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The logic of recurrent circuits in the primary 
visual cortex

Ian Antón Oldenburg    1,2,5,8 , William D. Hendricks    1,2,8, 
Gregory Handy    3,4,6,8 , Kiarash Shamardani    1,7, Hayley A. Bounds2, 
Brent Doiron    3,4,9 & Hillel Adesnik    1,2,9 

Recurrent cortical activity sculpts visual perception by refining, amplifying 
or suppressing visual input. However, the rules that govern the influence 
of recurrent activity remain enigmatic. We used ensemble-specific 
two-photon optogenetics in the mouse visual cortex to isolate the impact 
of recurrent activity from external visual input. We found that the spatial 
arrangement and the visual feature preference of the stimulated ensemble 
and the neighboring neurons jointly determine the net effect of recurrent 
activity. Photoactivation of these ensembles drives suppression in all 
cells beyond 30 µm but uniformly drives activation in closer similarly 
tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles 
drive net suppression, while diffuse, cotuned ensembles drive activation. 
Computational modeling suggests that highly local recurrent excitatory 
connectivity and selective convergence onto inhibitory neurons explain 
these effects. Our findings reveal a straightforward logic in which space and 
feature preference of cortical ensembles determine their impact on local 
recurrent activity.

Visual perception involves the coordinated activity of thousands of 
neurons throughout the visual system. As the neural representation 
of sensory stimuli traverses each step of the visual hierarchy, recurrent 
circuits at each processing stage transform and refine it1. Prior experi-
mental and theoretical work in the primary visual cortex (V1) suggests 
that recurrent excitation amplifies responses when signals are weak to 
optimize detection2–6, while recurrent inhibition suppresses responses 
when signals are strong to optimize discrimination7–10. Understanding 
what patterns of cortical activity drive either amplification or suppres-
sion is critical for a mechanistic understanding of signal transforma-
tions in the cortex.

It is challenging to separate the impact of local recurrent activ-
ity from feedforward and feedback activity as in most physiological 

settings all three mechanisms occur simultaneously. Previous work has 
focused on isolating recurrent activity by removing either feedforward 
or feedback activity. Several studies measured feedforward thalamic 
inputs in isolation by recording the responses to visual stimuli while 
reversibly silencing the cortex4,11–14, while other studies15,16 silenced 
higher brain areas through cooling to remove feedback signals.

In our study, we take a complementary approach—we use 
high-resolution two-photon (2P) holographic optogenetics to recre-
ate precise experimenter-controlled patterns of neuronal activity and 
simultaneously measure the impact across V1 using cellular resolution 
2P calcium imaging17,18. With this strategy, we probe the functional logic 
of recurrent cortical dynamics in the absence of visual-driven input 
and unambiguously determine the causal impact of local recurrent 
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neurons onto local cotuned inhibitory neurons. This combination of 
all-optical circuit interrogation and detailed computational modeling 
demonstrates that neural representations in feature space and physical 
space intimately interact in V1. Furthermore, they outline organizing 
principles for the functional impact of recurrent cortical dynamics, 
distinguishing the conditions for when feedback amplifies input versus 
when it drives competitive suppression.

Results
To determine the role of recurrent activity in L2/3, we used holographic 
2P optogenetics to drive small ensembles of L2/3 cells in the absence 
of visual stimuli, thereby isolating their local network impact. We used 
three-dimensional scanless holographic optogenetics with temporal 
focusing (3D-SHOT)17,18 and leveraged potent ultrafast opsins18,31 that 
together enable the activation of dozens of cells with near single-cell 
resolution and millisecond precision. We simultaneously read out the 
activity of both stimulated and unstimulated cells using GCaMP6s. We 
restricted both the calcium sensor and the opsin to excitatory neurons 
(Methods; Extended Data Fig. 1) and imaged and photostimulated in 3D 
to obtain read/write control over a large fraction of the L2/3 V1 excita-
tory network. We first tested each opsin-expressing neuron for photo-
sensitivity and tailored the laser power for each cell to ensure reliable 
activation (Methods). Next, we imaged responses of this population 
to orientated drifting gratings, determining each neuron’s orienta-
tion tuning online. Finally, we constructed ensembles of neurons with 
varied distributions of net orientation tuning and spatial locations and 
targeted these cells for 2P holographic photostimulation (for detailed 
cell selection criteria, see Methods).

Heterogenous suppression dominates recurrent network 
effects
We first asked how activating a small number of opsin-expressing L2/3 
excitatory cells (groups of ten targeted cells) would impact overall 
activity in L2/3 (Fig. 1a,b). Strong activation of the targeted cells con-
firmed the efficacy of the optogenetic approach (Fig. 1c). However, 
in all optogenetic experiments, stray light can inadvertently activate 
nontargeted cells. To exclude such cells from analysis, we developed 
an extensive 3D calibration (Methods; Extended Data Fig. 2) resulting 
in a high-quality optical point-spread function (PSF) and a physio-
logical PSF (PPSF) across the entire targeting volume. We use this  
PPSF to define our off-target zone in which all neurons were excluded 
from analysis (Methods, mean PPSF half-width half maximum (HWHM) 
radial 7.73 ± 0.37 µm, axial 18.51 ± 1.69 µm, n = 25; Fig. 1d). Next, we 
executed an additional set of experiments in mice with sparse opsin 
expression (SepW1-Cre;Camk2a-tTA; tetO-GCaMP6s mice) and found 
that opsin-negative and opsin-positive cells outside of this exclusion 
zone responded identically (Extended Data Fig. 3), indicating that 
effects beyond this spatial threshold are not due to off-target light.

Nontargeted neurons displayed varied effects, with individual 
cells responding distinctly to different ensembles (Extended Data 
Fig. 4). However, most cells were suppressed in response to ensemble 
stimulation (Fig. 1e–g and Extended Data Fig. 4b,c). Across a large set of 
experiments (160 unique ten-cell ensembles in 18 fields of views (FOVs) 
in 13 different mice), we found that photostimulation suppressed mean 
population activity (mean effect: −0.011 ± 0.0014 ΔF/F, P = 1.0 × 10−10, 
Wilcoxon two-sided rank sum test; Fig. 1h,i). Responses of individual  
FOVs were similar across mice and preparation (Extended Data  
Fig. 5). We only included trials in our analyses where we could confirm 
that most targeted cells were activated, and each included ensemble 
had at least 11 repetitions (median 17; range 11–32 trials). These results 
indicate that photostimulation of a small number of L2/3 excitatory 
neurons recruits net suppression across the entire population at least 
in the absence of a visual stimulus.

Separately, we paired optogenetic stimulation with visual stimu-
lation (Gaussian modulated noise of varying contrast), but the overall 

dynamics. However, the space of 2P holographic optogenetic stimu-
lation protocols is immense and care must be taken to parameterize a 
sufficiently rich, yet feasible, probe of the recurrent circuit.

Two main organizing principles governing recurrent wiring in layer 
(L) 2/3 of mouse V1 are as follows: first, excitatory (E) and inhibitory (I) 
connectivity falls off with the physical distance between neurons, such 
that most recurrent connectivity comes from neurons that are less 
than 200 µm apart19–24. Second, E-to-E connectivity is biased to occur 
between neurons with similar stimulus feature preferences, such as 
orientation tuning3,5,21,22. Many models of cortical circuits, both math-
ematical and conceptual, consider either spatial- or feature-dependent 
wiring. However, due to the large number of parameters, few consider 
how their interaction determines overall network response. Further-
more, while knowledge of monosynaptic connectivity is essential for 
predictive models of recurrent cortical dynamics, it is not sufficient. 
Both cortical nonlinearities and multisynaptic paths complicate the 
relationship between physical synaptic connections and their func-
tional influence on network activity. We hypothesize that by designing 
our 2P optogenetic stimulation to probe recurrent circuitry defined by 
both physical space and feature preference we can uncover the rules 
by which recurrence promotes either the recruitment or suppression 
of cortical activity.

Recent work using targeted photostimulation, concurrent 
with visual stimulation, probed the functional ‘influence’ of puta-
tive single-neuron perturbation in V1 (ref. 10). This study found that 
cotuned neurons tended to suppress each other, contrary to the pre-
diction from the enriched ‘like-to-like’ connectivity between excitatory 
neurons3. In contrast, another study25 that stimulated larger ensembles 
of cotuned neurons found like-to-like activation. However, neither 
study focused on how the spatial arrangement and cotuning of the 
activated ensemble might jointly determine the net effect on the net-
work. Because all activity patterns vary simultaneously across these 
two dimensions, a key aspect of recurrent dynamics in the cortex 
remains unexplored.

Previous rate-based modeling work showed that to reproduce 
such strong like-to-like suppression, the network must have strong 
and specific E-to-I connections26. Meanwhile, another computational 
study predicted that adjusting the stimulus contrast would shift the 
network and yield like-to-like activation27. These results highlight the 
importance of measuring and modeling functional interactions in the 
intact circuit.

The influence of a single neuron can be quite different from  
that of an ensemble of neurons with coordinated activity. Multicell  
photostimulation has revealed diverse functional interactions in 
L2/3 (refs. 25,28–30). Consequently, creating generalized organizing  
principles for the impact and function of L2/3 recurrent circuits 
remains difficult.

To define the functional logic of recurrent cortical dynamics in 
L2/3 of V1, we precisely photostimulated ensembles of excitatory 
neurons with 2P holographic optogenetics. We photoactivated ensem-
bles of cells organized along the following two fundamental axes of 
the visual representation: physical space and feature space (orienta-
tion). Taken together, our data reveal two key organizing principles 
that eluded prior investigation that only probed along one of these 
axes at a time. While most perturbations generate net suppression, 
many ensembles drive amplification specifically in nearby (<30 µm) 
cells. This amplification is strongest when diffuse untuned ensembles 
are stimulated; however, when a cotuned ensemble is driven, it will 
primarily affect similarly cotuned neighbors. Conversely, compact 
cotuned ensembles generate the strongest suppression, leading to 
net suppression at all distances. A linear rate-based computational 
model captured these key results, but only if we incorporated a wiring 
rule that combines spatial- and feature-base synaptic organization. 
Specifically, we find that the model requires highly local like-to-like 
excitatory connections and the convergence of cotuned excitatory 
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suppressive effect was similar (Extended Data Fig. 6a,b). It is possible 
that different types of visual stimuli modulate these effects, but we 
chose to focus on recurrent dynamics in the absence of a visual stimulus 
to isolate it from external input.

