shown in mouse dopamine neurons15. 
In the second dataset, we observed a previously untested implication 
of distributional RL: that there are asymmetries in the rates of learning 
from better- versus worse-than-expected outcomes.

In the first dataset, we tested three key predictions of distribu-
tional RL, replicating the three predictions of Dabney et al.13. The first 
prediction is that different neurons carry different value predictions, 
varying in their level of optimism. The second prediction is that differ-
ent neurons have different relative gain factors—or asymmetries—for 
positive versus negative RPEs. As the different value predictions arise 
from the different relative gain factors, the third prediction is that these 
two forms of diversity correlate15. Given that RPE-coding neurons are 
required to test the predictions of distributional RL, we limited our 
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interpolated cue value at which the mean subtracted firing rate 
reversed from above to below the mean firing rate (Fig. 1b). In classic RL, 
the reversal point for all neurons is the mean of the value distribution 
(that is, 2.5 in this dataset), up to noise. By contrast, in distributional 
RL, there is genuine diversity between cells, with optimistic versus 
pessimistic reversal points: optimistic neurons have values above the 
mean and pessimistic neurons below the mean.

We observed diversity in reversal points across the population of 
41 RPE-coding neurons in the ACC (Methods), with both optimistic and 
pessimistic neurons (Fig. 1b,c). To determine whether this diversity was 
due to noise, we measured the reversal point independently in the two 
separate halves of the trials. These two independent measurements 
were strongly correlated (R = 0.44, P = 0.003 by Pearson’s correlation; 
Fig. 1d), suggesting genuine diversity in the reversal point across neu-
rons. Diversity was further evidenced by demonstrating significant 
diversity across neurons in a different measure of the nonlinearity 
(Extended Data Fig. 3 and Methods) and in the relative normalized 
responses to the two middle-value levels (Extended Data Fig. 4).

Neurons in the OFC and LPFC exhibited lower RPE selectivity  
(7 of 140 = 6% (OFC) and 26 of 257 = 10% (LFPC), versus 41 of 213 = 19% 
in ACC), and there was no evidence for consistent diversity in reversal 

analysis to RPE-coding neurons, that is, those that encode probability 
at choice and feedback but with opposite signs8 (Methods).

To test the first prediction, we examined responses to reward- 
predicting cues in neurons from three PFC regions implicated in 
learning and decision-making8,9,19: the lateral PFC (LPFC, n = 257), the 
orbitofrontal cortex (OFC, n = 140) and the anterior cingulate cortex 
(ACC, n = 213). Two non-human primates (NHPs, Macaca mulatta) 
were presented with a choice of two value-predicting stimuli, which 
varied in the probability of receiving a fixed magnitude reward8  
(Fig. 1a). There were four possible choice pairs. Subjects experienced 
these option pairs thousands of times, virtually always selecting the 
higher probability stimulus, hence choice value was equivalent to the 
higher probability option8. To test for diversity in value estimates across 
neurons, we indexed optimism using a measure termed the ‘reversal 
point’15. For each neuron, on each trial, we computed the mean firing 
rate in a window 200–600 ms after stimulus and subtracted from this 
the mean firing rate in this window across all trials, to isolate the RPE 
response (Extended Data Figs. 1 and 2 and Methods). As expected 
if neurons encode diverse value estimates15,27, we observed diverse 
nonlinearities in individual neurons’ firing rates as a function of reward  
(Fig. 1b). We indexed this with the reversal point15, which is the 
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Fig. 1 | Diverse optimism in value coding across ACC neurons. a, Top, on 
each trial, subjects chose between two cues of neighboring probability value. 
Bottom, each probability value could be denoted by two stimuli, resulting in 
two stimulus sets (see ref. 8 for task details). b, Example responses from three 
separate neurons demonstrating different levels of optimism. In each plot the 
mean firing rate is plotted as a function of time and split according to the chosen 
value (probability) level. There are four chosen values (0.3–0.9 probability) 
because subjects rarely chose the 0.1 probability level (choice accuracy was 
at ceiling: 98%). Insets demonstrate that the firing rate is a nonlinear function 
of value. Mean firing rate (z-scored across trials) in a 200- to 600-ms window 
after cue onset is plotted as a function of the four values. Reversal points are 
the interpolated values at which there is 0 change from the mean firing rate, an 
index of nonlinearity. Shaded regions and error bars denote s.e.m. c, Histogram 
showing a diversity of reversal points across ACC RPE-coding neurons. Coloring 
denotes optimism as defined by reversal point, with red being more optimistic. 
d, Scatter plot showing reversal points estimated in half of the data strongly 

predicted those in the other half. Each point denotes a neuron. Inset, log(P 
values) of Pearson’s correlation between 1,000 different random splits of the 
data into independent partitions. Across partitions, the mean R = 0.44 and 
geometric mean of the P values was P = 0.003 (black line). Bootstrapping to 
obtain a summary P value was also significant (P < 0.01). e, Scatter plot showing 
reversal points estimated in stimulus set 1 strongly predicted those in stimulus 
set 2 (R = 0.41, P = 0.009). Each point denotes a neuron. f, AP topographic 
location of the neuron predicted its reversal point, with more anterior ACC 
neurons being more optimistic (R = 0.37, P = 0.016). As we had two independent 
noisy measures of each neuron’s optimism (reversal point and asymmetry; 
Fig. 2), we used the mean of the two measures (after z-scoring them), which we 
call ‘neuron optimism’. Neuron optimism is plotted against the normalized AP 
locations within ACC. The normalization ensures that, for example, the most 
anterior portion of the ACC in one animal corresponds to that in the other. Each 
point denotes a neuron. See Extended Data Fig. 6 for further analyses.
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points in RPE-selective neurons in these regions (Extended Data Fig. 5 
and Methods). It is possible that the lack of consistent diversity in the 
OFC and LPFC is the result of these regions having a smaller proportion 
of RPE-selective neurons, preventing strong claims in favor of or against 
distributional RL in these regions. Nevertheless, ACC RPE-selective 
neurons exhibited strong diversity in reversal points, a requirement 
for testing further predictions of distributional RL. The remainder of 
our analyses are therefore focused on the ACC.

Distributional RL predicts that reversal diversity is a signature of 
distributional coding over value, not over cue stimulus features. A neu-
ron tuned to the sensory features of the cue predicting value 4 would 
appear as an optimistic neuron in our analysis, even though it may not 
be optimistic in general. Fortunately, the experiment included two 
different stimuli for each value level. We correlated the reversal point 
estimated in one stimulus set with that in the other and found optimism 
in the ACC generalized over stimulus sets (R = 0.41, P = 0.009 by Pear-
son’s correlation; Fig. 1e). This confirmed that diversity in ACC reversal 
points was not explained by tuning to specific stimulus features.

How distributional computations are supported across brain 
regions, such that optimistic neurons in one region communicate with 
those in another, is an intriguing open question15,28. Inspired by the 
topographic organization of learning rates in the ACC23, one solution 
is for topographic organization of degrees of optimism. We tested for 
such organization and found that the anterior–posterior (AP) location 
within the ACC predicted optimism, such that more anterior neurons 
were more optimistic (R = 0.37, P = 0.016 by Pearson’s correlation;  
Fig. 1f and Extended Data Fig. 6). Furthermore, as these spatial scales 

are available to functional magnetic resonance imaging (MRI) and brain 
stimulation, topography also offers a route to noninvasive measure-
ment and manipulation of distributional representations.

The second prediction of distributional RL is that different cells 
have different relative gains, or scaling factors, for positive versus 
negative RPEs15. In our task, positive RPEs were (1 − chosen reward 
probability) on rewarded trials and negative RPEs were (0 − chosen 
reward probability) on unrewarded trials (Methods). For each neuron, 
we separately estimated scaling for positive RPEs (β+), by regressing 
firing rates against the offer value at feedback on rewarded trials, and 
likewise scaling for negative RPEs (β−) on unrewarded trials (Fig. 2a). 
From these, we computed a single measure (‘asymmetric scaling’) to 
reflect the asymmetry of positive versus negative RPEs: β+/(β+ + β−). 
We found diversity in the relative weighting of positive versus nega-
tive RPEs across ACC neurons at feedback (Fig. 2b) and this diversity 
was stable across independent partitions of the data (R = 0.32, 
P = 0.014; Fig. 2c).

