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Facemap: a framework for modeling neural 
activity based on orofacial tracking

Atika Syeda    1 , Lin Zhong    1, Renee Tung    1, Will Long1, 
Marius Pachitariu    1,2 & Carsen Stringer    1,2 

Recent studies in mice have shown that orofacial behaviors drive a large 
fraction of neural activity across the brain. To understand the nature 
and function of these signals, we need better computational models to 
characterize the behaviors and relate them to neural activity. Here we 
developed Facemap, a framework consisting of a keypoint tracker and a 
deep neural network encoder for predicting neural activity. Our algorithm 
for tracking mouse orofacial behaviors was more accurate than existing 
pose estimation tools, while the processing speed was several times faster, 
making it a powerful tool for real-time experimental interventions. The 
Facemap tracker was easy to adapt to data from new labs, requiring as few as 
10 annotated frames for near-optimal performance. We used the keypoints 
as inputs to a deep neural network which predicts the activity of ~50,000 
simultaneously-recorded neurons and, in visual cortex, we doubled the 
amount of explained variance compared to previous methods. Using this 
model, we found that the neuronal activity clusters that were well predicted 
from behavior were more spatially spread out across cortex. We also 
found that the deep behavioral features from the model had stereotypical, 
sequential dynamics that were not reversible in time. In summary, Facemap 
provides a stepping stone toward understanding the function of the 
brain-wide neural signals and their relation to behavior.

Neurons across the brain are constantly active, even in the absence of 
external sensory stimuli or a behavioral task1,2. This ongoing, spontane-
ous neural activity is driven by the spontaneous behaviors of the animal, 
such as running, head movements and whisking in mice3–9, tail move-
ments in zebrafish10 and body movements in flies11–13. In mice, different 
neurons were best explained by different combinations of orofacial 
behaviors, such as whisking, sniffing and grooming, showing that mul-
tidimensional representations of behavior exist across the brain14–17. 
These multidimensional behavioral representations persist during 
presentations of sensory stimuli14 and decision-making tasks18–20.

Despite the widespread presence of behavioral signals across the 
brain, their role and function remains poorly understood. To make pro-
gress in understanding these neural signals, it is important to develop 
better computational models. This requires progress in the following 

two areas: (1) better quantification of orofacial behavior and (2) better 
models of the influence of behavior on neural activity.

To quantify behavior, previous studies took advantage of the stabil-
ity of the head-fixed experimental setup to compute low-dimensional 
features of the raw behavior movies, either using principal components 
(PCs) of the movies14,17,20, or using autoencoders fit to the movies21,22. 
Although movie PCs are easy to compute, the resulting features are 
hard to interpret. Another common approach for quantifying orofacial 
movements is whisker tracking, which can provide specific and inter-
pretable information about whisker motion23–26. However, previous 
approaches for whisker tracking required trimming the other whiskers 
and/or whisker painting, which may alter mouse behavior, and they  
also required a high-speed overhead camera, which may be unavailable 
in many experimental setups. An alternative approach is markerless 
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which we inferred using a hidden Markov model (HMM). Hence, 
Facemap can be used to obtain insights into both the structure and 
influence of orofacial behaviors on neural activity, thus providing a 
stepping stone toward understanding the function of the brain-wide 
behavioral signals.

Results
Fast and accurate tracker for mouse orofacial movements
We start by describing a neural network model for keypoint tracking  
on the mouse face, the Facemap tracker. As a first step, we chose  
several well-defined keypoints that could track various orofacial move-
ments (Fig. 1a). To capture whisking, we tracked three whiskers that 
are visible from most camera views, labeling the points at the base of 
the whiskers. To capture sniffing, we tracked four nose-related key-
points (bottom, top, tip and right-bottom, when in view). To capture 
mouth movements, when the mouth was in view, we tracked two mouth 
keypoints (mouth and lower lip). To capture eye movements, such as 
blinking, we tracked the four corners of the eye (bottom, top, front 
and back). We did not track the pupil, because it is completely dilated 
and untrackable in darkness, and also because it is easier to track with 
simpler methods14.

Our goal was to build a model that would generalize well to new 
data. To achieve this goal, we collected a dataset of short mouse face 
videos from many different mice with the camera setup at several 

pose estimation or keypoint tracking. Several algorithms exist for 
general keypoint tracking in animals27–31, but none of these tools have 
specialized methods for tracking orofacial movements.

Similarly, better models are needed to account for the influence of 
behavior on neural activity. Previous studies used simple approaches 
like reduced-rank regression (RRR) or ridge regression14,20. These models  
are linear and do not take into account temporal dynamics. Therefore, 
they are unlikely to capture the full influence of time-varying, multi-
dimensional behavior on neural activity.

To address these shortcomings, we developed two new algorithms 
as follows: a keypoint tracker and a single neuron prediction model, 
both of which we make available in Facemap. Both algorithms are 
powered by deep neural networks. To track orofacial behaviors, we 
developed a pose estimation tool that tracks 13 distinct keypoints  
on the mouse face from variable camera views. Our pose estima-
tion tool is more accurate than the best existing method (DeepLab-
Cut), and it is also twice as fast, thus providing a viable option for  
online behavioral tracking. On new data, the Facemap tracker requires 
only ten new labeled frames for near-optimal performance. We also 
developed a multilayer neural network that is optimized to predict 
neural dynamics from orofacial behaviors. Compared to previous 
methods, this approach can predict almost twice as much neural  
variance for neurons in visual cortex. Furthermore, the model learns 
deep behavioral features that have highly-structured state dynamics,  
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Fig. 1 | Fast and accurate mouse orofacial keypoint tracking. a, A total of 
13 distinct keypoints selected for tracking the eye, mouth, whiskers and nose 
on the mouse face, illustration created with BioRender.com. b, Architecture 
of the Facemap network, a U-Net style convolutional neural network. c, The 
error percentiles across test frames from a new mouse, where error is defined 
as the Euclidean distance between the ground-truth label and the prediction. 
d, Summary of Facemap performance on test data for different subgroups of 
keypoints. Human error shown for a subset of the test frames labeled in two 
different sessions by a human annotator. Error bars represent s.e.m., n = 400, 
95, 361 and 300 keypoint labels for eye, mouth, nose and whiskers, respectively, 

across 100 test frames. e, The average error, in pixels, and processing speed,  
in video frames processed per second, of the Facemap tracker compared with 
other pose estimation tools. Error bars represent s.e.m., n = 1,156 keypoint 
labels. f–h, Traces of x and y coordinates of keypoints during different orofacial 
behaviors. i, Prediction of keypoint traces into the future (test data). j, Variance 
explained of future prediction at different time lags, summarized for each face 
region. Error bars represent s.e.m., n = 16 recordings. k, Decay time to 50% of 
variance explained at 20 ms timelag. The ‘x’ represents the average. Two-sided 
Wilcoxon signed-rank test, ***P < 0.001 (eye versus whisker, P = 3.05 × 10−5; eye 
versus nose, P = 3.05 × 10−5; whisker versus nose, P = 1.53 × 10−4).
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different angles. From this dataset of 16 mice and 53 video recordings 
at different views, we manually annotated 2,500 frames (Extended Data 
Fig. 1). We used 2,400 frames for training the network and set aside a 
test set consisting of 100 frames from multiple views of a new mouse.

Unlike more general approaches, like DeepLabCut and SLEAP27,31, 
we only require our tracker to perform well on specific keypoints  
from the mouse face. Thus, we hypothesized that a minimal ‘U-Net’-style 
neural network32 would be sufficient for the task while providing  
faster tracking compared to the existing, bigger models (Supple-
mentary Table 1). Similar to DeepLabCut, which in turn is based on  
DeeperCut33, the Facemap tracker takes as input an image and outputs 
a set of downsampled probability heatmaps and location refinement 
maps to predict the x and y coordinates for each keypoint (Fig. 1b). The 
likelihood values of the model prediction were used to filter the traces 
and remove outliers (Methods27). The Facemap tracker was imple-
mented from scratch using the neural network software PyTorch34, 
which is a popular and easy-to-use alternative to the TensorFlow frame-
work35 used by DeepLabCut and SLEAP.