As different patterns of activity may recruit distinct circuits that 
preferentially drive either activation or suppression10,25, we next asked 
whether the overall sign and magnitude of recurrent activity during 
photostimulation depended on how the pulses were added to the 
system. First, we varied the total number of pulses delivered to a group 
of ten targeted neurons between 1 and 50 pulses per cell (∼10 to 500 

total pulses), while holding the pulse frequency and ensemble size con-
stant (10 Hz and 10 cells, respectively). We observed net suppression 
across all these conditions, with a monotonic increase in suppression 
with increased number of spikes (P = 1.7 × 10−8, analysis of variance 
(ANOVA), n = 76 ensembles, 5 FOVs, 2 mice; Extended Data Fig. 6c). 
Next, we varied the stimulation frequency while holding ensemble 
size and total added pulse number constant. In contrast, varying the 
rate of stimulation did not change the magnitude of the net mean sup-
pression (P = 0.74, ANOVA, n = 46 ensembles, 2 FOVs, 2 mice; Extended 
Data Fig. 6d). Likewise, varying ensemble size while adding a fixed 
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Fig. 1 | Stimulation of ten-cell ensembles recruits net suppression.  
a, Schematic representation of the experimental setup. Head-fixed mice run on 
a treadmill in front of a gray screen. Cells from three different planes are imaged 
at 6 Hz. Cells from any plane can be targeted for photostimulation (magenta), 
cells adjacent to photostimulated cells (including offset axially) are categorized 
as ‘off-target’ and excluded (gray), while remaining detected cells are ‘nontarget’ 
cells and used for analysis (blue). b, Image of the average modulation across three 
superimposed planes of imaging during stimulation of a representative ten-cell 
ensemble. Image pixels are z scored over the entire recording and averaged by 
trial type. c, Response of a targeted cell to photostimulation. Top left, image of 
the cell mask used in analyses, scale bar 10 µm. Top right, response of this neuron 
during ten photostimulation trials, stimulation time noted by the maroon bar. 
Bottom, average evoked calcium response from the same example cell. Mean 
evoked ΔF/F ± 95% confidence interval (CI). Maroon box denotes the stimulation 
time (ten pulses at 10 Hz). d, Representative PPSF aligned to peak (dotted 

line). Inset PPSFs from 25 cells throughout the FOV. e, Response of an example 
nontarget cell to ensemble stimulation, as in c. f, Mean response of 638 nontarget 
cells from a single FOV in response to a representative ensemble stimulation. 
Cells are sorted based on their response magnitude. Stimulation time noted 
by a maroon bar. g, Mean ± 95% CI of all 638 nontarget cells from f. Maroon box 
indicates stimulation time, and the black bar indicates the analysis window. 
h, Population response, that is, mean response of all nontarget cells, in a FOV 
to 160 unique ten-cell ensembles. n = 160 ensembles, 18 FOVs, 13 mice. i, Mean 
population response for each ensemble stimulation (maroon, n = 160 ensembles, 
18 FOVs, 13 mice), no stimulation controls (gray, n = 18 FOVs, 13 mice), or no opsin 
controls (black, n = 38 ensembles, 1 FOV, 1 mouse). Mean ± s.e.m. of condition in 
black. Triple asterisks indicate a significant difference from 0, and NS indicates 
not significant (stim, P = 1.7 × 10−8; no stim, P = 0.79; no opsin, P = 0.96; two-sided 
signed rank test).
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total number of spikes also drove similar net suppression (mean ΔF/F: 
−0.0045 ± 0.0027 (3 pulses in 33 cells), −0.0081 ± 0.0023 (10 pulses in 
10 cells), −0.0094 ± 0.0031 (33 pulses in 3 cells), P = 0.78, ANOVA, n = 99 
ensembles, 11 FOVs, 5 mice; Extended Data Fig. 6e). Smaller ensembles 
drove more variable population responses (s.d. ΔF/F: 0.007 (33 cell 
ensembles) versus 0.015 (10 cell ensemble) versus 0.021 (3 cell ensem-
ble), P = 0.006 Bartlett variance test). These results demonstrate that 
the primary driver of network suppression is the total number of added 
spikes, not the frequency of stimulation or the size of the ensemble.

Based on these results, we focused on the effects of adding 100 
total pulses to ten targeted neurons, which represents a modest per-
turbation to the system that still drove reliable and readily quantifiable 
effects. Importantly, such modest perturbations are well captured 
through simulations of associated network models (see below) because 
they can be modeled as a linear perturbation around the network’s 
steady state.

While it is true that ensemble stimulation leads to suppression on 
average across the population, there remains significant heterogeneity 
in responses, with a significant number of neurons showing activation 
rather than suppression. After excluding potential off-targets, we found 
that 2.34 ± 0.09% of nontargeted cells were significantly activated 
(that is, 99% CI excludes 0, false discovery rate 1%), while 5.58 ± 0.19% 
of nontargeted cells were significantly suppressed (Extended Data Fig. 
4b,c). The central goal of this study is to explain this heterogeneity of 
neural modulation based on the joint physical and feature space prop-
erties of the neurons both in the stimulated ensemble and recorded 
populations.

Cortical space organizes the impact of recurrent dynamics
Physical space in the sensory neocortex represents a fundamental axis 
of circuit organization owing to both the topographic mapping of sen-
sory inputs onto cortical tissue and the anatomy of cortical neurons32–35. 
Thus, we hypothesized that the sign, scale and magnitude of recur-
rent circuit influence might vary substantially with distance from the 
targeted ensemble. To test this, we quantified the impact of ensemble 
photostimulation as a function of distance from each targeted location 
and ensemble (Methods). Indeed, we found that despite the overall 
mean suppression described above, cells proximal to the stimulated 
ensemble but outside of the off-target exclusion zone were reliably acti-
vated, while cells further away from a target were suppressed (<30 µm 
from a target mean ΔF/F: 0.044 ± 0.005, P = 1.1 × 10−10; 50–150 µm from 
a target mean ΔF/F: −0.013 ± 0.001, P = 4.0 × 10−17, two-sided signed 
rank test; Fig. 2a). Beyond that distance, the sign of the modulation 
stayed negative and slowly returned to zero as the distance increased. 
This general pattern was not affected by the presence of visual input 
(Extended Data Fig. 6b).

While direct photoactivation of adjacent cells is a risk, we do not 
believe this accounts for the observed nearby activation. We set our 
exclusion criteria conservatively based on our hologram PSF (Extended 
Data Fig. 2f) and measured PPSF (Fig. 1d; Methods). We confirmed that 
nearby opsin-negative cells behave the same as opsin-positive cells 
(Extended Data Fig. 3). Individual cells could be activated or suppressed 
to different holograms (Extended Data Fig. 4a) even when the nearest 
targeted cell is the same (Extended Data Fig. 4d). Furthermore, we 
recalculated our results using various neuropil subtraction coefficients 
(0–1) to account for potential signal contamination from activated 
cells on nearby nontargeted cells. Activation nearby was consistently 
observed (Methods; Extended Data Fig. 6f,g).

This spatial pattern of nearby activation and surround suppression 
characterizes the spatial response function of a minimal recurrent 
circuit and has often been considered as a basis for lateral competition 
in the cortex9,36–40. Phenomenologically, it can be captured as the differ-
ence of a narrow excitatory and a broader inhibitory Gaussian spatial 
function (Fig. 2a; solid line; excitatory spread: 22 µm, inhibitory spread: 
147 µm). Moreover, these experiments demonstrate that activation of 

even a small number of L2/3 excitatory neurons is sufficient to generate 
this spatial pattern of modulation.

Like how different sensory stimuli drive different spatial distribu-
tions of activity, we next asked how the spatial distribution of targeted 
cells would impact either the suppression or activation of recurrent 
activity. To investigate this question experimentally, we activated 
ensembles of ten neurons that varied in how they were distributed in 
space (Fig. 2b). Indeed, we found that activating a spatially compact 
ensemble drives much more surround suppression than stimulating 
a spatially diffuse ensemble (linear regression of mean ΔF/F versus 
spread slope: 1.3 × 10−4 ΔF/F per µm spread, P = 1.4 × 10−5; Fig. 2b). In 
contrast, the spread of the ensemble did not alter nearby activation 
(linear regression of mean ΔF/F versus spread slope: 3.5 × 10−5, P = 0.57; 
Extended Data Fig. 7a–c). More precisely, the level of surround sup-
pression (at 50–150 µm) increased as the spatial distribution of the 
ensemble’s component neurons decreased. We hypothesize that  
this strong inhibition derives from the convergence of excitatory 
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activity onto individual inhibitory neurons. In the case of a spatially 
compact ensemble, individual inhibitory neurons receive input from 
multiple directly stimulated cells. These super-activated inhibitory 
cells then feedback divergently inhibiting the entire network (Fig. 2c).

Feature space organizes the impact of recurrent dynamics
In addition to physical space, feature space represents a second axis of 
the functional organization of cortical circuits. In mouse V1, orientation 
tuning is a crucial feature that is not structured in physical space, unlike 
the orientation columns of monkeys, cats and other species41–43. Despite 
the lack of local organization, feature space is known to influence both 
synaptic connectivity and the functional influence of individual neu-
rons in mouse V1 (refs. 3,5,10). However, as most reports focus on the 
impact of individual neurons, it is unknown if multiple neurons defined 
in feature space synergize to drive recurrent activity. One hypothesis is 
that a cotuned (that is, similarly tuned or iso-oriented) group of excita-
tory neurons, analogous to spatial clustering in orientation space, 
should drive strong network activity due to convergent excitation 
onto the same postsynaptic excitatory cells25.

To test this hypothesis, we presented mice with a randomized 
series of full-screen drifting gratings each trial presenting one of eight 
cardinal directions of motion and calculated tuning curves for each 
neuron online, generating ensembles of cells varying in preferred 
orientation (PO) and orientation selectivity. We summarized the selec-
tivity of an ensemble using an ‘ensemble OSI,’ that is, the orientation 
selectivity index (OSI) of the average of the tuning curves (Methods; 
Fig. 3a,b). To optimally select exemplar ensembles (among the ∼1023 
possible ensembles—1,000 choose 10), we created a discrete optimizer 
(Methods) that designs distinct ensembles by automatically choos-
ing eligible cells that fall within a targeted spatial and OSI range. We 
used this optimizer to ensure that the chosen ensembles were evenly 
distributed across feature (orientation) space. All ensembles are com-
posed of a mix of visually responsive, tuned and unresponsive cells 
to create an ‘ensemble’ matching its desired features. Surprisingly, 
we found that ensembles with higher ensemble OSI did not generate 
greater network effects when averaged across all nontargeted neurons 
(Extended Data Fig. 7d–f; no significant correlation between ensemble 
OSI versus the total population response, P = 0.26 linear regression; or 
between ensemble OSI and nearby, mid-distance or far cells’ responses; 
P = 0.084, P = 0.27 and P = 0.89, respectively, by linear regression).