The third prediction is that optimism (from the first prediction) 
is correlated with asymmetry in positive versus negative RPEs (from 
the second prediction); in distributional RL, optimism arises from 
asymmetric scaling of RPEs. For example, if a neuron upweights—hence 
learns more—from positive than from negative RPEs, it will learn an opti-
mistic value prediction. We confirmed this prediction in ACC neurons: 
asymmetry in RPEs at feedback predicted the reversal points at choice 
(R = 0.41, P = 0.0079 by Pearson’s correlation; Fig. 2d). This is a specific 
prediction of distributional RL15. Thus primate ACC contains analogs 
of distributional RL found in rodent dopamine neurons15.
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Fig. 2 | Diverse asymmetric scaling of RPEs predicts optimism. a, An example 
neuron’s responses at each of the task epochs: choice, feedback on rewarded 
trials and feedback on unrewarded trials. β+ and β− are betas corresponding 
to the scaling of positive and negative RPEs. Betas are calculated on the mean 
firing rate in a 200- to 600-ms window after feedback. Error bars denote s.e.m. 
Note that, for rewarded and unrewarded trials, we do not display the lowest 
and highest value levels, respectively, owing to a small number of trials giving 

unreliable traces. b, Histogram showing a diversity of asymmetric scaling across 
ACC RPE neurons. Coloring denotes optimism as defined by asymmetric scaling, 
with red more optimistic. c, Same format as Fig. 1d but for asymmetric scaling 
consistency: mean R = 0.32, P = 0.014 across data partitions. Each point denotes a 
neuron. d, Asymmetric scaling estimated at feedback predicted reversal point at 
choice: R = 0.41, P = 0.0079. Each point denotes a neuron.
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Fig. 3 | Diverse asymmetric learning. a,b, Asymmetric scaling and asymmetric 
learning are both predictions of distributional RL, but are dissociable. 
Asymmetric scaling reflects differences in the degree to which positive and 
negative RPEs are scaled to predict firing rate. Asymmetric learning reflects 
differences in the rate of state value update after positive and negative RPEs 
(which may or may not be affected by asymmetric scaling). These different 
learning rates are denoted by α+ and α−, respectively. δ = r− V  is the RPE, where r 
is the reward on the current trial and V the value. a, Simulated examples 
demonstrating the difference between asymmetric scaling and learning, as 
governed by the equations in b. The top shows predicted RPEs generated by 
asymmetric scaling with symmetric learning (equations (iii) and (ii)). In this 
extreme case, the scaling does not impact learning and the learned value would 
converge on the expectation. The middle and bottom show the converse: RPEs 
and corresponding values generated by symmetric scaling with asymmetric 
learning (equations (i) and (iv)). We have presented them in this way to highlight 
how asymmetric scaling and asymmetric learning can be dissociable phenomena 
that we can measure separately, not because we do not predict that they are 
related. On the contrary, we show that they are related in g. c, Comparing the 
crossvalidated model fits revealed that a model with both asymmetric learning 
and asymmetric scaling (ALAS) is the best explanation of the ACC data, and the 
fully classic (symmetric) model (SLSS) is the worst model of the data. Each bar in 
the bar graph shows the comparison between a pair of models and is the 
difference in the R2 value of the two models being compared. Error bars denote 
s.e.m. The significance of the differences is determined by paired, two-sided 
Student’s t-tests over neurons: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. d, Example model 
fits. Top, RPE regressors generated using learning rate parameters fitted to 

individual neuron data, for three different neurons from the same session. 
Different levels of optimism can be seen via the different rates at which RPEs tend 
back toward zero after changes in state value (denoted by the dashed black line in 
the bottom plot). Bottom, this is reflected in the corresponding values. The 
pessimistic neuron (shown in blue), for example, is quick to devalue but slow to 
value. e, Example real neuron responses around transitions in the sign of the RPE, 
from three separate neurons. We used the best-fitting model to define trials when 
the RPE switched from negative to positive, or vice versa. We then plotted the 
mean firing rate on that first trial of the switch and the subsequent trial, and 
observed asymmetries in the rate of change in the firing rate after the first 
positive versus negative RPE, as predicted by distributional RL in a. For example, 
the (pessimistic) neuron on the left changes its firing rate more following 
negative than positive RPEs (the slope for negative RPEs is more positive than the 
slope for positive RPEs is negative), indicating that it has learnt more from 
negative than from positive RPEs. The converse pattern is true for the (optimistic) 
neuron on the right. Error bars denote s.e.m. f, The per-neuron asymmetry in 
learning derived from the model, defined as α+/(α+ + α−), estimated in one half 
of the data predicted that in the other half of the data (R = 0.62, P = 0.0001), 
demonstrating that there is consistent diversity in asymmetric learning across 
the population of neurons, as predicted by distributional RL. g, Asymmetric 
learning and asymmetric scaling positively correlated, consistent with the 
theoretical proposal that asymmetric scaling drives asymmetric learning 
(R = 0.35, P = 0.04 for a correlation between asymmetric learning estimated in the 
first data partition and asymmetric scaling estimated in the second, and R = 0.38, 
P = 0.03 for the converse correlation; average across partitions: mean R = 0.37, 
geometric mean P = 0.03).
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So far, we had identified neural signatures of distributional RL in 
a static task where values did not need to be updated. However, many 
real-world contexts require continuous learning as decision values 
change. We then turned to a previously untested, strong prediction 
of distributional RL; in addition to diverse asymmetries in the scaling 
of positive versus negative RPEs, we expected diverse asymmetries 
in the rates of learning from positive versus negative RPEs (Fig. 3a,b). 
Optimistic cells should learn rapidly from positive RPEs and slowly 
from negative RPEs, and pessimistic cells the opposite. This should 
be detectable in subsequent RPE responses, because the RPEs are 
computed using the learned value. After a positively surprising event, 
the size of positive RPEs in an optimistic cell should decrease sharply 
because the value prediction is sharply increased, with the converse 
pattern in pessimistic neurons (Fig. 3a).

Exploring asymmetric learning requires a learning task in which 
the reward structure is dynamic, so that subjects must update their 
value expectations. In a second dataset, we analyzed single-neuron 
data in the PFC and striatum from two NHPs (M. mulatta) during 
performance of a well-studied learning task29,30. In this task, there 
were four cues that independently changed in value every five to 
nine trials (Methods). To maximize reward, subjects needed to 
update their value estimates of these cues across trials. We identi-
fied a significant population of RPE-selective neurons in the ACC  
(n = 94 of 240, 39%), which we used for our analysis (RPE selectivity 
was defined from a Rescorla–Wagner-based learning model from 
Miranda et al.30; Methods). As in the nonlearning task presented 
earlier, we found little evidence for distributional RL in other brain 
regions, again possibly owing to a smaller proportion of RPE-sensitive 
neurons (Extended Data Fig. 7). Therefore, combined with the fact 
that we have a hypothesis for distributional RL in the ACC from the 
first dataset, we focused on the ACC.

We fitted four models to the neuronal responses, specifically to 
firing rate at outcome. All models were adaptations of the Rescorla–
Wagner model, wherein learning of values is driven by RPEs scaled by 
a learning rate (see Fig. 3b for equations and Methods for details). One 
model allowed each neuron to have a different, therefore asymmetric, 
scaling of RPEs, as described in the analysis of the nonlearning task, 
and symmetric learning from RPEs (that is, governed by equations (iii) 
and (ii) from Fig. 3b, respectively). One model allowed each neuron to 
have different learning rates for positive versus negative RPEs, with 
symmetric scaling (that is, equations (iv) and (i), respectively). One 
model, classic RL, allowed neither a degree of flexibility (that is, equa-
tions (i) and (ii)); one model, fully distributional RL, allowed both (that 
is, equations (iii) and (iv)). For each neuron, we fitted the learning rate 
and scaling parameters in a subset of the data (Methods). We then used 
these parameters to generate RPE regressors for the held-out data in 
which we assessed the model’s fit to the data (R2) using tenfold cross-
validation. We compared the different models’ fits to the data using 
the mean R2 (across partitions) for each neuron.

We found that the model incorporating both asymmetric learning 
and asymmetric scaling (fully distributional RL) was the best explana-
tion of the ACC data (Fig. 3c and Extended Data Figs. 8 and 9). This 
suggests that two learning rates—one for positive RPEs and another for 
negative RPEs—are better than one in explaining the learning dynamics 
of ACC neurons.

To offer intuition into what is being fit, we analyzed neuronal firing 
around transitions in the sign of the RPE. Some (optimistic) neurons 
exhibited sharper decreases in firing after positive RPEs than increases 
in firing after negative RPEs (Fig. 3d,e), as predicted by distributional RL 
(Fig. 3a). Some other (pessimistic) neurons showed the converse pat-
tern. A per-neuron measure capturing this asymmetry correlated with 
the asymmetric learning derived from the best-fitting model (R = 0.35, 
P = 0.0005; see Extended Data Fig. 10 for further analysis details). Fur-
ther measures that capture asymmetries in learning—derived directly 
from the data and therefore not dependent on the modeling—also 

correlated with model-derived asymmetric learning and showed sig-
nificant diversity across the population, thereby providing additional 
evidence for asymmetric learning (Extended Data Fig. 10).