The keypoint error percentiles shown on an example test frame 
demonstrate the accuracy of the tracking (Fig. 1c and Supplemen-
tary Video 1). To get an upper bound on the tracking performance, 
we manually labeled test frames twice at different orientations and 
compared the two sets of labels. We found that the tracker achieved 
human-level performance (Fig. 1d). We compared our model with 
current state-of-the-art tools for keypoint tracking, DeepLabCut and 
SLEAP27,31,36,37. The Facemap tracker was more accurate than the other 
well-performing network, DeepLabCut with the ResNet50 backbone, 
both in average error (3.9 versus 4.4 pixels) and for individual keypoints 
of the face (Fig. 1e and Extended Data Fig. 2a). Facemap also outper-
formed DeepLabCut with the Mobilenet backbone, SLEAP default 
and SLEAP’s larger network (32 channels), which had average errors of 
5.6, 5.0 and 5.7 pixels, respectively (Fig. 1e and Extended Data Fig. 2a).

To compare the speed of the networks for the purpose of online 
tracking, we computed the processing speed using a batch size of 1 
(Fig. 1e). All the networks can achieve higher speeds with larger batch 
sizes, but only a batch size of 1 can be used for online processing of 
keypoints for closed-loop experiments. The smaller size of the Facemap 
tracker network provided a much faster processing speed of 327 Hz on 
a V100 GPU compared to DeepLabCut’s ResNet50 network (150 Hz), 
DeepLabCut’s Mobilenet network (211 Hz), SLEAP’s default network 
(80 Hz) and SLEAP’s larger network (c = 32; 72 Hz). Across different 

GPU types, Facemap consistently demonstrated the fastest processing 
speed (Supplementary Table 2). We also benchmarked the processing 
speed of the Facemap tracker at larger batch sizes and found that it 
was as fast or faster than all other networks across GPUs except for the 
Tesla T4 GPU, where DeepLabCut Mobilenet was the fastest (Extended 
Data Fig. 2b). Therefore, Facemap is the fastest orofacial tracker with 
state-of-the-art performance, which enables its use in closed-loop 
experiments with high frame rates.

The keypoints tracked by Facemap captured recognizable oro-
facial behaviors, such as blinking (Fig. 1f), whisking (Fig. 1g) and sniff-
ing (Fig. 1h), in addition to other orofacial behaviors. In the neural 
recordings, the camera view in Fig. 1c was used, so mouth keypoints 
were not included in the analyses as they were not visible. Therefore, 
for the rest of this study, we use the eye, whisker and nose keypoints to 
characterize the aspects of behavior and neural activity. To start, we 
investigated the timescales of the orofacial keypoints. To do this, we 
built an autoregressive model to predict the position of each keypoint 
in the future (prediction shown in Fig. 1i). The variance explained by  
the model on test data decayed as a function of time into the future  
(Fig. 1j). The predictability of the nose keypoints decayed fastest (~1 s), 
followed by the whiskers (~3 s) and eye keypoints (~10 s; Fig. 1k). This  
was surprising because whisking was the fastest behavior observed 
in the videos (~10 Hz). However, these fast movements were pseudo- 
random (Fig. 1g) and hard to predict, so they did not contribute  
strongly to the predictability of the whisker keypoints.

Fine-tuning the Facemap tracker on new videos
We built the Facemap tracker to perform well on a variety of camera 
angles and across different mice. While Facemap generalized well 
on data from similar mice and camera configurations, the tracker 
had variable performance on videos from other labs (Fig. 2a). We 
investigated whether a fine-tuning strategy might improve the per-
formance of the tracker further on new data. We annotated a small 
set of video frames contributed by other labs to fine-tune the neural 
network individually for each lab. The fine-tuned network showed 
a dramatic drop in error after training with just one frame. Training 
with around ten frames led to near-optimal performance (Fig. 2b and 
Supplementary Video 2). This fine-tuning procedure also worked for 
face videos from freely-moving mice from another lab: with around 
ten frames, successful tracking was achieved (Extended Data Fig. 3 
and Supplementary Video 3)38.
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Fig. 2 | Keypoint tracking on mice from other labs by fine-tuning the Facemap 
tracker. a, Top, keypoint predictions using the Facemap tracker’s base model 
(white circles) and human annotations (colored circles) on mice from new 
experimental setups. Bottom, keypoint predictions from the fine-tuned model 
trained with number of refined frames = 10. b, Performance of the Facemap 
tracker measured by average error (pixels) on test frames, as a function of the 
number of refined frames used for fine-tuning the base model (number of refined 

frames = 0 is the base model), for each lab and average test error across labs 
(black). There were n = 50 independent test frames per lab averaged, and error 
bars represent s.e.m. Note that the test errors in this panel are slightly lower than 
on the original training dataset (Fig. 1e), likely because the ground-truth labels 
were refined from predictions of the model. c, A flowchart of the refinement 
workflow implemented in our GUI.
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Given the quick improvement in the network performance after 
fine-tuning, we reasoned this step is necessary for adapting Facemap’s 
tracker to new data. Therefore, we implemented a ‘human-in-the-loop’ 
workflow to allow users to easily fine-tune Facemap for their  
own datasets in our graphical user interface (GUI) for the keypoints  
(Fig. 2c). In the first step, the existing Facemap network is used to 
generate keypoint predictions. Next, the user refines the predicted 
keypoints to generate new training labels for the network. Then, the 
network is re-trained with the new labels to create a fine-tuned network. 
The fine-tuned network is then applied to new frames and the user  
can decide whether or not to repeat the retraining process depending 
on the performance of the fine-tuned network. Once a well-performing 
network is obtained, the fine-tuned network is saved in the GUI for 
future use. This fine-tuning step was also used for our experiments in 
the next section, where we combined keypoint tracking and large-scale 
neural recordings.

A deep network model of neural activity
To determine how neural activity depends on orofacial behaviors, 
we designed a neural network encoding model that can extract  
deep features from the keypoint data or directly from the PCs of  
the videos. Similar to deep encoding models in sensory neuroscience, 
the model has a first linear step for applying spatiotemporal filters to the 
time-varying keypoints (Fig. 3a,b), followed by several fully-connected 
layers that process these features further into more abstract represen-
tations that can better predict the neural activity. This deep network 
model was trained end-to-end to predict the activity of the top 128 
PCs of neural data from either visual or sensorimotor cortices at the 
temporal resolution of the imaging data (300 ms bins; Fig. 3c). The 
neural activity was split into training and test data in blocks of around  
10 min and 3.5 min, respectively, and the variance explained was  
computed on the test data periods. We normalized the variance 
explained by an approximate upper bound, estimated using peer predic-
tion, similar to ref. 14. Among multiple variations of the neural network 
architecture, the model we chose (Fig. 3a) had the best performance 
while using the fewest number of layers (Extended Data Fig. 4).

We found that neurons across visual and sensorimotor  
cortices were well explained by behavior, with an average normal-
ized variance explained of 43.2% and 48.8%, respectively, from the 
keypoint-based deep prediction model (Fig. 3d,e). This was computed 
from the raw variance explained of 4.1% and 5.3% normalized by the 
explainable variances of 9.4% and 11.1% for the visual and sensorimotor 
areas, respectively, in bins of ~300 ms.