Based on the principle of selective like-to-like connectivity, we next 
asked whether cotuned ensembles might preferentially impact nontar-
geted neurons that share feature preferences. To test this hypothesis, 
we restricted our analysis to the ‘cotuned ensembles’ and divided the 
nonstimulated cells based on their relative PO. Such a ‘cotuned ensem-
ble’ consisted of individually tuned members (mean OSIs of ensemble 
members >0.5) with similar tuning preferences (ensemble OSI > 0.7). 
We find that nearby cells (<30 µm) that also prefer the same orientation 
as the stimulated ensemble (that is, iso-oriented cells) are activated 
dramatically more than those cells that prefer orthogonal stimuli 
(P = 0.0035, Wilcoxon one-sided ranked-sum test, n = 17 ensembles, 8 
FOVs, 3 mice; Fig. 3c). Strikingly, these nearby orthogonally oriented 
cells were instead highly suppressed. These results demonstrate that 
the organization of an ensemble in feature space—in this case, orienta-
tion preference—profoundly influences its recurrent impact on specific 
cells in the cortical network.

Interactions between physical space and feature space
Thus far, we have only considered how the geometric distribution 
(Fig. 2) and feature preferences of an ensemble (Fig. 3) govern cortical 
recurrent dynamics independently. However, because sensory stimuli 
will necessarily recruit recurrent dynamics that vary jointly across 
these two dimensions, we hypothesized that the spatial distribution 
and feature preference of an ensemble should interact to determine 
the resultant impact of ensemble photostimulation on the cortical 

network. To investigate this, we used the discrete optimizer to identify 
cotuned or untuned ensembles that were either spatially compact or 
spatially distributed and photostimulated them while observing the 
activity of the nontarget cells. First, we found that the spatial spread of 
an untuned ensemble (ensemble OSI < 0.3 and mean OSIs of ensemble 
members <0.5; Methods) did not affect its net recurrent impact, such 
that for both spatially compact and diffuse ensembles we observed the 
characteristic nearby activation and surround suppression when com-
puted across all nontargeted neurons (Fig. 4a, gray traces). However, 
the spatial spread of a cotuned ensemble profoundly influenced its 
recurrent effects—compact, cotuned ensembles generated no nearby 
activation and instead showed nearby suppression, whereas a spatially 
diffuse cotuned ensemble generated the more typical center/surround 
effects (Fig. 4a, light and dark green traces; nearby activity cotuned, 
close ensemble (n = 8) versus cotuned far ensemble (n = 17) P = 0.008, 
Wilcoxon one-sided ranked-sum test).

This result appears at odds with previous optogenetic results 
that have suggested that driving a cotuned ensemble should evoke a 
population response similar to that driven by a grating25. To reconcile 
these results, we asked how the activity of visually responsive cells 
varied across spatially diffuse and compact cotuned ensembles, as a 
function of their orientation preference (Fig. 4b,c). By subdividing the 
data from Fig. 4a by orientation preference, we observed that diffuse 
cotuned ensembles recruited little nearby suppression in neurons at 
any orientation. In contrast, compact cotuned ensembles activated 
nearby iso-oriented cells but suppressed nearby cells that prefer other 
orientations. Furthermore, both nonvisually responsive and untuned 
cells were also suppressed during the stimulation of such ensembles 
(Extended Data Fig. 8). All ensembles suppress the activity of further 
away cells, regardless of their tuning.
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Highly local excitatory connections drive nearby activation 
and surround suppression
Together, our experimental results demonstrate that the photo-
activation of small ensembles results in highly local recurrent ampli-
fication with large amounts of surround suppression. Furthermore, 
our data suggest that the amplitude of this recurrent activity depends 
upon the precise spatial distribution and feature preference of  
the activated ensemble. We now seek to understand how these  
results arise mechanistically by developing a computational model of 
these targeted optogenetic perturbations (Methods). We started by 
investigating how connectivity principles in L2/3 recurrent circuits 
could explain why recurrent activation is extremely local while suppres-
sion dominates at larger distances from the stimulated ensemble. We 
wired the simulated circuit based on previously acquired connectivity 
data22 (Extended Data Fig. 9a–d) and modeled the dynamics of the pop-
ulation with a two-dimensional neural field model (ref. 44; Methods). 
Due to the modest size and strength of the optogenetic perturbations, 
we considered the network response as linear perturbations around a 
steady-state firing rate solution. Furthermore, because the experiments 

were performed in the absence of visual input, we could assume that 
the neurons in the network have a low gain response, implying that the 
effective connectivity strength is relatively weak. This allowed us to 
investigate the network perturbation via a synaptic pathway expansion 
with just a few terms26,45. Specifically, we considered monosynaptic  
and disynaptic excitatory connections (E→E and E→E→E) and disynaptic 
inhibitory connections (E→I→E; Fig. 5a).

After fitting the spatial components of the model (Methods), we 
are left with the following two free parameters that correspond to the 
strengths of these pathways: wee (the effective strength of E→E connec-
tions) and weie (the effective strength of the inhibitory pathway). We find 
that nearby activation and surround suppression arise for a variety of 
parameter values, with near identical shapes arising for fixed values of 
wee/weie. After fixing weie and varying wee for simplicity, we find that we 
can adjust both the zero crossing of this curve and the strength of the 
nearby activation (Fig. 5b). However, we see that this model is unable to 
pass through the experimentally observed data regime (Fig. 5b (striped, 
gray box) and Extended Data Fig. 9e; Methods). Specifically, when these 
parameters are adjusted to match the experimentally observed cross 
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OSI > 0.7, left) or untuned (<0.3, right). Schematics by the axes describe the 
ensemble design in that row/column. Data presented are mean nontargeted 
cell responses ± s.e.m. as a function of their minimal distance to the ensemble. 
Diffuse cotuned n = 17 ensembles, 9 FOVs, 3 mice; diffuse untuned n = 25 
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Response plots of cotuned ensembles divided by mean separation (as in a), but 
nontargeted cells are separated by relative tuning with the stimulated ensemble 
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ensembles. All data are presented as mean ± s.e.m.
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at ∼35 µm, the model fails to capture the relative strength of nearby 
activation to more distant suppression.

To capture this key detail, we reasoned that we needed to add an 
additional narrow spatial scale (<50 µm) to the model (Fig. 5c). This 
aligns with recent work46, which showed that such a narrow spatial 
wiring rule can also explain small columnar structures arising in L2/3 
mouse V1 neurons that is not strictly a salt-and-pepper organiza-
tion47,48. Adding in such a tight spatial component (that is, κ  >0; 
Methods) allowed the model to simultaneously capture both the 
nearby activation and the appropriate zero crossing between activa-
tion and suppression. However, there remains a quantitative differ-
ence in the rates that these curves return to baseline, which in the 
model is set by the broad spatial parameters σe,b and σi,b (Methods). 
These values were set to be in line with existing transsynaptic tracing 
connectivity studies22 and captured anatomical connectivity.  
Modestly reducing these broad spatial scales can quantitatively 
reproduce the experimental data (Extended Data Fig. 9f,g), suggest-
ing that the functional connectivity of these neuronal projections is 
narrower than the estimated anatomical connectivity. For the remain-
der of this paper, we choose to focus on the qualitative matches 
between the data and the theoretical predictions, using the estimated 
anatomical connectivity data, while not fitting the model directly to 
the data.

With this computational model in hand, we now varied the spatial 
distribution of the activated ensembles, which yielded similar results 
as our experimental observations. Namely, as the spatial distribution 
ensemble of neurons becomes more compact, the level of surround 
suppression (at 50–150 µm) increases (Fig. 5d). However with the 
model, we have access to both the excitatory and inhibitory path-
ways activated as a result of these stimulations, which allows us to 
test our hypothesis that compact ensembles recruit stronger levels 
of suppression due to the convergence of excitatory activity onto 
inhibitory neurons (Fig. 2c). Specifically, we examined in the model 
the relative strength of the E→E and E→I→E pathways as a function of 
the spatial spread of the ensemble. We found that as the ensemble 
spread decreases, both synaptic pathways increase in magnitude, 
but the strength of the inhibitory pathway increases faster, leading 
to the observed effect (Fig. 5e; slope is ∼9% greater for the inhibitory 
pathway).

Selective convergence onto inhibitory connections generates 
feature-dependent suppression
Up to now, we have used our computational model to shed light on the 
spatial wiring rules responsible for driving the recruitment of recurrent 
activity in response to stimulated ensemble with differential spatial 
configurations (that is, compact versus diffuse). We now turn our focus 
to gaining a deeper understanding of how the ensemble’s orientation 
preference influences its recurrent impact. We start by using the compu-
tational model to determine which features of the circuit connectivity 
are required to generate the peculiar switch from like-to-like activation 
to like-to-unlike suppression observed in the recurrent neurons lying 
closest to the stimulated ensemble (Fig. 3c). We considered the fol-
lowing three hypotheses: (1) the orientation dependence of recurrent 
inputs could emerge on their own based purely on spatial connectivity 
rules and salt-and-pepper orientation tuning, (2) like-to-like E→E con-
nectivity but random E→I and I→E connectivity could explain it or (3) 
orientation specificity would be required in all of these pathways. In 
line with previous work, we assumed that the orientation preferences 
of individual neurons are inherited from feedforward projections and 
are randomly distributed in physical space.

When synaptic connectivity only followed a spatial wiring rule 
with no specificity in orientation space, we found no difference in the 
recruited recurrent activity of iso-oriented versus orthogonally oriented 
neurons (Extended Data Fig. 9h), thus pure spatial rules are not sufficient 
on their own to explain the experimentally observed recurrent dynamics.  
Adding in like-to-like connectivity between excitatory neurons22,49 repro-
duced orientation preference-dependent effects, qualitatively similar 
to the experiment results (Fig. 6a, dashed). Specifically, cells that were 
iso-oriented to the photostimulated tuned ensemble showed activa-
tion, while those that are orthogonally orientated showed suppression. 
However, the model with this wiring scheme substantially overesti-
mated iso-oriented activation and orthogonally oriented suppres-
sion at all distances and completely failed to capture the iso-oriented  
surround suppression beyond 50 µm. Finally, when the model incor-
porated like-to-like excitatory-to-inhibitory and inhibitory-to-excitatory 
connections, as recently suggested in ref. 50, it accurately reproduced 
the experimental data both qualitatively and quantitatively (Fig. 6a, 
solid). These results imply that feature-specific synaptic connectivity 
across all three synaptic pathways is essential to explain the space- and 
feature-dependence of recurrent cortical dynamics.