We next analyzed the fitted parameters in a subset of neurons 
that met a more stringent definition of RPE, that is, those neurons that 
encode reward on the current and previous trial, but with opposite 
signs31 (Methods). In these 33 neurons, the model fit results all held 
(Extended Data Fig. 8). To corroborate the model comparisons and to 
demonstrate that asymmetries in learning in this model were consist-
ent and diverse across neurons, we showed that they were stable across 
independent partitions of the data (Fig. 3f; R = 0.62, P = 0.0001, from an 
across-neuron correlation over data partitions). This was also true for 
asymmetries in scaling (R = 0.58, P = 0.0004). These results would be 
expected only if the asymmetric learning and scaling effects were real. 
Therefore, different neurons have different relative rates of learning 
from positive versus negative RPEs: one neuron may rapidly increase its 
value following positive RPEs but slowly decrease it following negative 
RPEs, and vice versa for another neuron (Fig. 3d–f). Together, these 
results provide evidence for a previously untested key prediction of 
the distributional RL theory.

We next tested for and found a positive relationship between 
asymmetric scaling and asymmetric learning (Fig. 3g; R = 0.37, 
P = 0.03). This result does not preclude additional alternative pos-
sible mechanisms for how asymmetries in learning may arise, such 
as asymmetric synaptic gain15. It is, however, consistent with the most 
straightforward neural implementation of distributional RL: that 
diversity in scaling causes diversity in learning, because larger RPEs 
drive larger learning updates.

Distributional RL provides a powerful computational framework 
that learns the full reward distribution rather than only the expectation, 
improves performance of artificial agents and explains rodent dopa-
minergic responses better than classic RL13–15. In the present study, we 
demonstrate that distributional RL also better explains single-neuron 
responses in the cortex, specifically in primate ACC. We found diverse 
value predictions that were correlated with diverse asymmetries in RPE 
scaling—analogs of the results in dopamine. Diversity generalizes over 
stimulus features, hence it is not an artifact of stimulus feature coding, 
and lies on an anatomical gradient, which may organize computations 
across brain regions15,28. Finally, we observed consistent diversity across 
neurons in the asymmetries in their rates of learning from positive 
versus negative RPEs, marking, to our knowledge, the first test of the 
dynamic predictions of distributional RL.

The presence of distributional coding in the PFC has several 
implications. First, it provides a candidate mechanism for how cor-
tical representations of probability distributions over value arise, 
important for value-based, risk-sensitive decision-making17,32. Second, 
PFC responses are diverse, with different neurons showing different 
selectivity profiles11,19,33. Distributional RL does not explain all of this 
diversity, although it raises the question of whether similar mecha-
nisms could drive diversity beyond reward prediction. Third, it raises 
intriguing questions about the relationship between dopaminergic 
and cortical distributional RL. One possibility is that cortical diversity 
is simply inherited from topographically organized dopaminergic 
circuits. Another possibility is that independent distribution-learning 
mechanisms arise within the PFC as a byproduct of meta-learning15,34. 
Finally, the presence of distributional RL in primate PFC across two 
different studies suggests that distributional RL may be a ubiquitous 
mechanism for reward-guided learning.
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Methods
Dataset 1
Task and neural recordings. Results in Figs. 1 and 2 are a re-analysis of 
the data presented in Kennerley et al.8. Full task and recording details 
can be found there, but we outline the key points relevant to the pre-
sent study here. All procedures complied with guidelines from the US 
National Institutes of Health and the University of California Berkeley 
Animal Care and Use Committee8.

Two different sets of two NHPs (rhesus macaques) were used in 
both dataset 1 and dataset 2. Two is the commonly used number for 
macaque studies and is standard across virtually all macaque electro-
physiology studies. Please note that the data analyzed in the present 
paper are from two previously collected datasets (datasets 1 and 2). 
Therefore, no new animals were used in the present study. Subjects in 
dataset 1 were two males that were aged 5–6 years and weighed 8–11 kg 
at the time of recording. Although the tasks in these datasets were 
suited to testing for distributional RL, we also discussed a possible 
experiment to further test for distributional RL in the Supplementary 
Information.

The task in Dataset 1 was a two-alternative, forced choice task, in 
which two rhesus macaques were presented, on each trial, with two 
stimuli, which they chose between with the use of a joystick move-
ment. After a delay, feedback was delivered. Trials differed in the pair 
of stimuli presented at the choice phase. Stimuli were drawn from a set 
of possible stimuli, which denoted different values varying along one 
of three attributes: probability of reward, magnitude of reward or the 
amount of effort (lever pulls) required to obtain the reward.

On any given trial, subjects were presented with two stimuli from 
the same attribute (for example, both probability cues), from the 
same stimulus set and of neighboring values (for example, subjects 
chose between 0.9 and 0.7 probability cues, never 0.9 and 0.5), hence 
the chosen value difference was the same on all trials. For the purpose 
of the present study, our analyses focused only on probability (not 
magnitude or effort) trials.

Recordings were made in the ACC (n = 213 neurons), OFC (n = 140) 
and LPFC (n = 257) (see Figure 6 of Kennerley et al.35 for precise locations 
of recorded neurons).

This dataset is well suited to testing for distributional RL 
given that recordings were in the ACC, a region known to contain 
value-related learning signals8 and to be important for risk-sensitive 
decision-making17. Furthermore, this dataset is well suited because we 
can index neural responses to positive and negative RPEs separately8 
(see below). Indeed, we previously reported8 that some neurons in the 
ACC encode, for example, positive RPEs more strongly than negative 
RPEs, which is suggestive, broadly speaking, of diversity in RPE coding. 
In addition to being the most appropriate brain region to test for distri-
butional RL in the cortex, the ACC is also recorded in both this dataset 
and the other dataset analyzed in this paper (see below).

Note that we present results only from the analyses of probability 
trials, because these are the only trials in which we can measure asym-
metric scaling of RPEs—the probabilistic feedback causes positive and 
negative RPEs on rewarded and unrewarded trials, respectively (see 
below). Also note that distributional RL makes predictions at the neural 
level and so our analyses focused on the neural data.

Neuron inclusion criteria and analysis assumptions. Only neurons 
that encoded RPE were entered into subsequent distributional RL 
analyses. To meet this criterion, neurons must be probability selective 
at choice, defined as P < 0.05 in linear regression between probability 
level and mean firing rate on each trial in a 200- to 600-ms window after 
cue onset. This is the analysis window used throughout the study and 
was chosen because it matches that used in Dabney et al.15 and because 
there is strong reward-related activity in this time period8 (Extended 
Data Fig. 1). Neurons must in addition encode reward probability at 
feedback with an opposite sign to that at choice, that is, RPE-selective 

neurons (see below), as we defined previously8. Forty-one ACC neurons 
(19%) met this criterion; in contrast, only 6% of OFC and 10% of LPFC 
neurons met this criterion. Furthermore, we did not find significant 
diversity in the reversal point in OFC and LPFC RPE neurons (Extended 
Data Fig. 5), which may be the result of a smaller proportion of neurons 
encoding RPE. Hence, we focused on the ACC for the remainder of the 
analyses. Although we restricted our analysis to RPE-coding neurons 
as defined above, we note that neural responses to the onset of the 
stimuli can be thought of as a prediction error to the cue probability, 
because it signals whether the current trial offer was better or worse 
than expected8.

We briefly note here that, unlike dopaminergic neurons, in the 
ACC some neurons’ firing rates have a positive relationship with reward 
(that is, the firing rate increases as the reward increases) and others 
negative (that is, the firing rate increases as the reward decreases)8. We 
therefore flipped the firing rates (multiply by −1) of those neurons that 
are negative, but note that this in fact does not make any difference to 
the estimation of the distributional RL measures.

Furthermore, as the value differences of the choices were constant 
(as they are only ever show pairs of stimuli neighboring in value) and 
their performance was at ceiling8 (choosing the higher option on 98% 
of trials), we had four possible pairs of stimuli (and chosen values) that 
could be experienced on each trial.

Measuring optimism at choice. We indexed the nonlinearity in the 
firing rate as a function of reward using a measure analogous to that 
used in Dabney et al.15. We measured the ‘reversal point’ of a neuron 
by estimating the value at which that neuron’s response is the same as 
(or reverses from positive to negative deviation from) the mean firing 
rate across trials after the presentation of the value-predicting cue (in 
the analysis window).