We compared the deep prediction model to a linear prediction 
method and found improvements of 136% and 71.5% more explained 
variance in visual and sensorimotor area, respectively (Fig. 3f). Next, 
we tested the deep prediction model using as input the PCs of the 
videos, rather than the keypoints. The deep prediction model again 
outperformed the linear method with improvements of 102% and 
46.2% in visual and sensorimotor area, respectively. The deep model 
based on movie PCs outperformed the deep model based on keypoints 
in visual areas (50.4% versus 43.2%) and in sensorimotor areas (54.8% 
versus 48.8%) (Fig. 3f). This may be due to the much larger number of 
inputs (500 movie PCs versus 22 keypoint coordinates). Users thus 
have two options as follows: either use the more interpretable predic-
tion model based on a small number of keypoints or the slightly better 
performing but less interpretable model based on movie PCs. We also 
asked how the neural prediction varies with the number of neurons and 
timepoints available for the model fitting (Fig. 3g,h). We found that 
explained variance saturated at around 10,000 neurons, but did not 
saturate with the number of timepoints even for our longest record-
ings of ~2 h. Thus, large-scale and longer recordings are necessary to 
fit good encoding models.

Next, we investigated how the model explained variance changed 
as a function of neural PC number (Fig. 3i). The largest neural PC 

generally accounts for the overall arousal state of the mouse, while 
the higher neural PCs may account for finer and more specific  
behaviors such as whisking, sniffing and eye movements14. In senso-
rimotor areas, we found that the improvement in variance explained  
by the neural network model was exclusive to the higher PCs, while  
the first PC was explained nearly as well (15.1% versus 13.5% for non-
linear versus linear keypoint-based models). In contrast, the first PC 
of the visual areas benefited substantially from nonlinear prediction 
(8.1% versus 4.1%). Furthermore, the top PC corresponded to a smaller 
fraction of the total explained variance in visual compared to senso-
rimotor areas (ratio = 0.22 and 0.37 of explained variance at 1 versus 
64 neural PCs in Fig. 3i). Overall, these differences suggest that the 
behavior-related neural activity in visual areas is higher-dimensional 
and more nonlinear as a function of behavior compared to sensorimo-
tor areas. The differences cannot be explained by visual inputs, because 
the recordings were performed in complete darkness with measured 
lux values of 0.00 in the visible spectrum (for comparison, we obtained 
7.8 lux with monitors on and 84.4 lux with the microscope doors open; 
see also Extended Data Fig. 5).

The nonlinear, deep network model predicted the fine structure of 
neural activity, capturing small events across small groups of neurons 
better than the linear model (Fig. 4a and Extended Data Fig. 6). We 
investigated the spatial distribution of these subgroups of neurons 
by clustering the neurons with k-means into 100 clusters, a number 
that was sufficient to achieve a high correlation of each neuron with 
its cluster center (Extended Data Fig. 7a and Fig. 4b,c). Some clusters  
were spatially spread throughout the recording area, while others 
were more localized (Fig. 4c and Extended Data Fig. 7b,c). We defined 
a spatial locality index for each cluster (Methods). In general, the  
clusters best predicted by the behavior had the lowest locality index  
(Fig. 4d,e). Thus, behaviorally-correlated clusters are more spatially  
distributed across cortex, consistent with the hypothesis that many  
of these behavioral signals are broadcast across the brain.

State dynamics extracted from deep behavioral features
The last hidden layer in the deep network model, the ‘deep behavioral 
features’, contains a representation of behavior that is not directly 
available in the raw keypoints. To understand the nature of these repre-
sentations, we characterized their dynamical properties using HMMs. 
Various types of HMMs have been previously fit to raw behavioral data, 
often from freely-moving animals21,39–42. Here we chose to use discrete 
HMMs, which can model the data as a succession of discrete states43,44. 
Transitions between states are probabilistic with probabilities defined 
by the transition matrix. In addition, each state is assigned a fixed  
‘emission’ pattern of activations across all features. The transition 
matrix and emission patterns are parameters that are fit to each  
session individually.

We start by visualizing the HMMs that were fit to an individual ses-
sion using 50 states, which were sufficient to reach a high log-likelihood 
on test trials (Extended Data Fig. 8a). The 256 deep behavioral fea-
tures from one session were first sorted using one-dimensional t-SNE, 
such that features with similar activation patterns are near each other 
in the plot (Fig. 5a)45. The most probable states can then be inferred  
(Fig. 5b), and their emission patterns can be used to reconstruct the orig-
inal data matrix (Fig. 5c). The reconstruction assures us that the HMM  
captures a majority of the data variance. We also visualized instances 
of the same state and observed they were consistent and in some cases 
human-interpretable (Supplementary Videos 4). The HMM states 
were also separately sorted using Rastermap46, so that forward transi-
tions—from a lower to a higher state in the sorting—are maximized in 
the sorting (Fig. 5d). Due to this sorting, state dynamics appear to be 
arranged in ordered, increasing sequences (Fig. 5b). This asymmetry 
in state transitions was not apparent at the level of the keypoints them-
selves (Fig. 5e and Extended Data Fig. 8b–d); despite being sorted with 
the same Rastermap algorithm, states inferred directly from keypoints  
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had relatively symmetric transition probabilities. To further validate 
the quality of the HMM, we used it to generate new synthetic data  
(Fig. 5f,g). Samples from the model had the same overall appearance as 
the original data. Thus, transition probabilities captured in the HMM 
can generate the same kind of behavioral sequences as are present in 
the data itself.

Next, we quantified some of the HMM properties directly. The 
duration of a state in the model is given by the self-transition probability 
(which was left out from the visualizations in Fig. 5d,e). Self-transitions 
p near 1, imply a long-lasting state, with an exponential distribution  
of state durations. The mean of this distribution is defined as the ‘state 
lifetime’, and can be easily computed as −log(1 − p). The distribution 
of state lifetimes was broad (Fig. 5h), with lifetimes ranging from  
0.2 to 10 s. The model fit to behavioral states had longer lifetimes than 
the model fit directly to the keypoints, and both had much longer 
lifetimes than a control model fit to temporally-shuffled data. For the 
rest of our analyses, we will ignore self-transition probabilities and will 
focus on the transition probabilities between states. Operationally, we  
set self-transitions to 0 in the transition matrix and normalize the 
outgoing transitions to a sum of 1 (like in Fig. 5d,e).

Another property of the HMM is the sparsity of transitions between 
states. It is apparent in Fig. 5d that the transition matrix is quite sparse, 
with most values near-zero and a few large values. In other words, HMM 
states tend to transition to only a few other potential states. To quantify 
this property, we computed for each state the probability to transi-
tion to its n-nearest states, where near states are defined as the ones 
with the highest probability of transition. As n increases, the summed 
transition probability approaches its maximum of 1 quickly for small 
n and much more slowly after. This shows that the HMM has a sparse 
structure, dominated by a few large transitions. In contrast, models 
inferred from the keypoints had more dense transitions (approached 
1 more slowly). Both types of models had sparser transitions than the 
control model that was fit to appropriately-shuffled data (Methods).

To quantify the asymmetry of the HMM transitions, we performed 
a series of analyses directly on the transition matrix (Fig. 5j). For each 
pair of states with high transition probability, we asked how likely  
other transitions are. We analyzed reverse transitions (Fig. 5k), two- 
step forward transitions (Fig. 5l) and two-step backward transitions 
(Fig. 5m). We found that these types of transitions were generally  
more likely than chance. However, reverse transitions were less likely in 
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the deep feature HMM compared to the keypoint HMM, corresponding 
to the more asymmetrical nature of the former model (Fig. 5d versus 
Fig. 5e). While two-step forward transitions were matched between 
the two models, the two-step backward transitions were at baseline 
levels for the deep feature HMM, but not for the keypoint HMM. The net 
effect of the asymmetry in state transitions was that the deep feature 
HMM produced longer, uninterrupted forward sequences of states. 
We quantified this property from the inferred states, measuring the 
length of all increasing state sequences (Fig. 5n). The distribution of 
forward sequence lengths was much more long-tailed for the deep 
feature HMM, compared to controls and to the keypoint HMM (Fig. 5n). 
Combined with the already longer state durations (Fig. 5h), this shows 
that the deep behavioral features have longer, uninterrupted runs of 
stereotypical dynamics. This may imply that the HMM states inferred 
from deep behavioral features correspond to more abstract aspects of 
behavior, which may be ignoring some specific low-level properties of 
the keypoints such as the phases of the whisking, sniffing or running  
cycles. Furthermore, the asymmetrical transitions may correspond  
to a much longer cycle of behavior dictated by transitions between  
passive to active states and back. More work will be needed to fully  
make this link, perhaps using more sophisticated HMMs such as  
switching linear dynamical systems21.