With our computational model now consisting of both the 
spatial- and feature-based wiring rules necessary to reproduce our 
core experimental findings, we use it to yield additional insights when 
both properties are considered in our stimulated ensemble (Fig. 4). 
Indeed, simulations showed that a diffuse, cotuned ensemble gener-
ated effects that are similar to previous results—nearby activation 
and suppression (Fig. 6b, orange curve), while compact, cotuned 
ensembles drove suppression across all distances (Fig. 6b, red curve). 
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Fig. 5 | Mathematical model can capture nearby activity and surround 
suppression. a, Schematic representation of all monosynaptic and disynaptic 
pathways resulting in a change in the baseline firing rate (blue, excitatory 
pathways and orange, inhibitory pathways). An asterisk denotes convolution in 
space. b, The zero crossing and relative strength of nearby activation (maximum 
activation/maximum suppression) as a function of recurrent excitatory strength 
(wee) and biased connections on the narrow spatial scale (κ). The gray stripe 
box indicates the experimentally observed data regime and illustrates the need 
for additional spatial constraints to capture the nearby activation observed 
in the data. c, Modulation of the activity of nontargeted cell responses in the 
model as a function of minimal distance to ensemble for different values of κ. 
Inset, schematic representation shows the narrow versus broad spatial scales 
in the model (see Methods for more details). d, Same as Fig. 2b except for the 
network model. e, Strength of the model excitatory (blue) and inhibitory (red) 
pathways as a function of ensemble spread, showing that as the ensemble spread 
decreases, the inhibitory pathway shows a greater level of recruitment.
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Decomposing this result into the direct excitatory and disynaptic inhib-
itory pathways, we found that although the compact ensemble recruits  
both more suppression and more activation than a diffuse ensemble 
(Fig. 6c), the suppression tends to dominate the net effects on firing 
rates. This observation illustrates an interesting tradeoff between the 
E→I→E inhibitory pathway and the excitatory pathways as one com-
presses the cotuned ensemble. Namely, nearby suppression replaces 
nearby activation as the ensemble shrinks in space.

After decomposing these effects based on the orientation prefer-
ence of the nontargeted neurons, we find that the model predicts our 
experimental results—compact, cotuned ensembles differentially 
modulate the local signal more so than diffuse, cotuned ensembles  
(Fig. 6d,e). This final model, which also captures the data shown early in 
the study (Extended Data Fig. 10), explains that we can largely decom-
pose the logic of recurrent cortical dynamics into a balance between the 

main two recurrent pathways (E→E and E→I→E). It further reveals that 
the stronger disynaptic recruitment of the inhibitory pathway via cells 
at non-iso orientations explains recurrent suppression of orthogonally 
tuned cortical ensembles (Fig. 6e, inset).

Discussion
Recurrent activity in V1 could serve to amplify sensory input when sig-
nals are weak2–6,11,12,51, while driving competition among stimuli when sig-
nals are strong7–10,52. However, given the difficulty of isolating recurrent 
activity from feedforward or feedback activity, the fundamental role  
of recurrent activity in cortical computation remains untested. We 
studied the role of local recurrent activity by using 2P holographic 
optogenetics to selectively activate small ensembles of L2/3 cells 
without ongoing visual input. By leveraging our ability to design 
unique ensembles of L2/3 neurons, we systemically tested the role two 
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larger increase. d, Nontargeted cell responses in the network model as a function 
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the stimulated cotuned ensembles. e, Nontargeted cell responses from the first 
bin of panel d as a function of their relative tuning with the stimulated cotuned 
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fundamental axes (physical space and feature tuning) have in driving  
recurrent activity. Moreover, by combining this experimental approach 
with detailed computational modeling, we proposed a new wiring  
rule that depends on both the spatial and feature properties of cells.

We found that recurrent circuits could either amplify or suppress 
cortical activity depending on the spatial distribution and tuning of the 
presynaptic ensemble and the location and tuning of the postsynaptic 
cells. Most photostimulation patterns suppress cortical activity, but  
the sign, scale and magnitude of recurrent network modulation fol-
lowed a specific logic. For example, we found that compact, cotuned 
ensembles largely drive suppression, while spatially distributed 
cotuned neurons drive amplification, but only of nearby neurons, 
otherwise, they likewise drive suppression. Taken together, our results 
demonstrate that the recurrent circuitry defined by feature space and 
physical space jointly determines the impact of recurrent circuits.

By choosing to focus on periods of no visual stimulus, we ana-
lyzed the recurrent dynamics in the absence of retinal/thalamic input. 
Although the evoked activity under these conditions may not precisely 
reflect naturally occurring population dynamics, it allows us to isolate 
the impact of purely recurrent synaptic interactions. Nonetheless, we 
can speculate that activated diffuse cotuned populations might relate 
to ensembles naturally activated by extended, oriented contours (for 
example, trees and branches), while compact untuned ensembles 
might be activated by local textures with diverse orientation content 
(for example, dense tangles of grass/weeds).

In a previous study, one-photon (1P) optogenetic stimulation of 
callosally projecting L2/3 excitatory neurons (via antidromic activation 
of their axons in the contralateral hemisphere) drove both activation 
and suppression of recurrent activity depending on the visual stimulus 
contrast53. Despite the elegance and simplicity of this approach, it had 
no control over the number, identity or location of the neurons stimu-
lated, which would have masked the types of highly specific effects we 
observed here. Notably, we used relatively modest perturbations (∼10 
action potentials added to ∼10 neurons) to avoid pushing the system 
out of its physiological operating range, and to make our computa-
tional models easier to interpret, our perturbations evoked only small 
deviations from the steady-state firing rate solution. Indeed, we were 
able to construct network simulations with few parameters that could 
accurately capture our initial experimental results and qualitatively 
predict further experimental outcomes.

Our experiments reveal the ‘inferred connectivity’ between 
neurons10, that is, the effect of neurons on each other, as opposed 
to monosynaptic contact as could be determined by transsynaptic 
tracing, or EM reconstruction22,54–56. Nonetheless, investigation of the 
model suggested that direct like-to-like connectivity not only between 
excitatory neurons but also between excitatory and inhibitory neu-
rons was important for explaining the results. A narrow spatial scale 
of like-to-like E→E connectivity was likewise essential for accurately 
predicting the experimental data. Such a spatial scale was recently 
suggested46 to explain minicolumns (<50 µm) arising in mouse V1  
(refs. 47,48). Similarly, single-cell stimulations57 (largely contained 
within a 100 µm radius) also suggest a microstructure of spatial con-
nectivity on a similar scale.

Several recent studies have also used 2P optogenetics to probe 
functional connectivity in mouse V1. One recent study25 found that 
optogenetic stimulation of tuned ensembles in mouse V1 preferentially 
activated other cotuned cells, leading the resulting population activity 
to mimic that of a visual stimulus. In contrast, under most conditions in 
our data, suppression dominates, with recurrent excitation confined to 
a close distance to targeted cells. Several experimental and methodo-
logical differences could account for these seemingly distinct results. 
In short, the two studies asked different questions: the study discussed 
in ref. 25 focused on the behavior of a subset of cells putatively involved 
in perception, while the present study concentrated on the mean effect 
on the entire cell populations with minimal cell selection. Moreover, 

we deliberately made smaller perturbations of cotuned ensembles 
limited to about ten neurons, while this other study generally aimed 
to recruit larger numbers of neurons with apparently higher firing 
rates. Furthermore, we found that a critical predictor of the net effect 
of a stimulus was the spacing of the stimulated cells, a parameter not 
explored in the study discussed in ref. 25.

Generally consistent with our work, other 2P optogenetic stud-
ies in mouse V1 (refs. 10,29) largely observed suppression across the 
network, but also some nearby activation. While this better matches 
our results, these studies observed much more substantial like-to-like 
suppression, leading one of the studies10 to hypothesize that recurrent 
networks are primed for competition rather than amplification. How-
ever, there are three key differences between this study’s10 approach 
and the one we used here. First, they targeted single neurons rather than 
ensembles. Because most synapses in cortex are weak, the impact of 
adding spikes to one neuron could be substantially different than when 
activating ten. Second, they set a larger nearby exclusion criterion, 
potentially missing some of the dynamics that we found important. 
While this study did not find any linear interactions between feature 
preference, measured as signal correlation, and distance, this can be 
explained by the methodological differences between the two studies. 
Finally, the notion of compact versus diffuse nature of an ensemble, 
which we found to be a critical determinant of net impact, has no mean-
ing for single-neuron perturbations.

Furthermore, both of these studies conducted their experi-
ments while presenting visual stimuli to the animal. This may have 
been necessary to make it possible to measure the very small effects 
of single-neuron photostimulation10 or influence behavioral per-
formance29, yet it also means that the network state was potentially 
dominated by nonrecurrent sources of input. We found the population 
suppression was unchanged by the mere presence of a visual stimulus; 
however, it remains possible that different visual stimuli uniquely affect 
optogenetically driven recurrent dynamics.

2P optogenetic studies are unique in the enormous potential 
parameter space of the perturbations. Some of these are readily under 
user control (such as the spacing or tuning of the targeted neurons, or 
the number and timing of pulses delivered to each neuron) and some 
are not (such as the exact number of neurons that are photostimulated 
and the exact timing of the evoked action potentials). Standardizing 
these parameters should aid in better comparison across studies. 
More generally, using an approach that ensures specific numbers and 
temporal patterns of the evoked spikes58 should obviate the need for 
matching these parameters.

With respect to our computational modeling, a similar study26 also 
made use of a linear rate-based model to explore the pathways driving 
recurrent circuit impacts during the photostimulation of a small num-
ber of neurons. Like this study, we found that the E→I pathway must be 
sufficiently strong and feature-specific to explain the large amount of 
suppression observed. However, this previous study largely focused on 
explaining how the optogenetic perturbation of a single cell influences 
recurrent activity. Here we were able to further develop a model that 
simultaneously incorporates space- and feature-based wiring rules 
due to the larger number of neurons in the stimulated ensemble. Spe-
cifically, by exploring different spatial distributions of the activated 
ensemble, we observed interesting trade-offs between like-to-like 
amplification and suppression on different spatial scales. Such ensem-
ble geometries are simply not possible in single-cell perturbation 
experiments. While another computational study27 also examined the 
effects of stimulating a larger number of neurons, they only considered 
cotuned ensembles and did not vary their spatial distribution.