Unlike in dopaminergic neurons, the reversal point here is 
induced by z-scoring the data (mean firing rate in the analysis win-
dow after stimulus onset) within a neuron and across trials, and is 
therefore not exactly the same as the reversal point from baseline 
(pre-stimulus onset) firing, as used in Dabney et al.15. This is nec-
essary because deviation in the firing rate from baseline in corti-
cal neurons does not have the same assumed meaning as it does in 
dopaminergic neurons. In dopaminergic neurons, it is assumed that 
positive and negative deviations from baseline firing rate equate 
to positive and negative RPEs being signaled by that neuron15,16. 
However, in the cortex, many probability selective neurons will, for 
example, increase their firing rate (relative to the pre-cue baseline) 
in response to all values (that is, even those at the lowest part of the 
reward distribution, which ought to elicit negative RPEs even in the 
most pessimistic neurons). Hence, unlike in dopaminergic neurons, 
in the cortex an increase in the firing rate relative to the baseline 
does not necessarily mean a positive RPE (Extended Data Fig. 2). We 
therefore measured the reversal point for each neuron by z-scoring 
the data in a window after feedback, so that we could compare the 
measures of optimism across neurons (this z-scoring results in neu-
tral neurons having a reversal point of 2.5 and deviations >2.5 and 
<2.5 indicating optimism and pessimism, respectively). The reversal 
point is estimated by linearly interpolating between the neighbor-
ing negative and positive state values and is defined as the value at 
which that interpolation crosses no change from the mean firing rate  
(Fig. 1b). If a neuron is optimistic and thus predicts the highest values 
in the range of the task, the firing rate to all values but the highest 
value will be low relative to that of the highest, hence the reversal 
point will be high (Fig. 1b, left). We used this reversal point measure 
for consistency with Dabney et al.15.

However, we noted that an alternative measure of optimism cap-
turing the nonlinear shape of the neuronal response as a function of 
reward yielded qualitatively the same results (Extended Data Fig. 3) and 
was highly correlated with the reversal point. This measure is obtained 
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by fitting the nonlinearity in the firing rate as a function of reward using 
a quadratic term in linear regression:

FR = β0 + β1R + β2R
2 (1)

where FR is the firing rate on each trial and R the reward level. β2 is a 
regression weight that indexes optimism via the concavity (or convex-
ity) of the function. As expected, this measure of optimism is highly cor-
related with the reversal point described above (R = 0.87, P = 4.0 × 10−37 
by Pearson’s correlation), corroborating that both measures index the 
nonlinearity in the firing rate as a function of reward.

Such nonlinear responses have recently been shown to arise from 
normalized RL, wherein rewards are represented by a normalized 
objective function inspired by a canonical divisive normalization com-
putation27. Such normalization may be particularly relevant to cortical 
neurons. Importantly, it also offers a mechanism for how nonlinear 
reward coding compatible with distributional RL may arise in a bio-
logically plausible manner and, furthermore, how this may naturally 
give rise to distributional RL27. This work therefore provides a deeper 
possible explanation and mechanism for how the effect captured by 
our reversal point and quadratic β measures may arise and result in 
distributional coding.

In terms of what reversal points we expect to see in our data, we 
noted that, although the probability distribution over value was uni-
form (each of the four value levels was equally likely to be presented at 
choice on a given trial), this did not necessarily mean that we expected 
the measured reversal points to be a uniform distribution. This is 
because the learned reversal points arising from distributional RL 
are predicted to correspond to expectiles of the reward distribution 
(Dabney et al.15). Therefore, we did not expect the measured reversal 
points (in Fig. 1c) to be uniform; we did, however, expect them to exhibit 
consistent diversity (as shown in Fig. 1d,e).

Consistent diversity in optimism at choice. Observing diversity in 
optimism/reversal point alone is not sufficient, because this would 
be expected simply by noise. We therefore confirmed that diversity in 
reversal points was consistent by partitioning the data into independ-
ent partitions and testing whether the diversity was consistent across 
the partitions. We followed the same methodology as Dabney et al.15. We 
estimated the reversal point in a random half of the trials and repeated 
the estimate in the other half. We did this for each neuron and then 
correlated the reversal points estimated in one half with those in the 
other half, obtaining R and P values for the correlation. If diversity were 
not the result of random noise, we would expect these independently 
estimated reversal points to significantly correlate across neurons. 
To ensure that this correlation is robust across partitions of the data, 
we repeated this partitioning process 1,000× and took the geometric 
mean of the P values across partitions to obtain a summary P value for 
the analysis. We also obtained a summary P value by bootstrapping, 
wherein we used the random partitions to obtain a P value of the cor-
relation coefficient.

Asymmetric scaling (RPEs at feedback) analysis. To estimate asym-
metry in the scaling of the firing rate as a function of positive versus 
negative RPEs, we estimated the scaling of positive and negative RPEs 
on rewarded and unrewarded trials, respectively. This was possible 
because rewarded trials would always elicit positive RPEs, and vice 
versa for unrewarded trials. The scaling of the firing rate as a function 
of, for example, positive prediction error was the regression weight 
used to scale the positive RPE to predict the firing rate, as in Dabney 
et al.15. The size of the RPE was dependent on the cued probability at 
choice8. The RPE was defined as r − V, where r is the delivered reward 
and V the cued probability value that denotes the expected value of 
the upcoming outcome. Rewarded and unrewarded trials yielded a 
reward of 1 and 0, respectively. If, for example, the cued probability 

were high (0.9), this would elicit a smaller positive RPE on rewarded 
trials than a low cued probability (0.3), because reward would be more 
expected (the RPEs in these cases would be: 1 – 0.9 = 0.1 and 1 – 0.3 = 0.7, 
respectively). In contrast, high cued probabilities would elicit larger 
negative RPEs on unrewarded trials, because a reward was expected. 
We therefore estimated the scaling of positive and negative RPEs by 
regressing the chosen cue probability against the firing rate at feed-
back, separately for rewarded and unrewarded trials, resulting in the 
regression coefficients β+ and β− for scaling of positive and negative 
RPEs, respectively. We used this scaling to compute the optimism of 
the scaling asymmetry as β+/(β+ + β−). To confirm that the revealed 
diversity was not simply a result of noise, we performed the same 
partition-based consistency analysis as we did for optimism at choice.

This measure is analogous to the asymmetric scaling measure 
used in Dabney et al.15, the difference being that, whereas Dabney et al.15 
measured asymmetric scaling from the cue presentation epoch, we 
estimated the scaling at a separate task epoch to cue presentation/
choice; that is, at feedback time, when RPEs will be elicited after a cued 
probabilistic reward delivery. Furthermore, we estimated positive and 
negative RPEs on rewarded and unrewarded trials, respectively.

To test for the relationship between optimism at choice and asym-
metric scaling, we regressed choice optimism against asymmetric 
scaling across neurons. We performed this analysis for those neurons 
that encode RPEs—in other words, following Kennerley et al.8, those 
neurons that code the cued probability in choice and feedback epochs 
with opposite signed relationships, and where both feedback epochs 
(rewarded and unrewarded) had the same sign. In brief, the logic is as 
follows: an RPE-selective neuron that, for example, increases its firing 
rate as a function of chosen probability at choice, and therefore has 
a positive relationship between firing rate and RPE (elicited by the 
probability cue), should fire less strongly after reward following a 
high probability cue (because the RPE is smaller), and therefore has 
a negative relationship between firing rate and probability at feed-
back. This same negative relationship applies on unrewarded trials, 
when a larger decrease in firing is elicited on high probability trials 
because a larger negative prediction error is elicited by lack of reward 
on high probability trials. Hence, the sign of the relationship between 
firing rate and probability cue is opposite at choice and feedback for 
RPE-selective neurons as previously explained in detail8. Choice opti-
mism and feedback asymmetric scaling are measured in different trial 
epochs (that is, choice and outcome), minimizing the likelihood of 
artefactual correlation.

Note that we did not look for asymmetric learning (see below 
and main text) in dataset 1. This was because the animals had been 
overtrained on this task and little to no learning remained at the time 
of recording. The animals’ behavior was at ceiling (accuracy, defined as 
selecting the higher value option, was mean 98%, s.e.m. 0.2%). Never-
theless, the brain still computed prediction errors, which we (and Dab-
ney et al.15) used to measure distributional RL. It is not fully understood 
why the prediction errors in static tasks do not drive the same kind of 
learning as they do in dynamic tasks. Evidently, there is a downstream 
mechanism that regulates the degree of learning from these signals. 
Mechanisms such as Bayesian RL (Behrens et al.36) or meta-RL (Wang 
et al.34) may be at play, which predict that, in static reward environments 
such as dataset 1, the overall learning rate is diminished. To induce 
learning a dynamic decision-making task is required, such as dataset 2.

We also noted that we did not perform distribution decoding, 
whereby the reward distribution is decoded directly from neuronal 
activity15. Unlike in Dabney et al.15, the ground truth reward distribution 
in our dataset had a uniform shape, so it did not lend itself to qualitative 
comparison of multiple modes of the distribution.

Simultaneous diversity. Differences in value expectation may vary 
across sessions, owing to, for example, motivation. Therefore, when 
pooling neurons across sessions for analysis, we might find diversity 
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even from classic RL alone owing to different expectations across 
sessions. To address this, we showed that diversity exists within sin-
gle sessions (Extended Data Fig. 4). We also showed that diversity 
exists within individual subjects (Extended Data Fig. 4). We further 
accounted for possible diversity across subjects in the asymmetry 
predicting reversal point correlation: we found that the relationship 
between choice reversal point and feedback asymmetric scaling held 
after including subject as a coregressor (t(38) = 2.66, P = 0.01, for the 
asymmetric scaling regressor predicting reversal point, in a generalized 
linear model regressing out the subject). This suggests that differences 
in value expectations across subjects or sessions cannot explain the 
observed diversity.