Relation between deep behavioral dynamics and neural 
dynamics
To directly compare the behavioral HMM to the neural data, we 
visualized the activity of the neural populations tuned to different 
HMM states. We define a ‘trial’ as uninterrupted timepoints of the 
same state, and the response of a neuron on that trial as its average 
activity over those timepoints. Across states, we observed a range of 
approximately 50–300 trials per state (Extended Data Fig. 9j). We then 
used training trials to select the neurons with the highest activity on 
each state. For many of the states, we obtained neural populations 
highly selective to that state (see Fig. 5o for a subset of states and 
Extended Data Fig. 9i for all 50 states). We observed populations with 
either brief or long-lasting activity, which mirrored the diversity of 
behavioral state durations. We note that the existence of these neu-
ral populations does not follow directly from the fitting procedure 
of the deep features; while the deep features were indeed trained  
to predict neural activity, we allowed arbitrary weight combinations  
of these features to predict single neurons as opposed to relat-
ing single neurons to discretized behavioral states as we do in this  
section. Other aspects of these neural populations could be investi-
gated further, for example, by engaging these neural populations in a 
behavioral task and comparing their activity with the deep behavioral 
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features they represent. However, that is beyond the scope of the 
present study.

We have so far used HMMs to study changes in dynamical proper-
ties which are a consequence of the deterministic transformation 
from keypoints to deep behavioral features. We can also compare 

the dynamical properties of deep behavioral features to those of the  
neural data itself. To do this, we first clustered the recordings  
of ~50,000 neurons into 256 clusters (chosen to match the number 
of deep behavioral features) using k-means and fit the HMMs to the 
mean cluster activities. The neural HMM had relatively shorter state 
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durations and more dense state transitions (Extended Data Fig. 9a–d), 
but similarly asymmetric transition probabilities to the deep behav-
ioral HMM (Extended Data Fig. 9e–h). Visualizing the neural data and 
the inferred neural HMM states (Extended Data Fig. 8e–g), we can see 
that neural activity contains some shorter states with faster transitions 
compared to the deep behavioral features (Fig. 5a,b). We conclude 
that the deep behavioral features especially capture longer-duration 
states in the neural data and may be missing information about the 
shorter-duration states.

Discussion
Here we described Facemap, a framework that relates orofacial track-
ing to neural activity using new modeling tools. The framework is 
composed of two parts as follows: (1) an orofacial keypoint tracker 
for extracting eye, whisker, nose and mouth movements, and (2) a 
neural network encoding model that extracts spatiotemporal fea-
tures of behavior that are most related to the neural activity. We have  
shown that the orofacial tracker is highly accurate while being sub-
stantially faster than other keypoint tracking approaches, and we 
showed that it can be easily trained on new orofacial videos from other 
experimental setups than our own. These keypoints capture the impor-
tant aspects of the behavior with many fewer variables (22) than the  
number of pixels in a frame (~100,000). Despite this dramatic dimen-
sionality reduction, the keypoints contain substantial information 
about the behavior to predict neural activity very accurately.

We used the new Facemap framework to make a few initial obser-
vations. We found that the eye keypoints had predictable dynamics 
on much longer timescales (10 s) compared to the dynamics of the 
nose keypoints (1 s), while the whisker dynamics were somewhere 
in-between. Across both visual and sensorimotor areas, clusters that 
were spread out over the brain were the ones best predicted from 
behavior. We also found that visual cortex has higher-dimensional and 
more nonlinear representations of behavior compared to sensorimotor 
cortex, a surprising result that merits further investigation.

We also found that the deep behavioral features extracted by 
the network model contained a much more orderly representation 
of behavior compared to the raw keypoints. Using an HMM, we found 
that the deep behavioral features were organized into relatively 
longer-lasting states, from less than a second to several seconds, 
which transitioned into other states in a predictable manner, form-
ing sequences of states that repeated many times over the course 
of a session. These asymmetric state sequences were not found in 
the raw keypoints and had substantially longer durations in the deep 
behavioral features compared to the neural activity. The differences 
arise because the deep features represent specifically those aspects 
of the behavior that best predict the neural data. There are important 
aspects of behavior that may not be relevant for this prediction, such 
as the phases of the whisking, sniffing or running cycles, and there are 
aspects of the neural activity that may not be predictable at all. When 
those are factored out, an orderly representation emerges in the deep 
behavioral features.

These initial analyses are just the start of using Facemap to extract 
insights about neural activity patterns and the structure of behav-
ior itself. We developed the method alongside a user-friendly GUI so  
that others can easily adapt it to their own data, and use it flexibly  
in their own studies. To track fast orofacial movements such as whisker 
movements, we note that reasonable resolution of the face will likely 
be required (at least 200 pixels) and a frame rate of at least 50 Hz. 
Many labs already have video cameras capturing the face of the mouse  
with sufficient resolution and frame rate and could, therefore, per-
form orofacial tracking during such experiments47,48. Furthermore, 
with head-mounted cameras38, orofacial tracking can be incorpo-
rated into freely-moving behavioral contexts, to enable observation of  
the fine movements that rodents make as they explore their environ-
ment or engage in social interactions39,49–53. We believe Facemap is  

one of the important steps toward unlocking the fundamental mystery 
of brain-wide neural activity—what is its function and where is it com-
ing from—and we look forward to seeing it used to make progress on 
these questions.
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Methods
All experimental procedures were conducted according to IACUC 
and received ethical approval from the IACUC board at HHMI  
Janelia Research Campus. The Facemap code library is implemented in 
Python 3 (ref. 54), using pytorch, numpy, scipy, numba, tqdm, opencv 
and pandas34,55–59. The GUI additionally uses PyQt and pyqtgraph60,61. 
The figures were made using matplotlib and jupyter-notebook62,63.

Data acquisition
Animals. We performed 16 recordings in 12 mice bred to express 
GCaMP6s in excitatory neurons: TetO-GCaMP6s x Emx1-IRES-Cre mice 
(available as RRID:IMSR_JAX:024742 and RRID:IMSR_JAX:005628). 
These mice were male and female and ranged from 2 to 12 months  
of age. Mice were housed in reverse light cycle and were pair-housed 
with their siblings before and after surgery. Due to the stability  
of the cranial window surgery, we often use the same mice for multiple  
experiments in the lab; five of the seven visual area mice were 
used in a previous study64, and the other two visual mice and all  
of the sensorimotor mice were trained on behavioral tasks after  
the recordings.