In addition to these modeling examples that investigate simi-
lar holographic perturbation experiments, there has been a wealth 
of broader modeling work done in the context of exploring E–I cir-
cuit mechanisms that enhance cortical computations59,60. Recent 
work61 studying the dynamics of mouse V1 investigated how a 
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stimulus-response can be modulated by the context of the surround. 
Extending previous works62,63 on surround suppression to account 
for different interneuron subtypes (that is, parvalbumin- (PV), 
somatostatin- (SOM) and vasointestinal peptide-expressing (VIP) 
neurons), they identified the VIP→SOM disinhibitory circuit as the 
crucial pathway in driving the response to cross-oriented gratings. 
The study discussed in ref. 64 used a similar modeling framework to 
show how this canonical cortical disinhibitory circuit modulates the 
synchrony of gamma oscillations across space. While these models 
incorporated both feature- and spatial-based wiring rules, they did so 
in a binary manner, accounting only for interactions across iso- ver-
sus cross-preferred neurons and center versus surround. While this 
minimalistic approach provided valuable insight into the experiment 
mechanisms considered, this framework is limited in its ability to 
extrapolate to other experimental conditions. Our investigation, which 
includes connectivity rules in a spatially continuous modeling frame-
work, provides a key stepping-stone as the field moves toward a more 
unified model of mouse V1 that can capture a wealth of experimental 
data across different stimulus inputs and brain states.

An important constraint to consider is that we, as with most 
calcium imaging studies, have relatively low temporal resolution. 
As such, we are unable to detect transient activity patterns, such as 
brief activation followed by slower suppression, and the model is 
under-constrained in this regime to make insightful predictions at 
these faster timescales. Here it was sufficient to solve a linear system 
for Δr (that is, the perturbation of the system in response to the optoge-
netic stimulation) in steady state (Methods) due to the large analysis 
window. In future studies, the faster properties of GCaMP8f, for exam-
ple, could enable advances in the modeling framework. Specifically, to 
capture a transient amplification and delayed suppression potentially 
revealed by faster GCaMP kinetics, the corresponding model would 
need to include temporal dynamics and nonlinearities65. Furthermore, 
the higher-resolution experimental data would provide the additional 
and necessary constraints to parameterize such rate- and spiking-based 
models. This compelling next step, both experimentally and com-
putationally, will be able to further dissect the tradeoff between the 
recurrent E→E and E→I→E pathways we observed here.

Our combined in vivo and in silico interrogation of recurrent 
dynamics helps define an elementary logic for the impact of recurrent 
circuits on cortical activity. Beyond simply amplifying or suppressing 
activity, our findings show that the impact of recurrent circuits in L2/3 
depends jointly on physical space and feature space. Our computa-
tional modeling makes clear, testable predictions about the underlying 
circuitry enabling these local computations. The richness in recurrent 
modulation we discovered here matches the sophisticated demands of 
processing complex images, such as occur naturally in the world. More 
generally, the principles revealed in our work may constitute an elemen-
tal neural syntax of cortical transformations by recurrent circuits.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41593-023-01510-5.
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Methods
All experiments were performed in accordance with the guidelines 
and regulations of the ACUC of the University of California, Berkeley 
(protocol AUP-2014-10-6832-2).

Mice
All calcium imaging experiments were performed in adult mice (2–12 
months old) of both sexes expressing GCaMP6s in excitatory neurons 
via tetO-GCaMP6s ( Jackson Laboratory, 024742) × Camk2a-tTA ( Jack-
son Laboratory, 003010). We confirmed the selectivity of this approach 
using RNAscope (Extended Data Fig. 1). ChroME18 or ChroME2s31 was 
transfected via Adeno-Associated Virus (AAV). All constructs were 
bicistronically linked to a nuclear-localized mRuby3 used for targeting 
photostimulation. Excitatory specificity was ensured using either a 
cre-dependent AAV (Syn-ChroME; Addgene, 170161 or CAG-ChroME2s; 
Addgene, 170163) in an excitatory specific cre line (Emx1-Cre; Jackson 
Laboratory, 005628 or SepW1-Cre MGI:5519915) or a Tta-dependent 
AAV (Tre-ChroME or Tre-ChroME2s; Addgene, 170177) using the same 
Camk2-tTa source as above. In some cases, other cre lines ( Jackson 
Laboratory, 017320 or Jackson Laboratory, 013044) were crossed to 
the tetO-GCaMP6s × Camk2-tTa line, with other cre-dependent AAV 
fluorophores/indicators, those results are not a part of this study. No 
difference was observed between any mouse preparation (Extended 
Data Fig. 5). Control mice had the same tetO-GCaMP6s × Camk2a-tTA 
without any viral injections. Mice were housed in cohorts of five or 
fewer in a reverse 12-h light/12-h dark cycle, with experiments occur-
ring during the dark phase.

Surgery
All experiments were performed in accordance with the guidelines and 
regulations of the Animal Care and Use Committee of the University 
of California, Berkeley. For head fixation during experiments, a small 
custom stainless-steel headplate was surgically implanted. Briefly, 
adult mice (P35–P50) were anesthetized with 2–3% isoflurane and 
mounted in a stereotaxic apparatus. Body temperature was monitored 
and maintained at 37 °C. The scalp was removed, the fascia retracted 
and the skull was lightly scored with a drill bit. Vetbond was applied to 
the skull surface, and the headplate was fixed to the skull with dental 
cement (Metabond). A fine-point marker was used to note the approxi-
mate location of bregma and the left V1 (2.7 mm lateral, 0 mm pos-
terior to lambda). In total, 2–3 burr holes were drilled using a dental 
drill (Foredom) with a 0.24 mm drill bit (George Tiemann & Co.), and 
200–300 nl of AAV was injected at 50 nl min−1, followed by a 5+ minute 
waiting period. A 3–3.5 mm region of the skull surrounding the marked 
V1 area was removed using the dental drill and/or a biopsy punch (Rob-
bins Instruments). The window was replaced with three glass coverslips 
(two 3 mm and one 5 mm) and cemented into place with dental cement. 
Mice were given additional saline during surgery (0.9% NaCl (0.3 ml)). 
Mice received buprenorphine and meloxicam for pain management 
and dexamethasone to reduce brain swelling.

Two-photon imaging and stimulation microscope
All in vivo experiments were performed using a setup capable of 
3D-SHOT, as described previously17,18,31,66. The microscope is adapted 
on a movable objective microscope (Sutter Instrument) platform, with 
the following three combined optical paths: a 3D 2P photostimula-
tion path, a fast resonant-galvo raster scanning 2P imaging path and a 
widefield 1P epifluorescence/IR-transmitted imaging path, merged by 
a polarizing beamsplitter before the microscope tube lens and objec-
tive. Imaging was performed with a Chameleon Ultra II (Coherent), and 
photostimulation was performed with a Monaco40 (Coherent). Tem-
poral focusing of the photostimulation beam from the femtosecond 
fiber laser was achieved with a blazed holographic diffraction grating 
(Newport Corporation, R5000626767-19311). The beam was relayed 
through a rotating diffuser to randomize the phase pattern and expand 

the temporally focused beam to cover the area of the high-refresh-rate 
spatial light modulator (SLM; HSP1920-1064-HSP8-HB, 1920 × 1152 
pixels; Meadowlark Optics). Holographic phase masks were calculated 
using the Gerchberg–Saxton algorithm and displayed on the SLM to 
generate multiple temporally focused spots in 2D or 3D positions of 
interest. The photostimulation path was then relayed into the imaging 
path with a polarizing beamsplitter placed immediately before the tube 
lens. As described in ref. 18, to limit imaging artifacts introduced by 
the photostimulation laser, the photostimulation laser was synchro-
nized to the scan phase of the resonance galvos using an Arduino Mega 
(Arduino), gated to be only on the edges of every line scan.

Calibration
Two-photon activation of cells requires very precise alignment of the 
stimulation and the imaging system throughout a large 3D volume. 
Most calibration procedures assume that individual imaging and stimu-
lation planes are parallel and flat. However, certain optical elements 
and subtle misalignments of the microscope can add aberrations that 
introduce mistargeting errors, especially at the edges of the FOV. For 
this reason, we improved our previous calibration approaches17,18,67 
with a new fully automated multiplexed 3D calibration, which accounts 
for arbitrary distortions in either the imaging or stimulation planes 
(Extended Data Fig. 2a–h). We confirmed that our system is able to 
deliver arbitrary powers to arbitrary locations in single and multitarget 
holograms. As expected, we found that multitarget holograms were 
less efficient than single-target holograms, that is, more light is lost to 
diffraction. But for holograms of three or more targets, the light inten-
sity hitting a given target is not affected by the identity or number of 
other targets (Extended Data Fig. 2i). For this reason, in all subsequent 
experiments, we restrict holograms to contain at least three target cells.

Holographic stimulation
Cells were targeted for stimulation based on the nuclear-localized 
mRuby signal bicistronically linked to the opsin. Only multitarget 
holograms of at least three targets were used. Putative opsin-positive 
cells were analyzed online using scanImage2019a (Vidrio) by collecting 
fluorescence scores around each automatically detected red nuclei. 
ROIs that were not holographically activatable were not included in 
further experiments. Online data were only used during the experiment 
and were not used in analyses.

To minimize the risk of off-target activation, we minimize the 
power used per cell by first performing a ‘power test’ on each cell. In 
groups of five cells at a time, we activated each cell with five 5 ms pulses 
of light at powers ranging from 12.5 to 100 mW per cell. We define the 
‘stimmable power’ as the power in which we could elicit a significant 
calcium response in a given cell. ChroME, and its derivatives, are useful 
in that using excess power does not easily elicit more than one spike 
per 5 ms pulse18,31,66. Therefore, we multiply the stimmable power by 
1.1 to 1.2 to ensure a more faithful response in each stimulated cell. 
Throughout the experiments, multitarget holograms are designed such 
that each cell receives a distinct power based on its stimmability and the 
diffraction efficiencies of each spot. We further restrict the analysis to 
exclude cells within 15 µm on the same plane or within 30 µm one plane 
away (30 µm spacing), as they have a risk of receiving off-target light.

To confirm our resolution, we obtained PPSFs in two separate 
experiments from a total of 26 matched cells. After the standard ‘power 
test,’ randomly selected sets of ten cells distributed throughout the 
FOV were driven as in a standard experiment. Holograms were digitally 
offset radially using 3 µm steps (range: −3 to 30 µm from aligned) and 
axially in 6 µm steps (range: −6 to 60 µm). Resulting fluorescence was 
fit with a Gaussian, aligned to the peak and the full-width half maximum 
(FWHM) was obtained.