Dataset 2
Task and neural recordings —two-step decision task. Results in  
Fig. 3 are a subset of analyses from the neuronal recordings accompa-
nying Miranda et al.30. A full report of the neurophysiological results 
during this task will be reported in upcoming separate publications. 
Full task details can be found in Miranda et al.30, but we outline the key 
points relevant to the present study here. As stated in Miranda et al.30, 
all experimental procedures were approved by the University College 
of London (UCL) Local Ethical Procedures Committee and the UK Home 
Office (PPL no. 70/8842) and carried out in accordance with the UK 
Animals (Scientific Procedures) Act.

This task was an adaptation of the classic two-step decision-making 
task29 to NHPs. The two-step nature of this task, along with the proba-
bilistic transitions, is not relevant to the present study, because we 
focused analyses on the outcome time when the subjects were learning 
the values of the outcome stimuli in a manner that was postulated to be 
the same for model-based and model-free methods (Daw et al.29; see 
below). Nevertheless, we briefly describe the task here for complete-
ness. Two decisions were made on each trial. At the first decision step, 
animals chose between two options (denoted by picture stimuli) which 
each resulted in probabilistic transitions to one of two second-stage 
states. One transition was more likely (70%, a common transition) and 
the other less likely (30%, a rare transition). The common transition 
from each of the first-stage options was to a different second-stage 
option. In each of the possible second stages, another two-option 
choice was required and each of these four end-stage states had one of 
three different outcome levels (high, medium and low reinforcement 
levels), which was delivered in the feedback stage. To induce learning, 
the outcome levels for the second-stage options were dynamic: reward 
associated with each second-stage option remained the same for five to 
nine trials, then changed randomly to any of the three possible outcome 
levels (including remaining the same). To make appropriate choices at 
both first and second stages of the task (which they did30), animals had 
to continually track and update the value of each end-stage stimulus.

We focused exclusively on neural activity at the feedback stage 
when outcome was received. This is because: (1) we wanted to focus 
on the learning of the dynamic values of the second-stage options to 
test for asymmetric learning; (2) it is at this feedback period when RPEs 
ought to be elicited and error-driven learning of option values occurs; 
and (3) this allows us to look at simple value learning independent of 
task transitions, which are not relevant for testing distributional RL. 
For the sake of our analyses, we could therefore think of this task as a 
simple reversal learning task in which four cues change their value every 
five to nine trials. Among other brain regions, recordings were made 
in the ACC. We focused analyses on the ACC because this is the brain 
region in common with Kennerley et al.8 and where we have a strong 
hypothesis for the presence of distributional RL.

Neurophysiological methods in the second (two-step) dataset. 
Two NHPs (subjects ‘J’ and ‘C’), different to those in Kennerley et al.8, 
performed the task. Subjects were two males aged 5–6 years, weigh-
ing 8–10 kg at the time of recording. Subjects were implanted with a 

titanium head positioner for restraint, then subsequently implanted 
with two recording chambers that were located on the basis of pre-
operative 3-T MRI and stereotactic measurements. Postoperatively, 
we used gadolinium-attenuated MRI and electrophysiological map-
ping of gyri and sulci to confirm chamber placement19. The cham-
ber positioning along the AP, medial–lateral (ML) coordinate planes 
and their respective lateral tilt (LT) angle from vertical were as fol-
lows: one chamber over the left hemisphere at AP = 38(C)/37( J) mm, 
ML = 20.2(C)/18.1( J) mm and LT = 21°(C)/26°( J); and one over the right 
hemisphere at AP = 27(C)/27.5( J) mm, ML = 19.7(C)/17.9( J) mm and 
LT = 22.5°(C)/28°( J). Craniotomies were then performed inside each 
chamber to allow for neuronal recordings in different target regions.

For single-neuron recording we used epoxy-coated (FHC Instru-
ments) or glass-coated (Alpha Omega Engineering) tungsten micro-
electrodes inserted through a stainless-steel guide tube mounted on 
a custom-designed plastic grid with 1-mm spacing between adjacent 
locations inside the recording chamber. Electrodes were acutely and 
slowly advanced through the intact dura at the beginning of every 
recording session using custom-built, micro-drive assemblies that 
were manually controlled and lowered electrodes in pairs or triplets 
from a single screw, or motorized microdrives (Flex MT and EPS by 
Alpha Omega Engineering) with individual digital control of elec-
trodes. During a typical recording session, 8–24 electrodes were low-
ered into multiple target regions until well-isolated neurons were 
found. Neuronal signals were acquired at 40 kHz, amplified, filtered 
and digitized (OmniPlex Neural Data Acquisition System by Plexon 
Instruments). Spike waveform sorting was performed off-line using a 
principal component analysis-based method (Offline Sorter by Plexon 
Instruments). Channels were discarded if either neuronal waveforms 
could not be clearly separated or if waveforms did not remain stable 
throughout the session.

We randomly sampled neurons; no attempt was made to select 
neurons on the basis of responsiveness or specific cortical layer. This 
procedure ensured an unbiased estimate of neuronal activity, thereby 
allowing a fair comparison of neuronal properties between the differ-
ent brain regions.

We recorded neuronal data from four target regions: the ACC, 
dorsolateral PFC (DLPFC), caudate and putamen. In subject C, we 
recorded from the ACC (dorsal bank of the ACC sulcus) and the DLPFC 
(dorsal bank of the principal sulcus) in both the left and the right hemi-
spheres, and from the dorsal caudate and the dorsal putamen in the 
right hemisphere. In subject J, we recorded from the ACC (dorsal bank 
of the ACC sulcus) and the DLPFC (dorsal bank of the principal sulcus) 
in the left hemisphere; and from the dorsal caudate and the dorsal 
putamen from the right hemisphere. We recorded single-unit activity 
from 663 neurons (C: 695 and J: 246) in 57 recording sessions (C: 30 and 
J: 27) across all four investigated regions: ACC, 240 neurons; DLPFC, 
187 neurons; caudate, 116 neurons; putamen, 120 neurons. We used 
gadolinium-enhanced MRI along with electrophysiological observa-
tions during the process of lowering each electrode to estimate the 
location of each recorded neuron. In the ACC, the recordings were 
positioned between AP 30–37 mm in subject C and AP 30–36 mm in 
subject J, relative to the interaural line (AP = 0 mm).

Neuron inclusion. Of the 240 neurons recorded in the ACC, we tested 
for signatures of distributional RL (see below) in those that were sensi-
tive to RPE (those neurons that had P < 0.05 in linear regression between 
firing rate and RPE). The RPE regressors used to test for sensitivity are 
from Miranda et al.30. These were obtained using the best-fitting param-
eters fitted to behavior, as described in Miranda et al.30. Some 94 neu-
rons passed this criterion and are the neurons analyzed in Fig. 3. 
Furthermore, we noted that the results held using a much more strin-
gent definition of RPE from Bayer and Glimcher31 (Extended Data  
Fig. 8), that is, the firing rate at feedback on the current trial must be 
sensitive to the reward delivered on the current trial and on the previous  
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trial, but with opposite signs, that is, FR = β0 + β1Rew(t) + β2Rew(t − 1), 
where β1 and β2 are both significant at P < 0.05 but with opposite  
signs; 33 neurons met this criterion. These are the neurons in which we 
analyzed the fit parameters, for testing for consistency and relation-
ships between the parameters (Fig. 3f,g). Similar to dataset 1, the num-
ber of selective neurons in other regions was smaller than in the ACC 
(ACC: 94 of 240 = 39%; DLPFC: 39 of 187 = 21%; caudate: 26 of 115 = 23%; 
putamen: 34 of 119 = 29%; Extended Data Fig. 7). Furthermore, there 
were too few neurons selective under the aforementioned stringent 
definition of RPE31 for further model comparisons (Extended Data  
Fig. 7), and thus we focused our analyses on ACC.

Models and model fitting to test for asymmetric learning
Models. To test for asymmetric learning, we modeled neuron responses 
with classic and distributional RL models and tested which was a bet-
ter fit to the data. In all cases the model was used, for each neuron, to 
predict the firing rate on each trial (mean firing rate in a window of 
200–600 ms after feedback).

We adapted the one-step transition temporal difference learning 
model wherein estimates of cue values V are updated according to:

V← V + αδ (2)

where δ is the RPE, δ = r − V, with r the reward delivered on the current 
trial and V the previous value estimate, and α is the learning rate by 
which δ is scaled to update values. This is the equation for classic RL 
and amounts to the Rescorla–Wagner model10.