Surgical procedures. Surgeries were performed in adult mice  
(P35–P125) following procedures outlined in ref. 64. In brief, mice 
were anesthetized with isoflurane, while a craniotomy was performed.  
Marcaine (no more than 8 mg kg−1) was injected subcutaneously 
beneath the incision area, and warmed fluids + 5% dextrose and 
buprenorphine 0.1 mg kg−1 (systemic analgesic) were administered 
subcutaneously along with dexamethasone 2 mg kg−1 via intramuscular 
route. For the visual cortical windows, measurements were taken to 
determine bregma–lambda distance and location of a 4 mm circular 
window over V1 cortex, as far lateral and caudal as possible without 
compromising the stability of the implant. A 4 + 5 mm double window 
was placed into the craniotomy so that the 4 mm window replaced the 
previously removed bone piece and the 5 mm window lay over the edge 
of the bone. The sensorimotor window was also a double window and 
it was placed as medial and frontal as possible. The outer window was 
7 mm × 4.5 mm and the inner window was around 1 mm smaller in all 
dimensions. After surgery, Ketoprofen 5 mg kg−1 was administered 
subcutaneously and the animal was allowed to recover on heat. The 
mice were monitored for pain or distress, and ketoprofen 5 mg kg−1 
was administered for 2 days following surgery.

Videography. The camera setup was similar to the setup in ref. 14. A 
Thorlabs M850L3 (850 nm) infrared LED was pointed at the face of the 
mouse to enable infrared video acquisition in darkness. The videos were 
acquired at 50 Hz using FLIR cameras with a zoom lens and an infrared 
filter (850 nm and 50 nm cutoff). The camera acquisition software was 
BIAS (https://github.com/janelia-idf/bias). The wavelength of 850 nm 
was chosen to avoid the 970 nm wavelength of the two-photon laser 
while remaining outside the visual detection range of the mice65,66.

The entire setup was enclosed in a large black box to prevent light 
from the room from entering the microscope light path and from 
entering the mouse’s eye. We turned off the infrared LEDs and then 
estimated the amount of visible non-infrared light entering the mouse’s 
eye during recording by using an FLIR Extech LT300 Light Meter. We 
positioned the Light Meter where the mouse’s head is during recording. 
We found that when the enclosure was closed, as in our experimental 
conditions, the illuminance measurement was 0.00 lux. When we 
kept the enclosure closed but turned on the monitors to show visual 
stimuli (as in ref. 64), the illuminance measurement was 7.80 lux. We 
captured the face of the mouse with our camera in these two settings, 
with the infrared filter removed from the camera (Extended Data  
Fig. 5). For comparison, the illuminance of the enclosure area when 
it was open, coming from overhead lighting in the room, was much 
greater at 84.4 lux.

Imaging acquisition. We used a custom-built two-photon mesoscope67 
to record neural activity, and ScanImage68 for data acquisition. We used 
a custom online Z-correction module (now in ScanImage) to correct for 
z and x-y drift online during the recording. As described in ref. 64, we 
used an upgrade of the mesoscope that allowed us to approximately 
double the number of recorded neurons using temporal multiplexing69.

The mice were free to run on an air-floating ball. Mice were accli-
matized to running on the ball for several sessions before imaging.  
On the first day of recording, the field of view was selected such that 
large numbers of neurons could be observed, with clear calcium 
transients.

Processing of calcium imaging data. Calcium imaging data were  
processed using the Suite2p toolbox70 (available at www.github.com/
MouseLand/suite2p), which relies on the packages numpy, scipy, 
numba, scanimage-tiff-reader, paramiko and scikit-learn57,71–74. Suite2p 
performs motion correction, ROI detection, cell classification, neuro-
pil correction and spike deconvolution as described elsewhere14. For 
non-negative deconvolution, we used a timescale of decay of 1.25 s  
(refs. 75,76). We obtained 50,614 ± 13,919 (s.d., n = 10 recordings)  
neurons in the visual area recordings, and 33,686 ± 4,465 neurons  
(n = 6 recordings) in the sensorimotor area recordings.

Facemap tracker network
Model architecture. The Facemap tracker network is a U-Net-style con-
volutional neural network consisting of downsampling and upsampling 
blocks with skip connections implemented in pytorch34. The model’s 
input is a grayscale 256 × 256 pixels image, which is passed through a 
set of convolutional filters of different sizes, as shown in Fig. 1b. The 
network has two sets of outputs as follows: (1) heatmaps represent the 
probability of a keypoint in the pixel region and (2) location refinement 
maps represent the x and y offsets between the keypoint position in 
full-sized image and the downsampled map, similar to refs. 27,33. The 
downsampled (64 × 64 pixels) heatmaps and location refinement maps 
are used to obtain the x and y coordinates of keypoints, and example 
traces are shown in Fig. 1f.

The tracker predicted 15 distinct keypoints in total for tracking 
mouse orofacial movements from different views (Fig. 1a and Extended 
Data Fig. 1). The keypoints were used to track various movements of 
the eye (4), nose (5), whiskers (3), mouth (2) and an additional keypoint 
for the paw. The forepaw occasionally entered the view, such as during 
grooming, but we found this keypoint difficult to track and use in fur-
ther analyses, so we did not consider it further. We also labeled a fifth 
nose keypoint (nose bridge, not shown in Fig. 1a and Extended Data 
Fig. 1), but found that it was difficult to identify across different camera 
angles and, therefore, excluded it from the analyses in the article. The 
videos taken during neural recordings were from the view in Fig. 1c. 
In this view, the mouth keypoints were not visible, so those keypoints 
were not used in the model for neural prediction. Thus, we used four 
eye keypoints, four nose keypoints and three whisker keypoints for 
neural prediction.

Training. The Facemap tracker was trained on 2,400 images recorded 
from multiple mice and different camera views (Extended Data Fig. 1). 
Training images of size 256 × 256 pixels were labeled with all the key-
points, except when a bodypart was not visible in the frame, then no 
label was added. The model was trained for 36 epochs with the Adam 
optimizer using a batch size of 8 and weight decay of zero77. We used a 
custom learning rate (LR) scheduler that used a fixed LR of 0.0004 for 
30 epochs followed by 1

10
LR for the next three epochs and finally 1

25
LR 

for the final three epochs. Each image was normalized such that 0.0 
represented the first percentile and 1.0 represented the 99th percentile. 
Image augmentations performed during training were random crop, 
resize after padding to maintain aspect ratio, horizontal flip and con-
trast augmentation.
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Performance evaluation. The accuracy of the tracker was evaluated 
using the average pixel error for 100 test frames of size 256 × 256 pixels 
from a new mouse and different camera views. First, the Euclidean  
distance in pixels between the ground-truth labels and the  
predicted keypoints was computed. Next, the average error was 
computed as the average of the Euclidean distances across all frames 
(Extended Data Fig. 2a) and all keypoints (Fig. 1e).

The processing speed of the tracker was calculated to evaluate 
its utility for offline and online analyses. Therefore, the processing 
speed calculation accounted for the timing of various steps as fol-
lows: (1) image preprocessing, (2) forward pass through the model and  
(3) postprocessing steps. All processing speeds are reported for a 
sample image of size 256 × 256 pixels passed through the network for 
1,024 repetitions and a total of ten runs using various batch sizes on 
different GPUs (Supplementary Table 2).

Filtering keypoint traces for neural prediction. Occasionally, key-
points are occluded, such as during grooming. Therefore, like Deep-
LabCut, we found the timepoints when the tracker network confidence 
was low, and replaced those timepoints in the keypoint traces by a 
median-filtered value. The network confidence, or likelihood, is defined 
as the value of the peak of the heatmap output. The likelihood traces 
for each keypoint were baseline filtered in time with a Gaussian filter of 
s.d. of 4 s, then the threshold of the likelihood was defined as negative 
eight times the s.d. of the baselined likelihood, and any values below 
this threshold were considered outliers. This identified on average 
0.19% of timepoints across all keypoint traces as outliers.

After excluding outliers based on likelihood, we also directly  
identified outlier timepoints using the keypoint traces, by detecting 
large movements or deviations from baseline. If a keypoint moved 
more than 25 pixels from the previous timepoint to the current time-
point, then the current timepoint was considered an outlier. Also if the 
keypoint trace on the current timepoint exceeded its median-filtered 
(window = 1 s) value by more than 25 pixels, then the current timepoint 
was considered an outlier. This identified on average an additional 
0.066% timepoints across all keypoint traces as outliers.