To be conservative, we excluded cells that were closer than 15 µm 
from a stimulated target. This exclusion zone is larger than any PPSF 
FWHM that we observed (Fig. 1d). Similarly, we could not detect any 
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differences in the responses of opsin-positive or opsin-negative cells 
beyond 10 µm from a stimulated cell (Extended Data Fig. 3).

Calcium imaging
All recordings were performed in L2/3 imaging three 800 × 800 µm 
planes, spaced 30 µm apart, at 5.2–6.2 Hz with <75 mW (920 nm) laser 
light (Coherent Chameleon Ultra II) using a resonant-galvo system. 
Images were acquired using ScanImage (Vidrio) with custom stimula-
tion control software. During recordings, animals are on a running 
wheel and their run speed is recorded.

Visual stimuli were presented on a 2,048 × 1,536 Retina iPad LCD 
display (Adafruit Industries) placed 10 cm from the mouse. The moni-
tor backlight was synchronized with the galvos such that it came on 
only during the turnaround time, so that light from the monitor did not 
contaminate 2P imaging. Visual stimuli were created and presented with 
custom MATLAB code and Psychophysics ToolBox. Drifting gratings (50 
visual degrees, 1 Hz, 0.08 cycles per degree, 100% contrast) of different 
orientations were randomly presented for 1 s in each trial and interleaved 
with a gray-screen (blank) condition. Neurons with significantly differ-
ent responses to visual stimuli (P < 0.05, ANOVA) were considered as 
visually responsive. For the subset of experiments with optogenetic 
stimulation delivered alongside contrast noise stimuli, full-screen  
(50 visual degrees) Gaussian contrast noise stimuli were presented at 
varying contrast (0%, 1%, 4%, 10%, 40% and 100%)68. For these experi-
ments, visual stimulation was triggered 200 ms before optogenetic 
stimulation to account for delays in visual stimulus onset. The visual 
stimulus remained on for the duration of the holographic stimulus (1 s).

Online analysis
Tuning curves and responses to photostimulation were calculated 
during the experiment, using a custom online implantation of  
CaImAn OnACID (v1.8.8)69 to perform rigid motion correction  
and seeded source extraction (https://github.com/willyh101/live2p). 
Preferred orientation (PO) was calculated as the maximum mean 
response to oriented gratings, orthogonal orientation (OO) as the 
mean response to a grating of orthogonal orientation, and orientation 
selectivity index (OSI) was calculated as (PO − OO)/(PO + OO).

Discrete optimizer
In some experiments, it was difficult to manually identify the optimal 
targets to create distinct ensembles that fit certain criteria, such as 
close and cotuned ensembles. To overcome this challenge, we wrote 
a custom discrete optimizer. This optimizer selects groups of targets 
to stimulate from a database of eligible cells to minimize a custom 
cost function. As ‘cells to include’ is a discrete operation, each step 
of our optimizer swaps one or more cells before evaluating the cost 
function and continuing. For a given experimental day, we optimized 
for 3–20 ensemble of ten cells that (1) were maximally distinct from 
each other, (2) minimized the number of times individual cells were 
included in different holograms, (3) prioritized cells activated with 
low light powers, (4) prioritized visually responsive cells, (5) avoided 
instances where two cells in the same ensemble were within 30 µm of 
each other, (6) spread out cells within an ensemble, (7) fit the desired 
spatial rules (for example were spatially compact versus spread out), 
(8) fit the desired ensemble tuning (that is, ensemble OSI) and (9) fit the 
desired mean selectivity (that is, OSI of ensemble members was high 
for cotuned ensembles or low for untuned ensembles).

Offline analysis
Tiff files were motion corrected, cell sources (aka pixel masks) were 
determined and source fluorescence was extracted using suite2p (ver-
sion released summer 2017)70. Pixel masks were manually categorized 
as ‘cells’ or ‘not cells,’ and only ‘cells’ were included for analysis. For 
ΔF/F calculation, each cell’s detected fluorescence was first neuropil 
subtracted. The average fluorescence of an annulus (not containing 

another cell) of up to 350 pixels was considered neuropil. For all figures 
except Extended Data Fig. 6f,g, a neuropil coefficient (c) was calculated 
for each cell as described in ref. 70, and the final fluorescence was calcu-
lated as F = Fcell – c × Fneuropil. In Extended Data Fig. 6f,g, a fixed neuropil 
coefficient was used for every cell, as determined in that figure. F0, the 
‘baseline’ fluorescence, was calculated with a moving average of the 
tenth percentile of a 1,000 frame window (∼3 min); this moving aver-
age is used to correct for very slow drift in imaging conditions. ΔF/F is 
calculated as (F − F0)/F0.

Not all putative cells identified via red nuclei and/or online analysis 
were recovered by suite2p. This ‘nonmatched’ population could be 
caused by a variety of sources, including errors in the online initial 
detection algorithms, errors in suit2p’s recovery and potentially errors 
in the manual ‘cell’ versus ‘not cell’ determination. If too many cells of an 
ensemble did not match, that ensemble was excluded (Exclusion crite-
ria). When calculating the distance to a target or spread of an ensemble, 
the targeted rather than recovered sets of coordinates are used.

The minimum distance to a target was defined for each cell as the 
minimum distance to any attempted target, regardless of whether that 
target ‘matched’ to a suite2p detected cell.

The spread of an ensemble was calculated as the mean pairwise 
distance between the center of mass of each target of an ensemble 
calculated in 3D. A close ensemble is defined as having a mean pairwise 
distance <200 µm, whereas a far apart ensemble has a mean distance 
>200 µm.

Tuning curves and OSIs were recalculated offline data for subse-
quent analysis. Ensemble OSI is defined as the OSI of the mean tuning 
curve from cells used in an ensemble. Mean OSI is the arithmetic mean 
of the OSIs from each ensemble. Cotuned ensembles are defined as 
ensembles with an ensemble OSI > 0.7 and a mean OSI > 0.5; untuned 
ensembles are defined as ensembles with an ensemble OSI < 0.3 and 
a mean OSI < 0.5.

Statistics and reproducibility
Throughout this work, nonparametric two-sided tests are used except 
where noted. Individual FOVs may come from the same mouse but com-
prise a different area or plane, and thus consist of different neurons. 
We consider the effects of different ensembles as the appropriate level 
of analysis but report the hierarchical nature of the data. No statistical 
method was used to predetermine the sample size. Holograms were 
randomly assigned and randomly interleaved during data collection 
blind to the experimenter. Batch analysis was performed across experi-
mental conditions, thus blinded during data analysis.

Exclusion criteria
Trials were excluded if (1) the animal ran more than 6 cm s−1, (2) 50% 
or more of the targeted cells failed to respond when driven (to at least 
0.25 z-scored fluorescence above baseline) or (3) registration of the 
FOV indicates that the brain shifted more than 4.7 µm (3 pixels), indi-
cating a miss.

Cells were excluded from a given trial if (1) they were located in 
an off-target region (15 µm radially from a targeted cell or 30 µm radi-
ally from a cell one plane away), (2) they had been stimulated in the 
immediate preceding trial, (3) they were occluded by the stimulation 
artifact or (4) the cell was categorized as ‘not cell’ or not detected via 
the suite2p process.

Ensembles were excluded from analysis if (1) more than 33% of 
the targeted cells were not detected via suite2p, (2) more than 50% 
of attempted stimulation trials failed (note only successful trials are 
included) or (4) had fewer than ten repetitions for either the baseline 
or (5) stimulation conditions.

FOVs were excluded from analysis if (1) fewer than 5% of cells were 
visually responsive, (2) more than 50% of trials occurred while the 
mouse was running or (3) fewer than 250 total cells were detected by 
suite2p.
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Determining opsin-negative cells
Opsin-positive and opsin-negative cells were identified in Sep
W1-Cre × CamK2a-tTA × tetO-GCaMP6s mice injected with 
AAV-CAG-DIO-ChroME2s-P2A-H2B-mRuby3, as described above. In 
addition to the typical imaging procedures, a structural image of the 
FOV at 1,020 nm was taken at the start of an experiment to identify and 
quantify the brightness of the nuclear mRuby3. As window prepara-
tions and imaging conditions could vary between days, the mRuby3 
brightness was considered a relative measure. For each FOV, the top 
20% brightest red nuclei were defined as opsin-positive, while the 
30% dimmest were considered opsin-negative. Opsin-negative cells 
often scored low integer values fluorescence counts, with many cells 
receiving equal scores, thus in some recordings more than 30% of 
cells were included.

Mathematical model
We consider a two-dimensional neural field model of the form

τα
∂rα
∂t

= −rα + ϕα ( jαe ∗ re + jαi ∗ ri + μα) ,

where * denotes a two-dimensional convolution in space, α = e, i and 
(x, y) ∈ [0,1400] × [0,1400] µm box with periodic boundary conditions 
(modified from ref. 44). Because the animal is viewing a gray screen, 
there exists a uniform steady state for this system, rss. We then make 
use of the fact that the perturbation to the system is relatively weak, 
and as a result, we can approximate it as a linear perturbation around 
rss. Linearizing the system yields

T
∂Δr
∂t

= (−I +W) ∗ Δr,

where

Wαβ = gα ⋅ jαβ,

with gα being the gain set by the steady state of the system (that is, 
gα = ϕ′

α|ss). The optogenetic stimulation is then modeled by considering 
a perturbation of the form

T
∂Δr
∂t

= (−I +W) ∗ (Δr + rstim) ,

where rstim(x, y) = 10·δ(x − xi) δ (y − yi) at the ten stimulated locations 
denoted by (xi, yi). Transforming the system into Fourier space, we can 
solve for Δr in steady state

Δ ̃r = (I − W̃)
−1
⋅ W̃ ⋅ ̃rstim.

We can perform a matrix expansion of this inverse as long as the 
spectral radius of W̃ is less than one. Because V1 is in a low gain state 
while the animal is viewing a gray screen, the effective connection 
strength is very weak (that is, gα ≪ 1) placing us within this regime. 
Performing this expansion yields

Δ ̃r = (I + W̃ + W̃ 2 +…) ⋅ W̃ ⋅ ̃rstim.

Finally, after taking the inverse Fourier transform, we find that

Δr = (W +W ∗W +W∗3 +…) ∗ rstim.

We can again make use of the weak effective connectivity to drop 
the higher-ordered terms and write

Δr ≈ (W +W ∗W) ∗ rstim.

Because we are only stimulating and recording from excitatory 
neurons, we can write this approximation as a sum of monosynaptic 
and disynaptic excitatory terms and a disynaptic inhibitory pathway

Δre ≈ (Wee +Wee ∗Wee) ∗ rstim +Wei ∗Wie ∗ rstim.