The distributional RL version of this model is15:

V← V + α+δ,δ > 0

V← V + α−δ,δ ≤ 0
(3)

where α+ and α− are separate learning rates for positive and negative 
RPEs/δ. In other words, the learning rate associated with a value update 
on a given trial will depend on whether the RPE was positive or negative. 
Different learning rates for positive and negative RPEs result in asym-
metries in the rates at which neurons learn from better-than-expected 
and worse-than-expected feedback, that is, asymmetric learning. This 
is unlike classic RL where learning is symmetric.

To fit the model to neural data, we predicted the firing rate at feed-
back from the RPE. For the classic RL case this was as follows:

FR = β0 + β1δ (4)

where β0 and β1 are regression coefficients. In the distributional RL 
case we have:

FR = β0 + β+δ,δ > 0

FR = β0 + β−δ,δ ≤ 0
(5)

where β+ and β− are different regression coefficients for positive and 
negative RPEs/δ; that is, allows the FR to be a different scaling of the 
RPE for positive and negative RPEs. Critically, in these models, this 
asymmetric scaling is separable from the above asymmetric learning, 
because it does not directly impact the update of the cue value V, and 
therefore subsequent computation of RPEs (r − V). This allowed us 
to isolate learning and scaling effects from each other and therefore 
separately measure them and demonstrate their existence (see below). 
Hence, it is possible to measure asymmetric scaling without asym-
metric learning and vice versa. Both asymmetric scaling and asym-
metric learning are predictions of the distributional RL theory, as is a 
relationship between the two. Asymmetric scaling is what was tested 
for in Dabney et al.15 (it was not possible to test for learning dynamics 
in the task they analyzed, nor the first dataset in this paper, owing to 
the static nature of cue values).

We designed our models such that asymmetric scaling did not 
impact the update of the value so that we could estimate asymmetric 
scaling and asymmetric learning separately in the model. The beta 
parameters scaled the prediction error to predict neural firing rate. We 
measured the downstream effects of the prediction error on learning 
(that is, value updating) via the alpha parameters. The advantage of 
this separation is that it allowed us to isolate the asymmetric learning 
effect to show that it truly exists. An earlier model where the asym-
metric scaling did impact the value updating (that is, β+ = α+  and 
β− = α−) outperformed the symmetric model; however, we realized 
that this could outperform the symmetric model due to the presence 
of asymmetric scaling alone, without asymmetric learning, risking a 
false-positive conclusion that there was asymmetric learning. We 
concluded that, to get reliable evidence of the asymmetric learning 
effect (that is, asymmetric value updates), we had to model them sepa-
rately to isolate the learning effect. Note, therefore, that we were not 
modeling them separately because we did not think that they were 
related. On the contrary, an additional reason for estimating asym-
metric scaling and asymmetric learning separately in the model was 
that it allowed us to correlate the parameters and conclude that there 
was indeed a relationship between them (Fig. 3g), as predicted by 
distributional RL.

We therefore had four possible models to test: symmetric learning 
and symmetric scaling (‘fully classic RL’; SLSS), symmetric learning 
and asymmetric scaling (SLAS), asymmetric learning and symmetric 
scaling (ALSS) and asymmetric learning and asymmetric scaling (‘fully 
distributional RL’, ALAS).

Model fitting. We tested which of the above models were the best fit to 
the data. We did this by fitting the parameters in a subset of the data and 
tested how well (measured using R2) a model using these fit parameters 
explained the held-out data in a tenfold crossvalidation procedure. We 
then asked which model was the best fit to the data.

Fitting a simplified, single asymmetric scaling parameter. As fit-
ting all four parameters to the data was computationally demanding, 
we adapted the asymmetric scaling equations such that asymmetric 
scaling could be accounted for with one, rather than two, parameters. 
We replaced the asymmetric scaling equations with the following:

FR = β0 + β1δS,δ > 0

FR = β0 + β1δ(1 − S),δ ≤ 0
(6)

where S is bounded between 0 and 1 and acts as a single asymmetric 
scaling parameter (for example, if S is near 1, positive RPEs are scaled 
greatly relative to negative RPEs). Using S rather than fitting β+ and β− 
therefore still achieves the important effect of accounting for asym-
metries in the scaling of the FR by positive versus negative RPEs. This 
can be understood by the following: the asymmetry in scaling is  
represented by the ratio β+/(β+ + β−) ; substituting in β+ = S and 

β− = 1 − S, we have: Asymmetric scaling = β+

β++β−
= S

S+(1−S)
= S. Therefore 

the S parameter is equal to the asymmetry in scaling. Note that the 
regression coefficients, β0 and β1, are the same in both equations, that 
is, they were fitted in the same regression model (positive and negative 
RPE trials were included in the same regression model), having scaled 
the RPEs by S or 1 − S. Also note that it is the scaling parameter, S, which 
captures the asymmetry, that is, trained and tested in crossvalidation, 
not the beta values (see below). It is also this parameter that is used as 
a measure of asymmetric scaling that is correlated with asymmetric 
learning in Fig. 3.

Estimating the parameters. We generated RPE regressors from each 
of the models and regressed these against neural data. The regressors 
were generated by passing through the model the option chosen and 
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reward observed on each trial of the training set. Values were updated 
and RPEs computed on each trial according to the above equations. 
We measured the model fit using the R2 value computed from the 
regression model. For each model (for example, asymmetric learning 
with asymmetric scaling) we carried out the model fitting using a grid 
search over parameter space. Possible values for each parameter that 
is fitted to the data—α+, α− and S—lie between 0 and 1, and we performed 
the grid search with 0.025 size increments (this is an additional advan-
tage to using S rather than β+ and β−, because the former but not the 
latter is bounded by 0 and 1, and can therefore be more easily fitted 
using a grid search). The combination of parameters with the high-
est R2 value was taken to be the best fit of parameters to the data. The 
linear parameters β0 and β1 were estimated on each grid search using  
linear regression.

Testing in held-out data. For a given model, we took this combination 
of best-fitting parameters and used them to generate regressors in the 
held-out data with the model equations above, again using the option 
chosen and reward delivered on each trial. We then assessed their fit 
to the data by regressing the RPEs computed by the model in these 
held-out trials against the firing rates on those trials. This resulted in R2 
values for the held-out data, dependent on parameters fit to the train-
ing data, such that parameters capturing features of the data consistent 
across crossvalidation folds would result in better fits in the held-out 
data. We obtained ten R2 values for each model for each neuron; one 
for each crossvalidation fold.

In Fig. 3, the linear parameters β0 and β1 are refitted in the held-out 
test data. This is because the linear parameters capture and can remove 
variance in which we are not interested for our main asymmetry analy-
ses, for example, if a given fold happened to have an increase in the 
overall gain that is not related to the asymmetry. Re-estimating the 
linear parameters isolated the model comparison to our effect of 
interest, that is, the asymmetry effects. However, we also showed 
that the results are qualitatively and quantitatively very similar if we 
carried the linear parameters over data partitions, that is, did not 
re-estimate them, but rather used, the linear parameters fitted in 
the training data to predict the firing rates in the held-out test data 
(Extended Data Fig. 9).

Testing for differences between model fits. We then compared, 
across the population of neurons, the different models’ fits to the 
neural data. We took the mean across the ten crossvalidated model 
fits in the test data for each model for each neuron, giving one number 
per model per neuron. We then carried out paired Student’s t-tests 
between the different models to determine the best-fitting model. We 
found that the asymmetric scaling with asymmetric learning model 
was better than all other models. This meant that the extra parameters 
improved the explanation of the neural data in the held-out data 
(despite having to fit more parameters to the data), demonstrating 
that asymmetric learning is a better account of the data than sym-
metric learning.

Note that, although we focused on model comparisons, the 
absolute goodness of fits (R2) for each model were as follows: 
ALAS = 0.1332 ± 0.0098 (mean ± s.e.m.); SLAS = 0.1277 ± 0.0096; 
ALSS = 0.1210 ± 0.0091; and SLSS = 0.1184 ± 0.0090.

Statistics and reproducibility
The sample sizes were chosen to be two animals for each of dataset 1 
and dataset 2, as discussed in the supporting references8,30. Two ani-
mals per dataset is the commonly used number for macaque studies 
and is standard across virtually all macaque electrophysiology stud-
ies. No data were excluded from the analyses, except neurons that 
did not meet the criterion (for example, as RPE neurons) to enter the 
analyses, as discussed above. On the note of reproducibility, we would 
like to point out that we found evidence for distributional RL across 

two independent datasets. Statistics were conducted using MATLAB 
2019a. Data distribution was assumed to be normal. Where relevant, 
trials and transitions between task contingencies were randomized 
in the task design.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The present study performs a re-analysis of a previously published 
neural data8 and presents the neural data results from a second 
dataset that reported only behavior and computational modeling30. 
Data availability will be in line with those primary source studies. 
Dataset 2 (Miranda et al.30) will be shared in an upcoming separate  
publication.