To obtain values for the outlier timepoints, we median-filtered 
the keypoint traces with a window of 300 ms, excluding the outlier 
timepoints. Linear interpolation from the median-filtered traces was 
then used to fill in the values at the outlier timepoints.

Pose estimation model comparisons
We compared the performance of the Facemap tracker to other 
state-of-the-art tools used for pose estimation, including SLEAP31  
and DeepLabCut27,36. The models were trained on the same train-
ing set used for Facemap. In addition, the same protocol for speed  
benchmarking was used to obtain the processing speed of the other 
models.

DeepLabCut models training. DeepLabCut’s models used for com-
parison included two different architectures as follows: ResNet50 
(default model) and Mobilenet_v2_0.35 (fastest model). Augmentations 
used during training were scaling, rotation and contrast augmentation, 
similar to training of the Facemap tracker. A hyperparameter search was 
performed to find optimal training parameters for each model using 
different batch sizes (1, 2, 4 and 8) and LRs (0.0001, 0.001 and 0.01). 
Models with the lowest average test error for each architecture were 
compared to Facemap in Fig. 1e and Extended Data Fig. 2.

Processing speeds for DeepLabCut’s models were obtained 
using a similar approach as Facemap tracker. We timed DeepLabCut’s 
getposeNP function for 1,024 repetitions for a total of ten runs for  
different batch sizes and GPUs. The getposeNP function timing 
included a forward pass through the network and postprocessing 
steps to obtain keypoints locations from the heatmaps and location 
refinement maps.

SLEAP models training. The default U-Net backbone was used for 
SLEAP’s models, which included the following two different values 
of initial number of filters: (1) c = 16 (default) and (2) c = 32 to vary the 
network size and potentially improve accuracy. A hyperparameter 
search over different LRs (0.0001, 0.001 and 0.01), batch sizes (1, 2, 4 
and 8) and number of epochs (100 and 150) was performed to find the 
best model for each U-Net configuration. Furthermore, early stopping 
by stopping training on plateau was used for half of the models to 
prevent overfitting. Default augmentation settings were used for most 
models and mirroring (horizontal flip) was added to some models to 
match the training of the other networks used for comparison. Similar 
to DeepLabCut, the best models were selected based on the lowest 
average test error for the default and c = 32 models and used in Fig. 1e 
and Extended Data Fig. 2.

The processing speed for SLEAP’s models was calculated by timing  
their predict_on_batch function. The U-Net models with different 
numbers of initial filters were run for 1,024 repetitions for a total of ten 
runs using different batch sizes of our sample image input.

Facemap tracker refinement
We developed a method for fine-tuning the Facemap tracker for new 
data that differed from our training data. Facemap tracker’s base model 
is defined as the network trained on our dataset (Fig. 1). We extracted 
frames from videos contributed by five other labs to use as training 
data for fine-tuning the base model specifically to each lab’s video. We 
executed the following steps for each lab’s video. First, the base model 
was used to generate predictions for 50 random frames. Keypoints 
on the 50 training frames were refined to correct keypoints with large 
deviations from their defined bodyparts or remove keypoints not in 
view. The percentage of keypoints refined across 50 frames were 99.51% 
for lab 1, 100% for lab 2, 99.79% for lab 3, 100% for lab 4 and 98.32% for 
lab 5. Therefore, most of the keypoints across all frames were refined 
for fine-tuning the model and benchmarking the fine-tuned model.

Next, the base model was fine-tuned with varying numbers of 
training frames ranging from 1 to 50. The network was trained for 36 
epochs with an initial LR of 0.0001 with annealing as described earlier 
and a weight decay of 0.001. Additionally, we trained a model from 
scratch, that is a network initialized with random weights, using ten 
training frames for comparison. To compute the errors for the base 
model, the fine-tuned model and the scratch model, we used 50 test 
frames and labeled them from scratch to use as a test set. We then 
computed the average error in pixels from the test set labels to the 
model predictions (Fig. 2b). The models trained from scratch with ten 
frames had an average error of 3.76 ± 0.39 pixels across labs, compared 
to 2.43 ± 0.24 pixels for the base model fine-tuned with ten frames. 
Predictions from the base, scratch and fine-tuned models for a random 
section of the video are shown in Supplementary Video 2 for each lab. 
The workflow used for the analysis was integrated into the GUI so users 
can easily fine-tune the Facemap tracker with video recordings that 
differ from our training data (Fig. 2c).

Autoregressive model for prediction of keypoints
We built an autoregressive model to determine how far into the future 
we could predict each keypoint, as a measure of its timescale. The key-
point traces were split into ten segments in time. The first 75% of each 
segment was assigned to the training set, and then after 2.6 s which 
were excluded, the remaining part of the segment was assigned to 
the test set. Linear regression was performed with exponential decay 
basis functions, with decay timescales from 40 ms to 5 s. All keypoint 
traces were input to the basis functions, then combined linearly to 
predict each future timepoint predicted. We fit the regression model 
on training timepoints separately for each future timepoint, for time-
points 20 ms to 10 s in intervals of 20 ms and for 10 s to 40 s in intervals 
of 500 ms. Then we estimated performance on test timepoints at each 
future timepoint delay using variance explained. We estimated the 
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timescale of the keypoint trace as the future timepoint at which the vari-
ance explained was half the variance explained at a time delay of 20 ms.

Behavior to neural prediction
The activity of each neuron was z-scored: the activity was subtracted 
by the mean and divided by the s.d. To predict the neural activity from 
behavior, we reduced the dimensionality of the z-scored activity using 
singular value decomposition (SVD) and keeping 128 components, 
obtaining U, S and V matrices of size (neurons by 128; 128; timepoints 
by 128, respectively). We then predicted the neural PCs, which we 
defined here as the product of V and S, calling this Y = VS. After obtain-
ing a prediction of the neural PCs ̂Y , we projected the prediction into 
the neural activity space using U, so that the predicted neural activity 
was defined as U ̂Y

⊤
. If fewer than 200 neurons were predicted, then  

we directly predicted the neurons rather than using the PCs. When 
predicting more neurons, we found that predicting the neural  
PCs performed and/or outperformed direct neural prediction.

The neural activity was split into ten segments in time. The first 
75% of each segment was assigned to the training set, and then after 3 s 
which were excluded, the remaining part of the segment was assigned 
to the test set. The training and test sets were made to consist of con-
tinuous segments to avoid contamination of the test set with the train 
set due to the autocorrelation timescale of behavior, with lengths on 
average of 10 and 3.5 min, respectively.

We quantified the performance of a neural prediction model using 
the variance explained. The single neuron variance explained for a 
neural trace for neuron i ( ⃗s i) is defined as

VEi = 1 −
( ⃗s

test
i − ⃗s predi )

⊤
( ⃗s

test
i − ⃗s predi )

var ( ⃗s
test
i )

, (1)

which is the s.d. for variance explained.

Peer prediction analysis. Neurons have independent noise that  
models cannot explain. Therefore, an upper bound for the variance 
that a model can explain is lower than the total variance of neural  
activity. To estimate the amount of this explainable variance in the neural 
recordings, we used the ‘peer prediction’ method14,78,79. Peer prediction  
analysis predicts each neuron from the other simultaneously-recorded 
cells (the neuron’s ‘peers’). The amount of variance that the peer predic-
tion model explains is an estimate of the repeatable shared variance 
across neurons, we term this variance the explainable variance.