While we consider connectivity rules that depend on both space 
and feature, we assume that these components are independent. This 
allows us to write the strength of connection between neurons at  
coordinates (x1, y1) and (x2, y2) with feature preference θ1 and θ2, respec-
tively as

Wαβ (x1, y1,θ1; x2, y2,θ2)

= wαβ ⋅ g (√(x1 − x2)
2 + (y1 − y2)

2;σβ, κβ) ⋅ hβ (θ1 − θ2) /z

where z is a normalization factor and r2 = (x1 − x2)2 + (y1 − y2)2 is the dis-
tance between the two locations, adjusted accordingly to account for 
the periodic boundary. The spatial dependence is given by the follow-
ing sum of Gaussian distributions:

g (r;σα, κα) =
(1 − κα)
2πσ2

α,b
⋅e−r

2/(2σ2
α,b) + κα

2πσ2α,n
⋅e−r2/(2σ2α,n),

where σα,b refers to the broad spatial component, σα,n corresponds  
to the narrow spatial component and κα is the relative weight of  
each of term. The broad spatial components for the outgoing excita-
tory and inhibitory connections are based on the data from ref. 22 
(Extended Data Fig. 9a,b). The parameters of the narrow component, 
σα,n and κα are adjusted from ref. 46, chosen to capture the nearby 
excitation observed in Fig. 2a and Extended Data Fig. 9e. Furthermore, 
the boundary of the experimentally observed data regime box used in 
Fig. 5b was found by fitting experimental data for different bin widths 
(5–20 µm) to the function

f (d) = A1e
(d/σ1)

2
+ A2e

(d/σ2)
2
,

Solving for the zero crossing and maximum activation/maximum 
suppression and then taking the boundary to be the smallest rectangle 
that includes the values for all bin widths.

The models without feature-based connectivity take hα(θ) = 1. 
Otherwise, it takes the form

hα (θ) = r0 + rp ⋅ e−θ
2/(2σ2

αβ
),

where θ ∈ [0, 90]. The parameters for feature-based excitatory  
connections are also based on the data from ref. 22 (Extended Data 
Fig. 9c,d), whereas the inhibitory connections are adjusted to best 
match the observed like-to-like suppression seen in Fig. 3c. After using 
the available data, the free parameters are the effective strength of 
excitatory connections (wee), the effective strength of the inhibitory 
pathway (weie = wei·wie), the narrow spatial components parameters and 
the feature-base rules of the inhibitory connections.

RNA in situ hybridization
Brain was collected from a 6-month-old tetO-GCaMP6s+/+ 
CamK2a-tTA+/− female, embedded in optimal cutting temperature 
compound (Tissue-Tek) and frozen on dry ice within 5 min of tissue 
collection. Tissue blocks were cut into 10 µm sections using a cryostat. 
RNAscope was performed on the sections according to the manufac-
turer’s instructions (RNAscope Fluorescent Multiplex Kit; Advanced 
Cell Diagnostics). Probes used were Mm-GCaMP6s-O1, Mm-Slc32a1-C2 
and Mm-Slc17a7-C3. RTU DAPI was used to stain cell nuclei, and slides 
were mounted using Vectashield mounting medium (Vector Labo-
ratories). Images were collected using LSM 880 NLO AxioExaminer 
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confocal microscope (Zeiss) and processed using ZEN lite (Zeiss). For 
analysis, 300 cells with positive DAPI staining from five slices were 
counted in cortical L2/3 and positive/negative staining of each probe 
was recorded for each cell. Cell with less than ten dots per probe was 
presumed negative for the respective RNA.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The compressed data to reproduce the key figures of the paper can be 
found on the GitHub repository (https://github.com/gregoryhandy/
Logic_of_Recurrent_Circuits).

Code availability
Code to reproduce the key figures of the paper can be found on the 
GitHub repository (https://github.com/gregoryhandy/Logic_of_ 
Recurrent_Circuits). Additional code used for analysis can be found 
at: https://github.com/willyh101/100spikesAnalysis. Code used for 
online analysis can be found at https://github.com/willyh101/live2p.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | RNAscope validation of cell type specificity. a: A 
cortical section of a tetO-GCaMP6s x Camk2a-tTA mouse using RNAscope. 
GCaMP6s (green), VGLUT1 (white), VGAT (red), and DAPI (Blue) are labeled. 
Approximate division of cortical layers noted by dashed lines. Scale bar 100 µm. 
Representative image from 5 similar cortical slices. b: Enlarged view of L2/3 
cortex. Scale bar 50 µm. a,b: Representative images from 5 coronal slices from 

one animal. c: Example L2/3 cells with expression of GCaMP6s, VGLUT1, and/
or VGAT noted. Scale Bar 5 µm. d: Quantification of N = 300 DAPI positive cells 
from 5 slices, presented as either GCcaMP6s+ cells that co-stained for markers of 
VGLUT1, VGAT, or both (left) or VGLUT1+ cells that co-stain for GCaMP6s, VGAT, 
or both (right). 84.5% of GCaMP6s+ cells stain for VGLUT1, 99.1% of VLGUT1+ cells 
stain for GCaMP6s.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | 3D-SHOT2.0 and 3D spatial calibration. a: Microscope 
setup implementing simultaneous holographic optogenetics (via 3D-SHOT 2.0) 
and 2-photon calcium imaging. Imaging and stimulation paths are co-aligned 
and calibrated using the procedure outlined in this figure. b: First, a substage 
camera is used to image the ‘imaging’ fields of view in three dimensions. A thin 
fluorescent slide is imaged by the camera, and the microscope focus moved 
above and below the slide to gain depth information. The field curvature, 
introduced by the ETL, among other elements, was measured as a function 
of XY position and depth and then fit with a polynomial. Multiple ETL offsets 
representing the different imaging planes that might be used in an experiment 
are imaged separately. c: Second, we devised a multiplexed approach to register 
the position and diffraction efficiency of hologram targets (aka individual 
illuminated spots) throughout the Imaging FOV. To begin, the approximate XYZ 
position of 200 randomly selected single-target holograms was determined by 
imaging a with the substage camera. Each hologram was projected onto the thin 
film slide, and then a z-stack of images made by defocusing the microscope. The 
XY position of each hologram was determined by the position on the camera, 
while the Z position inferred from the stack. Next, multi-target holograms 
comprised of the holograms imaged in the initial phase were imaged at a higher 
resolution to provide a more accurate XYZ position. By imaging holograms 
as multi-targets we were able to parallelize data acquisition and dramatically 
improve calibration times. Next, we use the initial 200 imaged holograms to 
estimate the calibration and registration of holograms in the imaging FOV. Using 
these initial model fits, we then generate 100 20-target holograms (for a total 
of 2000 data points), predict their location in the substage camera, and extract 
the resulting XYZ position, relative power, and HWHM throughout the entire 
imaging FOV. Data were fit with a polynomial to generate a general transform for 
any SLM and imaging coordinate. Finally, we test the spatial calibration with an 
automated ‘hole-burn’ (n = 300 holes burnt during calibration). d. An example of 

a multi-target hologram being imaged in a stack. e: Example power distributions 
in 3D (presented in arbitrary SLM units). Power distributions vary significantly 
throughout 3D space. By modeling hologram diffraction efficiency in 3D, we 
can dynamically compensate power during an experiment to accurately use a 
greater range of the SLM. Each point represents a single imaged hologram; color 
represents the relative power from that hologram. f: Axial hologram HWHM 
varies as a function of depth. We co-aligned the axial position of the imaging and 
holographic stimulation pathways such that the holograms with smallest HWHM 
were positioned within the typical Imaging axial range used in experiments 
(dashed lines). Each point represents a single imaged hologram. g: Example 
image from the automated ‘hole-burn’. A unique pattern is bleached/burned onto 
a thin fluorescent slide, imaged in ScanImage, and the XY position of hole-burn 
locations is detected. This process is repeated for multiple z-planes. A ‘hole-burn’ 
image is taken for each hole, consequently this image is one of ∼300 images 
per calibration, and representative of the burns made in all >5 Calibrations 
performed over this project. h: With the calibration in place, we simulated XY 
(top) and Z (bottom) error in targeting throughout the typical imaging field 
of view (n = 10,000 simulations). Root-mean-square error (RMSE, in µm) is 
presented in 3D (left) and overall error distributions (right). i: To understand 
the variability in delivered power across different types of holograms, we 
measured the fluorescence evoked by a series of 10 test targets (dotted circle, 
left). Using the substage camera, we measured the intensity from the test target 
alone in a single-target hologram, or in a hologram that also contained 1 to 50 
randomly chosen ‘distractor’ targets, 10 repeats with new distractor targets 
were performed per test target and hologram size. Right, the intensity of each 
test target as a function of the total number of targets in the hologram. Each 
color denotes a different test target, while the variability comes from different 
‘distractor’ targets (presented as S.E.M).

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01510-5

Extended Data Fig. 3 | Sparsely expressing mice for analysis of opsin negative 
cells. a: Representative image from one of 6 FOVs from a SepW1-Cre mouse 
with AAV CAG-DIO-ChroME2. Scale Bar 100 µm. Inset, example images of opsin 
negative (above) and opsin positive (below) cell. Scale Bar (10 µm). Green is 
from GCaMP, red from nuclear localized mRuby3 part of the opsin construct. 
b: The intensity of the red fluorophore detected for each cell in one field of 
view (representative of all 6). Top 80th percentile categorized as opsin positive, 

bottom 30th percentile opsin negative (Note: red counts are integers and more 
than 30% of cells may have the same or lower 30th percentile score). c: Evoked 
ΔF/F responses in non-targeted cells to 10 cell ensemble stimulation as a function 
of distance from the closest target, separated by opsin positive and opsin 
negative cells. Exclusion zone (15 µm) marked in gray. N = 57 ensembles, 6 FOVs, 
4 Mice.
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Extended Data Fig. 4 | Heterogeneity in responses to holographic 
stimulation. a: Evoked ΔF/F responses in a single example non-target cell to 8 
distinct 10 cell ensembles stimulations from the same recording. Trial variability 
presented as mean ± 99% c.i. Significantly modulated conditions (that is, 99% 
c.i. excludes 0) are marked in red. Each ensemble was stimulated in at least 10 
trials (see Methods) b: All non-target cells from a given field of view response 
to a single example hologram. Mean ± 99% c.i. sorted by mean response. Cells 
that are significantly modulated (that is, 99% c.i. excludes 0) marked in red. To 
this hologram 67 cells were significantly suppressed, while 21 were activated. 
c: For each stimulated ensemble, the fraction of non-target cells significantly 
activated (blue) or suppressed (orange) (via 99% c.i.) is presented as a histogram. 