Code availability
Code is available upon request.

References
35.	 Kennerley, S. W., Dahmubed, A. F., Lara, A. H. & Wallis, J. D. 

Neurons in the frontal lobe encode the value of multiple decision 
variables. J. Cogn. Neurosci. 21, 1162–1178 (2009).

36.	 Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S.  
Learning the value of information in an uncertain world. Nat. 
Neurosci. 10, 1214–1221 (2007).

Acknowledgements
We thank P. Schwartenbeck, A. Baram and J. Bakermans for very 
helpful discussions. S.V. was supported by the Leverhulme Doctoral 
Training Programme for the Ecological Study of the Brain. B.M. was 
supported by the Fundacão para a Ciência e Tecnologia (scholarship 
no. SFRH/BD/51711/2011) and the Prémio João Lobo Antunes 2017—
Santa Casa da Misericórdia de Lisboa. J.D.W. was supported by the 
following grants: NIMH R01-MH117763, NINDS R01-NS116623 and 
NIMH R01-MH131624. P.D. was funded by the Max Planck Society and 
the Alexander von Humboldt Foundation. T.E.J.B. was supported 
by a Wellcome Principal Research Fellowship (219525/Z/19/Z), a 
Wellcome Collaborator award (214314/Z/18/Z) and by the Jean 
Francois and Marie-Laure de Clermont Tonerre Foundation. The 
Wellcome Centre for Integrative Neuroimaging and Wellcome 
Centre for Human Neuroimaging are each supported by core funding 
from the Wellcome Trust (203139/Z/16/Z, 203147/Z/16/Z). S.W.K. 
was supported by the National Institute for Mental Health (grant 
no. F32MH081521) and the Wellcome Trust Investigator Awards 
(nos. 096689/Z/11/Z and 220296/Z/20/Z). The funders had no role 
in study design, data collection and analysis, decision to publish or 
preparation of the manuscript.

Author contributions
T.H.M., T.E.J.B., Z.K.N. and S.W.K. conceived the study. B.M.,  
J.D.W. and S.W.K. collected the data. T.H.M., J.L.B., S.V., P.D.,  
T.E.J.B., Z.K.N. and S.W.K. analyzed the data. All authors  
interpreted the data. T.H.M., Z.K.N. and S.W.K. wrote the paper  
with input from all the authors. Z.K.N. and S.W.K. supervised  
the project.

Competing interests
Z.K.N. is employed by Google DeepMind. The remaining authors 
declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41593-023-01535-w.

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01535-w


Nature Neuroscience

Brief Communication https://doi.org/10.1038/s41593-023-01535-w

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41593-023-01535-w.

Correspondence and requests for materials should be addressed to 
Timothy H. Muller, Zeb Kurth-Nelson or Steven W. Kennerley.

Peer review information Nature Neuroscience thanks William Stauffer 
and the other, anonymous, reviewer(s) for their contribution to the 
peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01535-w
http://www.nature.com/reprints


Nature Neuroscience

Brief Communication https://doi.org/10.1038/s41593-023-01535-w

Extended Data Fig. 1 | Timeseries demonstrating value-related variance. The 
mean across neurons of the coefficient of partial determination (CPD) for value 
(cued probability) over time, following cue onset. The CPD measures how much 
variance in each neuron’s firing is explained by a given regressor (see below). This 
timeseries validates the 200–600 ms post-onset window that we used in order to 
match that used in Dabney, Kurth-Nelson et al.15, because that window very 
closely matches the peak value-related coding in the timeseries (as in Kennerley 
et al.8). We therefore used 200–600 ms and did not try any other time windows in 
order to avoid any possible p-hacking. Nonetheless we note that in a window that 

captures this peak, defined as when the CPD is higher than two thirds of the 
maximum CPD (270–620 ms), the core correlation between reversal point and 
asymmetric scaling was significant, R = 0.38, P = 0.019. Shaded region is the SEM 
across neurons. Note, as in Kennerley et al.8, the CPD for regressor Xi is defined by 
CPD(Xi) = [SSE (X−i) − SSE (X−i,Xi)] /SSE (X−i), where SSE(X) is the sum of squared 
errors in a regression model that includes a set of regressors X, and X−i is a set of 
all the regressors included in the model except Xi. The CPD for Xi is more positive 
if Xi explains more variance in neuronal firing.
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Extended Data Fig. 2 | Reason for Z-scoring to fit the reversal points.  
a–c) Three example neurons’ firing rate plotted as a function of time since cue 
onset, and split according to the four value levels, showing that some neurons 
increase their firing relative to baseline pre-stimulus firing rate for all reward 
levels (a), others increase or decrease it depending on the reward level (b) and 
others decrease it for all reward levels (c). Shaded regions denote SEM. The 
reason for Z-scoring in our data is as follows. In dopamine neurons, it appears 
that any firing rate deviation from baseline activity (that is, pre-stimulus onset 
activity) is signalling a reward prediction error. This is not true for cortical 
neurons, which may, for example, increase (as in a) or decrease (c) their firing 
to all reward levels. If this is the case, then deviation from baseline cannot be 
assumed to denote an RPE. That some neurons either increase or decrease their 

firing to all reward levels is indicative of the heterogenous coding schemes 
evident in PFC neurons. Given this, we can isolate the component of the activity 
that is associated with RPE by calculating z-scores, and using deviation from 
mean firing to capture the same effect and compute reversal points. Therefore 
our reversal point measure captures, for each neuron, the relative differences 
in responses to different reward levels (that is, the non-linearity) that indicates 
optimism, rather than being affected by overall shifts in firing. These reversal 
points, that is, the value at which the neuron firing reverses from below to above 
the mean firing in the epoch, are an index of neuron optimism; the higher the 
reversal point, the more optimistic the neuron, and neurons with reversal points 
above 2.5 are optimistic and below 2.5 are pessimistic (Methods).
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Extended Data Fig. 3 | Results hold with a different measure of non-linearity at choice. a) Histogram showing diverse quadratic betas. b) Histogram showing the 
log p-values for consistency of these quadratic betas across partitions and the corresponding geometric mean. c) Pearson correlation between asymmetric scaling and 
quadratic betas.
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Extended Data Fig. 4 | Simultaneous diversity within session. Four 
simultaneously recorded cells from the session with most reward-sensitive cells 
(9 in total), demonstrates there is diversity in optimism even within a session. 
Across cells, responses to middle value levels are both above and below the linear 
interpolation between lowest and highest values’ responses. Mean normalised 
firing is plotted for each of the 4 value levels. Error bars denote SEM. Firing rates 
are normalised such that responses to value 1 and 4 have mean firing rate 0 and 
1, respectively. Normalisation allows comparison across cells of responses to 
middle value levels. Responses to value 2 across the 9 simultaneously recorded 

cells were significantly diverse; ANOVA rejected the null hypothesis that across 
cells the value 2 responses were drawn from the same mean (F(8,405) = 3.56, 
P = 0.0005). The same was true for responses to value 3 (F(8,441) = 2.16, 
P = 0.0291). This diversity was also present when including all cells in the 
analysis (value 2: F(40,1658) = 3.82, P = 2.74 × 10−14, and value 3: F(40,1842) = 4.73, 
P = 4.99 × 10−20), and in individual subjects (first animal: value 2; F(11,516) = 3.18, 
P = 0.0006, value 3; F(10,520) = 3.61, P = 0.0001; second animal: value 2; 
F(29,1142) = 3.92, P = 2.6 × 10−11 value 3; F(29,1322) = 5.47, P = 1.7 × 10−18).
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Extended Data Fig. 5 | Lack of diversity in OFC and LPFC. We additionally 
ran analyses in all reward selective neurons (as opposed to only RPE-selective 
neurons) in OFC and LPFC as an exploratory analysis to assess whether consistent 
diversity was present when more neurons entered the analysis, since these 
regions have a smaller proportion of RPE-selective neurons compared to ACC. 
Same analysis as in Fig. 1, but for OFC and LPFC on all reward-selective neurons 
or RPE selective neurons. We applied exactly the same criteria and analyses 
to these brain regions as we did in ACC. As in Fig. 1, we computed the Pearson 
correlation for each of 1000 independent data partitions, and calculate the 
mean and geometric mean of the R and p-values, respectively. The coloured 
(left) histograms are the distributions of the reversal points, and the grey (right) 
histograms are the log(p-values) from the correlations. a) OFC reward-selective 
neurons. b) OFC RPE-selective neurons. c) LPFC reward-selective neurons. d) 