To compute peer prediction, we split the population into two 
spatially segregated populations, dividing the field of view into  
nonoverlapping strips of width 200 μm and assigning the neurons in 
the even strips to one group, and the neurons in the odd strips to the 
other group, regardless of the neuron’s depth. Next, we computed  
the top 128 PCs of each population and predicted one population’s 
PCs from the other population’s PCs using RRR fit to training data  
with λ = 1 × 10−1 and rank = 127. The variance explained by this model  
on test data (Eq. (1)) is termed the explainable variance for each  
neuron. The average explainable variance was 9.4% in the visual record-
ings and 11.1% in the sensorimotor recordings at the recording frame 
rate of 3 Hz.

Prediction performance quantification. We computed the variance 
explained for a given behavioral prediction model for each neuron on 
test data (Eq. (1)). The average single neuron variance explained, in 
300 ms bins, by the deep network model using keypoints was 4.1% in 
the visual areas and 5.3% in the sensorimotor areas, and using movie 
PCs was 4.8% and 5.3%, respectively. We then normalized the variance 
explained by the upper bound on its variance explained, the explainable 
variance, as computed from peer prediction. We quantified the normal-
ized variance explained on a per-neuron basis in Fig. 3d,e, taking the 

variance explained for each neuron and dividing it by its explainable 
variance, and visualizing only the neurons with an explainable variance 
greater than 1 × 10−3. For population-level variance explained quanti-
fication, the normalized variance explained was defined as the mean 
variance explained across all neurons divided by the mean explainable 
variance across all neurons (Fig. 3f–i and Extended Data Fig. 4).

We also computed the cumulative variance explained across  
neural PCs ( ⃗y i), defined as

VEi,cumulative =

∑i
k=0 var( y⃗

test
k )−( y⃗

test
k −y⃗

pred
k )

⊤
( y⃗

test
k −y⃗

pred
k )

∑128
k=0 var( y⃗

test
k )

in Fig. 3i. This quantity allows the estimation of the dimensionality of 
the behavioral prediction.

Linear neural prediction using PCs of videos or keypoints. The 
mouse videos were reduced in dimensionality using SVD in blocks as 
described in ref. 14. The movie PCs were computed from the raw movie 
frames, and the top 500 PCs were used. Because the neural activity 
was recorded at a lower frame rate, the behavioral PCs were smoothed 
with a Gaussian filter of width 100 ms and then resampled at the neural 
timescale. We subtracted each behavioral PC by its mean and divided 
all PCs by the s.d. of the top behavioral PC.

A linear model called reduced rank regression (RRR) was used to 
predict neural PCs (Y) from the behavioral PCs or the corrected key-
point traces (X). RRR is a form of regularized linear regression, with 
the prediction weights matrix restricted to a specific rank80, reducing 
the number of parameters and making it more robust to overfitting. 
The RRR model is defined as

Y = XBA⊤

Like in ridge regression, the identity matrix times a λ constant can be 
added to the input covariance X for regularization. We set λ = 1 × 10−6. 
Training data were then used to fit the A and B coefficients in closed 
form; a rank of 128 was used for predicting from the movie PCs and a 
rank of 21 was used for predicting from the keypoints.

Neural prediction using a deep network. A multilayer network model 
was fit to predict neural activity from the movie PCs or the corrected 
keypoint traces using pytorch34 (Fig. 3a). The deep network model 
consisted of a core module and a readout module. The core module  
consisted of a fully-connected layer with the same dimensionality as the 
number of keypoints, a one-dimensional convolutional layer with ten 
filters (temporal convolution), a ReLU nonlinearity, two fully-connected 
layers with ReLU nonlinearities, the first with dimensionality of 50 and 
the second with dimensionality of 256. The 256-dimensional output of 
the core module is termed the ‘deep behavioral features’ of the model. 
The readout module of the network was one fully-connected layer, 
with a dimensionality of size 128 when predicting the neural PCs, or 
size equal to the number of neurons when predicting single neuron 
activity (when the number of neurons predicted was less than 200). 
The deep behavioral features, before entering the readout module, 
were subsampled at the timepoints coincident with the neural activity 
frames, because the videos were recorded at 50 Hz, while the neural 
activity was recorded at 3 Hz.

The deep network model was fit on the training data using the 
optimizer AdamW with LR of 1 × 10−1, weight decay of 1 × 10−4 and 300 
epochs81, and the LR was annealed by a factor of 10 at both epochs 200 
and 250. When fewer than 2,000 neurons were fit, the LR and weight 
decay were reduced by a factor of 10 to reduce overfitting. When fewer 
than 1 h of training timepoints were used, the LR and weight decay were 
reduced by a factor of 2, and the number of epochs was reduced by 100 
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to reduce overfitting. Each training batch consisted of a single training 
segment, with an average of length 10 min, and there were ten batches 
per recording. The model was then applied to the test segments to 
compute variance explained.

We varied various parameters of the network to approximately 
determine the best network architecture for neural prediction 
(Extended Data Fig. 4). We varied the number of units in the last 
layer of the core module, the ‘deep behavioral features’, from 1 to 
1,024 (Extended Data Fig. 4a), and the number of convolution filters 
(Extended Data Fig. 4e). We varied the number of fully-connected layers 
with ReLU nonlinearities in the core module, each with dimensional-
ity of 50 other than the last layer which was fixed at 256 dimensions 
(Extended Data Fig. 4b). We also varied the number of fully-connected 
layers in the readout module, with each layer having 128 dimensions 
and a ReLU nonlinearity, other than the last layer which had no output 
nonlinearity (Extended Data Fig. 4c). Next, from the original archi-
tecture described above, we removed components, such as the first 
fully-connected layer and some of the ReLU nonlinearities (Extended 
Data Fig. 4d).

Scaling of performance with neurons and timepoints. In Fig. 3g–i, 
we quantified the prediction performance as a function of the number 
of neurons and timepoints. For this analysis, we predicted using either 
a fraction of the neurons or a fraction of the training timepoints, while 
always keeping the test timepoints fixed. The variance explained was 
computed for each neuron, averaged across all neurons in the subset 
and then normalized by the explainable variance averaged over the 
neurons in the subset.

Neural activity clustering and sorting
We identified groups of coactive neurons using scaled k-means cluster-
ing70. Compared to regular k-means, scaled k-means fits an additional 
variable λi for each neuron i such that

⃗x i = λiμσi + noise

where ⃗x i is the activity vector of neuron i, σi is the cluster assigned to 
neuron i and μj is the activity of cluster j. Like regular k-means, this 
model is optimized by iteratively assigning each neuron to the cluster 
that best explains its activity, and then re-estimating cluster means. 
We ran scaled k-means clustering with 100 clusters on z-scored neural  
activity. Example clusters are shown in Fig. 4c and Extended Data  
Fig. 6. The activity of the neurons in each cluster was averaged to  
obtain a cluster activity trace (Fig. 4b). To obtain the cluster prediction 
from the deep behavioral model, we averaged the prediction of  
each neuron in the cluster (shown in gray in Fig. 4b), and then correlated 
this prediction with the cluster activity trace to obtain an r value for 
each cluster.

To quantify how spread out each cluster is in the recording field 
of view, we computed a locality index for each cluster. We defined the 
locality index as the Kullback–Leibler (KL) divergence between the clus-
ter’s discretized spatial distribution in the recording field of view and 
the discretized spatial distribution of all neurons, using a discretization 
of 200 μm. We then correlated the locality index with the correlation 
of each cluster with its prediction (Fig. 4d,e).

Fitting a discrete HMM
We fit a hidden Markov model (HMM) to the deep behavioral features 
{zt}t, where t is a time-step for temporal features that were downsam-
pled ten times from 50 Hz to 5 Hz43. We also fit the same models to the 
keypoint data. All fitting procedures were the same, except for the 
choice of the variance term, which depends on the number of features 
(30 for the 11 keypoints from the Facemap tracker and 256 for the deep 
behavioral features) in the way described below. The HMM state dynam-
ics are given by

Prob(h0 = i) = bi

Prob(ht+1 = i|ht = j) = Aji

∑
i
bi = 1

∑
i
Aji = 1

where bi represents the probability of starting the Markov chain in state i,  
while Aji represents the probability of transition from state j to state i.  
In all experiments, we chose the number of states to be 50, and we  
saw similar results with fewer (10) or more (200) states. Because our 
goal is to understand the pattern of dynamics of the deep behavioral 
features, we did not attempt to infer the ‘optimal’ number of states 
and do not believe the data lends itself easily to such an estimation.