False discovery rate (1%) is noted by the dotted red line. N = 160 Ensembles, 18 
FOVs, 13 Mice. d: An example pair of cells that were close to each other (<30 µm) 
but responded differently to different, but similar, ensembles. Cell A (purple) 
was targeted in both Ensemble 1 (top) and Ensemble 2 (bottom). Cell B (green) 
was never directly targeted but was silent in ensemble 1 and driven in ensemble 
2. Each row shows a schematic of the ensemble (far left), color plot of the 
fluorescence observed each trial for cell A (left), mean ± 95% c.i. response for cell 
A (middle), color plot of the fluorescence observed each trial for cell B (right), 
and mean ± 95% c.i. response for cell B (far right). Ensemble 1 was repeated in 20 
trials, ensemble 2 in 17 trials.
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Extended Data Fig. 5 | Comparison of effects by mouse and preparation. 
Mean population average of all non-targeted cells in response to each 10 cell 
ensemble stimulation (gray dot). Average ± SEM for each recording FOV in red. 
Divided by expression selectivity driver (Emx-cre, CamK2-tTA, or SepW1-Cre) 
and viral construct (Syn-DIO-ChroME, Tre-ChroME, Tre-ChroME2s, or CAG 

DIO-ChroME2s). Sex of each mouse is noted below. Note SepW1-Cre ensembles 
are more likely to be spread out, due to the sparse nature. Each dot is the mean 
response to an ensemble across all conditions N = 160 Ensembles, 18 FOVs, 13 
mice.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Determining experimental conditions. a,b Ensemble 
activation during visual stimulus. a: average population response of all (non-
targeted) recorded neurons to visual stimulus alone (Gaussian modulated noise 
of various contrasts) and with concurrent photo-stimulation of 10 neurons with 
10 photo-stimulation pulses. b: Mean population response of all non-targeted 
neurons as a function of their distance from the photo-stimulated ensemble 
across 0% and 100% contrast. The mean visual response has been subtracted off 
to facilitate comparison. All other figures are in the absence of visual stimuli. 
N = 20 Ensembles, 5 FOVs, 3 Mice. c–e Observed decrease in fluorescence is 
dependent on the number of spikes added. c: In the absence of visual stimuli, 
number of total pulses added increased overall mean suppression. Mean evoked 
population response to 10 cell ensemble stimulation, with 1, 5, 10 or 50 pulses 
per cell. P = 1.97e-7 1-way ANOVA, N = 76 Ensembles, 5 FOVs, 2 Mice. d: Rate of 

stimulation did not affect the overall mean suppression. Mean evoked population 
response to 10 cell ensemble driven with 10 pulses at 3, 10, 30 or 50 Hz. P = 0.74 
1-way ANOVA, N = 46 Ensembles 2 FOVs, 2 Mice. e: Number of cells stimulated, 
when holding number of spikes constant, did not change overall suppression. 
Ensembles of 33 cells driven with 3 pulses, vs 10 cells driven with 10 pulses, vs 3 
cells driven with 33 pulses did not recruit a differential amount of suppression. 
P = 0.78 1-way ANOVA, N = 99 Ensembles, 11 FOVs, 5 Mice. f,g Neuropil correction 
does not explain suppression. f: Overall average response of non-targeted 
neurons (n = 138 ensembles, 13 FOVs, 9 Mice), calculated with a variety of neuropil 
subtraction coefficients. g: Response of non-targeted neurons as a function of 
distance from stimulated ensemble members (as in Fig. 2a) calculated with a 
variety of neuropil subtraction coefficients (same ensembles as panel F). All data 
presented as mean ± SEM.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Correlation of population responses to ensembles 
statistics. a: Non-target cells are categorized based on their proximity to a 
targeted cell as close (<30 µm, green), middle (50–100 µm, blue) or far (>150 µm, 
purple) cells. These categories are plotted against the predicted average 
response from Fig. 2a. b: Schematic showing the mean pairwise distance of 
a stimulated ensemble. c: Population averages of evoked fluorescence from 
non-target cells categorized as close (green), middle (blue), or far (purple) from 

a targeted cell as a function of the ensemble spread. Each dot is a population 
response to an ensemble, N = 160 Ensembles, 18 FOVs, 13 mice. Blue line 0 
effect, red line linear regression fit. Slope and p value for the F-test of the linear 
regression model written on the plot. d: Schematic showing cotuned vs untuned 
ensembles. e: The evoked fluorescence from all non-targeted cells regardless of 
distance to a stimulated cell as a function of ensemble OSI (that is, tuning). f: As in 
c, but as a function of ensemble OSI.
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Extended Data Fig. 8 | Responses of cells divided by their response 
properties. Response of non-targeted cells during cotuned ensemble 
stimulation, as in Fig. 4a left. All observed cells are categorized by their responses 

to oriented visual stimuli as either tuned, non-tuned, or non-visually responsive. 
N = 17 ensembles, 9 FOV, 3 mice. top row; N = 8 ensembles, 3 FOVs, 1 mouse 
bottom row. All data represented as mean ± SEM.
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Extended Data Fig. 9 | Using experimental data to fit spatial and feature 
spread parameters and the mathematical model with no tuned connections. 
a: Data from Rossi et al.22 used as a baseline for the broad spatial component of 
E → α, for α = E, I (σe,b = 147.31 µm). b: Same as a, except for I → α (σi,b = 111.27 µm). 
c: Data from Rossi et al.22 (n = 15 trials; data represented as median ± MAD) 
to for the feature-based connectivity rule for E → E connections (σee = 21°, 
r0 = 0.056, rp = 0.084). d: Zoomed in portion of panel a from 0° to 90°. e: Non-
targeted cell responses to optogenetic stimulation as a function of minimal 
distance to ensemble for different (hollow circles) fitted to a sum of Gaussian 
spatial functions for different bin widths. The zero-crossing, maximum, and 
minimum values were estimated for each fitted function and used to determine 
the experimentally observed data regime box used in Fig. 2c. f: The spatial 

connectivity parameters suggested from Rossi et al.22 yield a broad spatial scale 
different from the observed functional connectivity (black dots vs. solid blue 
line). Shrinking both broad spatial scales (σe,b = 70 µm and σi,b = 40 µm) yields 
a more quantitative match of decay to zero (dot-dash blue line). Experimental 
data is represented as mean ± SEM (N = 160 ensembles). g: The spatial footprint 
of disynaptic connections using the anatomical data from Rossi et al.22 (σdi 
≈(147.312 + 111.262)0.5 = 180 µm) and the functional data from optogenetic 
perturbations (σdi ≈(702 + 402)0.5 = 80 µm). h: When synaptic connectivity only 
followed a spatial wiring rule with no specificity in orientation space (that is, 
hα(θ) = 1), there is no difference in the recruited recurrent activity of iso-oriented 
(solid blue) vs. orthogonally oriented (dashed red) neurons.
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Extended Data Fig. 10 | Final model with novel spatial- and feature-base 
rules captures all-core experimental results. The final model is capable 
of producing the all-core results of the paper, including a: nearby activation 
with surround suppression, b: a strong recruitment of suppression for tighter 
ensembles, c: non-targeted cell responses as a function of their minimal distance 

to the ensemble according to their relative tuning with the stimulated cotuned 
ensembles, and d: compact, cotuned ensembles sharpening the input signal 
locally more so than diffuse, cotuned ensembles. All panels use parameter values 
κ=0.045, wee = 0.0165, weie = −0.022.
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Sample size No a priori sample size calculation was performed. Based on preliminary experiments, we determined that 10-15 ensembles per condition 

were sufficient to resolve our effects. Trial to trial fluctuations were a greater noise source, so we performed 15-25+ trials per condition. 

Data exclusions Exclusion criteria is explained in the manuscript: Trials were excluded if (1) the animal ran more than 6 cm/s, (2) 50% or more of the targeted 

cells failed to respond when driven (to at least 0.25 Z-scored Fluorescence above baseline), or (3) registration of the field of view indicates 

that the brain shifted more than 4.7µm (3 pixels), indicating a miss. Cells were excluded from a given trial if (1) they were located in an off 

target region (15µm radially from a targeted cell, or 30µm radially from a cell one plane away), (2) they had been stimulated in the immediate 

preceding trial, (3) they were occluded by the stimulation artifact, or (4) the cell was categorized as ‘not cell’ or not detected via the suite2p 

process. Ensembles were excluded from analysis if (1) more than 33% of the targeted cells were not detected via suite2p, (2) more than 50% 

of attempted stimulation trials failed (note only successful trails are included), or had fewer than 10 repetitions for either the baseline (4) or 

stimulation (5) conditions. Fields of view were excluded from analysis if (1) fewer than 5% of cells were visually responsive, (2) more than 50% 

of trials were occurred while the mouse was running, or (3) fewer than 250 total cells were detected by suite2p.

Replication Data was replicated and is reproducible. Each condition is reported as the average of ~20 trials, which in general appear consistent over time. 

Furthermore the 160 unique ensemble perturbations that make up this study were generated from a total of 13 Mice which each 

independently support the primary findings. Furthermore the primary data that makes up this dataset was collected over a 3 year period. 

Analyzing any given year alone comes to the same conclusion as the complete dataset. 

Randomization Perturbations were randomized on a trial by trial basis. Every animal in this study underwent similar experimental procedure. Cells were 

divided into different ensembles (i.e. experimental groups) by random assignment after filtering for the desired properties (see methods). 

Blinding Holograms were randomly assigned and randomly interleaved during data collection blind to the experimenter. Batch analysis was performed 

across experimental condition, thus blinded during data analysis. 
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Laboratory animals All calcium imaging experiments were performed in adult mice (2-12 months old) of both sexes expressing GCaMP6s in excitatory 

neurons via tetO-GCaMP6s (Jax #024742) x Camk2a-tTA (Jax #003010). In some cases, other cre lines (Jax #017320, or Jax #013044) 
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part of this study. Mice were housed according to UC Berkeley's OLAC's standard of care (73F, 53% Humidity)

Wild animals no wild animals were used in this study

Reporting on sex 6/13 Experimental Mice were female. No difference was observed based on sex. An Extended Data Fig reports the sex of each mouse.

Field-collected samples no field collected samples were used in this study. 

Ethics oversight All experiments were performed in accordance with the guidelines and regulations of the ACUC of the University of California, 

Berkeley. Protocol #AUP-2014-10-6832-2. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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