LPFC RPE-selective neurons. With the exception of the reward-selective neurons 
in OFC (a), none of these analyses were significant. Moreover, when we compared 
the diversity of these reward-selective neurons in OFC (a) across stimulus set 
(that is, Fig. 1e analysis), the correlation between stimulus set 1 and 2 was not 
significant (R = 0.15; P = 0.35). This may suggest the diversity in these OFC 
neurons is due to, for example, stimulus-selectivity, whereby some neurons are 
selective for stimuli coding the edges of the reward distribution, which could 
appear as optimism/pessimism in a given stimulus set, but does not generalise 
across stimulus set as would be expected from diversity related to value. The 
RPE-selective neurons had no consistent diversity, and as RPE selectivity is a 
requirement to test further predictions of distributional RL, we did not look for 
further distributional RL signatures in these brain regions.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 6 | Anatomical gradient in a different subset of 
probability selective neurons. Here we test for the anatomical gradient across 
those neurons that were probability selective at choice, but did not meet the 
criteria for RPEs. This analysis is to test the robustness of the gradient result by 
assessing whether it replicates in an independent set of neurons. The neuron 
optimism of these neurons is measured using the reversal point. We present this 

data here to supplement the gradient analyses in Fig. 1, but note that it is less clear 
what the predictions of distributional RL are for these non-RPE neurons, and so it 
is unclear exactly what the reversal point means in these neurons. Nevertheless 
we present this result to demonstrate the gradient of the reversal point measure 
replicates in an independent set of neurons (R = 0.28, P = 0.013, by Pearson 
correlation).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 7 | Other brain regions demonstrate some or no evidence 
for distributional RL. Same format and analyses as Fig. 3c in the main text, 
and Extended Data Fig. 8. We repeated our model comparison analyses in 
the other brain regions recorded in this task. These regions are also known to 
contain reward and prediction error signals, and so we may expect them to 
carry signatures of distributional RL. We found evidence for distributional RL 
in caudate (a; n = 26 neurons), weak evidence for it in dorsolateral prefrontal 
cortex (b; n = 39), and no evidence for it in putamen (c; n = 34). Error bars denote 
SEM. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. However we note that, similar to the 
first dataset presented in this manuscript, the number of selective neurons in 
these other regions is smaller than in ACC (which had 94 out of 240 neurons 

selective; 39%); caudate had 26 out of 115 neurons (23%), dorsolateral prefrontal 
cortex had 39 out of 187 neurons (21%), and putamen had 34 out of 119 neurons 
(29%). Furthermore, there were too few neurons selective under the stricter 
criteria for defining RPE-selective neurons (from Bayer & Glimcher 2005 and 
used in other parts of this manuscript; Methods), and so we do not analyse the 
model comparisons in these regions further; caudate (9 out of 115 neurons; 8%), 
dorsolateral prefrontal cortex (7 out of 187 neurons; 4%), and putamen (11 out of 
119 neurons; 9%). We therefore do not wish to make claims about the presence 
or absence of distributional RL in these regions; rather it is possible the lack 
of strong evidence for distributional RL in these regions arises from a smaller 
proportion of neurons that are encoding RPEs.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 8 | All pairwise model comparisons for asymmetric 
learning and scaling analyses. Same format as Fig. 3 in the main text. a) Bar 
graphs with all 6 pairwise model comparisons for the 94 neurons defined as 
selective using the RPE regressors from Miranda et al.30 (Methods). ALAS – SLAS, 
SLAS – ALSS, and ALSS – SLSS are the same as in the main text. *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001. b) Same as A but for only those neurons (n = 33) that meet a strict 
definition for being RPE selective. That is, as defined in Bayer & Glimcher 2005, 
those neurons that encode reward on the current trial and previous trial but with 
opposite signs (see Methods for further details).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 9 | Results are very similar when taking the linear 
parameters β0 and β1 across cross-validated partitions. Same format as Fig. 3 
in the main text. In the main text analyses, we re-fit the linear parameters β0 and 
β1 in the test data during cross-validation. As explained in the Methods, this is to 
isolate our analysis to the asymmetries in scaling, rather than the analysis being 
impacted by, for example, overall (non-asymmetric) gain. Here we show the 

same result as in Fig. 3c in the same 94 neurons, but when carrying over the linear 
parameters (β0 and β1) as well as the asymmetric parameters (S, α+ and α−) to 
predict firing rate, and therefore do not re-estimate the linear parameters in the 
test data. We find that the pattern of results remains the same. Error bars denote 
SEM. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 10 | Alternative model agnostic, directly data-derived, 
measures of asymmetric learning correlate with model fit parameter-
derived asymmetric learning. a) Similar to the analysis in Fig. 3e, wherein we 
analysed the neural firing rates around transitions in the sign of the RPE (as 
defined from the best-fitting model), we also analysed firing rates on the first and 
second trials following the highest reward option and the lowest reward option 
(that is, analogous to Fig. 3e but where the x-axis is trial number following the 
onset of consecutive trials of highest – or lowest – reward level delivered). On 
these trial types we can be confident that all neurons (regardless of optimism) 
will have positive and negative RPEs, respectively (because these reward levels 
are at the extremes of the reward distribution). We observed diversity across the 
population of neurons in a per-neuron t-score measure, obtained from an 
unpaired t-test testing for differences in firing rate change between the first and 
second trial following a high reward vs. the same following a low reward. (Note 
this is the same measure that we used in the main text to provide a per-neuron 
measure capturing the asymmetries plotted in Fig. 3e, which we correlated with 
model-derived asymmetric learning.) These t-scores reflect the per-cell 
significance in rejecting the null hypothesis that there is no difference in firing 
rate change from the first to second trial receiving highest reward, vs. that on 
lowest reward. a is a histogram of these t-scores, and demonstrates there is 
significant diversity across the population. b) This t-score measure in a 
correlated across neurons with asymmetric learning derived from the best-fitting 
model (R = 0.21, P = 0.044). c) Additionally, we constructed a regression model to 
capture asymmetries in the effect of a highest vs. lowest reward level delivered on 
the previous trial on the current trial’s firing rate. This also captures asymmetries 
in learning. The regression model was the following: 

FR = β0 + β1Rew(t) + β2HighestRew(t− 1) + β3LowestRew(t− 1), where Rew(t) 
is the reward on the current trial, HighestRew(t−1) is a binary regressor with value 
1 if the previous trial delivered the highest reward level and 0 otherwise, and 
LowestRew(t−1) is similarly a binary regressor with value 1 if the previous trial 
delivered a lowest reward level and 0 otherwise. We then do a [1 -1] contrast for β3 
vs. β2 to capture differences in the effect of a highest vs. lowest reward delivered 
on the previous trial on the current trial’s firing rate. This value will be more 
positive if delivery of the highest reward level on the previous trial decreases the 
firing on the current trial more than delivery of the lowest reward level increases 
it (this pattern would be expected from an optimistic neuron). Delivery of the 
highest reward level is expected to decrease firing on the subsequent trial 
(captured by β2) due to the learning induced from positive outcomes: it should 
suppress subsequent RPEs as the value expectation is now higher (same logic as 
in Bayer & Glimcher31). Similarly, delivery of the lowest reward level is expected to 
increase firing on the subsequent trial (captured by β3) due to the learning 
induced from negative outcomes: it should increase subsequent RPEs as the 
value expectation is now lower. The [1 -1] contrast testing β3 vs. β2 captures the 
relative differences in these effects and is therefore another index of asymmetric 
learning: optimistic neurons should be more impacted by the highest reward 
level compared to the lowest. We found the t-scores of this contrast were also 
diverse across the population (c), correlated with the other data-driven measure 
described above in a and b (d; R = 0.44, P < 0.001), and also correlated with 
asymmetric learning derived from the best-fitting model (e; R = 0.21, P = 0.039). 
Combining both of these noisy measures from a and c into a hybrid measure (by 
averaging the t-scores) gives a summary model-agnostic measure that is also 
correlated with model-derived asymmetric learning: R = 0.25, P = 0.016.

http://www.nature.com/natureneuroscience
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection N/A This study analysed previously collected data.

Data analysis All analysis was done using MATLAB (2019a).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The present study is a re-analysis of two previously collected datasets (references: 8,30), and therefore data availability will be in line with those primary source 

studies. Dataset 2 (Miranda et al 2020) will be shared in a separate upcoming publication. 
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender No humans were studied in this project.

Population characteristics No humans were studied in this project.

Recruitment No humans were studied in this project.

Ethics oversight No humans were studied in this project.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Two animals per dataset; two independent datasets analysed. This is the commonly used number for macaque studies for ethical reasons, and 

is standard across virtually all macaque electrophysiology studies. Please note that the data analysed in the present manuscript is from 

previously collected datasets. Therefore no new animals were used in the present study. 

Data exclusions None.

Replication We sought to test predictions of our core hypothesis in two independent datasets for the sake of robustness. We found evidence for our 

predictions in both datasets. All replications were successful.

Randomization There were not conditions to randomise subjects to. Trials and task transitions were fully randomised where appropriate.

Blinding Not relevant, as there were not conditions to be blinded to. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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