In addition to state dynamics, an HMM has an ‘observation’ or 
‘emission’ model, which declares the probability of observing some 
data sample zt for each possible state ht:

Prob(zt|ht = i) = 𝒩𝒩(zt|Ci,σ)

where Ci and σ are the mean and s.d. of the Gaussian observation 
model, respectively. This completes the model specification. We 
optimized this model in Pytorch using an improved, nonstandard 
optimization scheme, which routinely optimized the model better 
compared to alternative optimization methods such as expectation 
maximization.

Our optimization scheme consists of (1) optimizing the  
model log-likelihood directly as a function of its parameters using  
the automated differentiation from pytorch and (2) using initializa-
tions and reparametrizations of the HMM parameters that improve 
stability.

The log-likelihood of the HMM can be computed based on the 
forward pass of the ‘forward-backward’ algorithm. Following the con-
vention of ref. 44, we define α(ht) = Prob(z1, z2, …, zt, ht). We can then 
define recursion equations for computing

α(ht) = Prob(zt|ht)∑
zt−1

α(zt−1)Prob(zt|zt−1) (2)

The full log-likelihood of the data can then be computed based on 
α(hT), where T is the last timepoint, by observing that

∑
i
α(hT = i) = ∑

i
Prob(z1,… , zT,hT = i)

= Prob(z1,… , zT)

Because the dependence of αt+1 on αt can be written in closed form, 
we can see that it is differentiable. After taking the logarithm and replac-
ing the probabilities with the model equations, Eq. (2) becomes

αi(t) = − ∥ zt − Ci∥
2/σ2 − 0.5nσ + C + log(∑

j
exp(αj(t − 1))Aji) (3)

where αi(t) = log(α(ht = i)) , C is a constant and n is the number of  
dimensions of the data. This formulation allows us to use the automatic 
differentiation from pytorch to optimize the HMM model directly, 
without inferring states first like in the expectation maximization 
method. Additionally, we note that we used the ‘logsumexp’ function 
from pytorch to compute the second half of Eq. (3), which has the 
advantage of being stable to exponentiation.

We re-parametrized the transition matrix A with a ‘log-transition’ 
matrix Q by

Aji = exp(Qji)/∑
i′
exp(Qji′ ).

http://www.nature.com/natureneuroscience
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This has the advantage of removing the constraint of positiv-
ity of Aji and the constraint of summing to 1 of the rows of A. We  
initialized the log-transition matrix with Qii = 3 and Qij = 0 when i ≠ j,  
and we initialized the parameters Ci of the observation model with 
random samples from the data. For setting σ, we made the choice 
of freezing it to a fixed value for each dataset. This was because of 
the dependence of the log-likelihood on the number of observation 
dimensions n in Eq. (3). Because n is quite different between the key-
points and the deep behavioral features, the relative contribution of 
the observation term to the likelihood would be different if we set or 
learned σ to be the same in the two cases, potentially biasing the model 
to rely more or less on the internal hidden states ht. Instead, we fix σ2 to 
be proportional to the summed variance of zt, and we set it to 1 for the 
deep behavioral features, and 30/256 for the keypoints model. This 
ensures an approximately equal weighting of the observation term into 
the likelihood model. We note that the properties of the fitted HMM 
were not substantially different when σ2 was set to the same value for the 
keypoints and deep behavioral features, but the quality of the samples 
simulated from the HMM degraded if σ2 was too low.

Properties of the discrete HMM
The inferred states were determined with the Viterbi algorithm,  
which finds the most likely hidden states. We simulated states by  
drawing initial states from the categorical distribution with para-
meters bi, and then running the forward dynamics and drawing states  
from the conditional distributions Prob(ht+1 = i∣ht = j) = Aji.

State lifetimes were defined as − log(1 − Aii), and they correspond 
to the mean durations of staying in state i. To compute transition  
sparsity and other metrics, we set self-transitions Aii = 0 and renormali-
zed the rows. Formally, we defined a transition matrix Bji = Aji/∑i′≠jAji′ 
when j ≠ i and Bii = 0. This is the matrix shown in Fig. 5d,e used for  
the analyses in Fig. 5i–n. The states were sorted using the Rastermap 
algorithm on the matrix B46. Specifically, this involves maximizing  
the similarity of the reordered transition matrix to the matrix given by 
Fji = −log((i − j)2) when j < i and 0 otherwise. Thus, the model attempts 
to put the highest probabilities close to the diagonal, and specifically 
above the diagonal, because they do not count if they are below  
the diagonal. For more details, see the rastermap repository at  
github.com/MouseLand/rastermap.

The transition sparsity was computed by sorting the rows of 
the matrix B in descending order, and computing a cumulative sum  
over each row. ‘Near’ states were defined as the five states i with the 
highest probability Aji for a given j. Reverse transitions were computed 
for each state based on its near states. Similarly, we computed the 
two-state forward and backward transitions. Forward sequences were 
computed based on the most likely inferred states, by counting the 
number of increasing sequences of each length. Note this depends on 
the initial Rastermap sorting of states to define a meaningful order.

Statistics and reproducibility
No statistical method was used to predetermine sample size, but our 
sample sizes are similar to those reported in previous publications14,16,17. 
We performed Wilcoxon signed-rank tests, which do not require the 
data to be normal. No data were excluded from the analyses. There were 
no experimental groups so there was no randomization necessary. Data 
collection and analysis were not performed blind to the conditions of 
the experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data generated in this study is available on figshare: https://doi.
org/10.25378/janelia.23712957.

Code availability
Facemap was used to perform all analyses in the paper, the code and 
GUI are available at https://www.github.com/mouseland/facemap, 
including video and code-based guides for using the software.  
Scripts for running the analyses in the paper are available at  
https://github.com/MouseLand/facemap/tree/main/paper.
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Extended Data Fig. 1 | Mouse face keypoints from different camera views. 
Keypoints labels and sample images shown from training and test set. a, Side view 
recording of a mouse face showing eye, whiskers, nose and mouth keypoints.  
b, Top view recording of mouse face in a showing eye, whiskers and nose 

keypoints from a different view. c, Mouse face recordings from different camera 
views for training samples and test samples (last column). A total of 2,400 
training frames were used from mice shown in c and other mice (not shown), and 
100 frames from different views of a new mouse used as the test set.
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Extended Data Fig. 2 | Per keypoint error and processing speed of networks 
using various batch sizes. a, Error for each keypoint, averaged across 100 test 
frames for each network plotted against the Facemap tracker errors. Points 
above the diagonal indicate keypoints for which Facemap outperformed the 
other networks. b, Processing speed of Facemap, DeepLabCut (ResNet50), 

DeepLabCut (Mobilenet), SLEAP (default) and SLEAP (c = 32) models for a sample 
image of size 256 × 256 pixels on A100 (48 slots, 40GB/slot), V100 (48 slots, 30GB/
slot), RTX 2080 Ti (40 slots, 18GB/slot), Tesla T4 (48, 15GB/slot) and Quadro RTX 
8000 (40 slots, 18GB/slot). Processing speed averages shown for a total of 1,024 
frames across n = 10 runs, and error bars represent SEM.
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Extended Data Fig. 3 | Performance of fine-tuned model on freely-moving 
mice test frames and performance across subgroups of keypoints on 
head-fixed mice data. a, Top: keypoint predictions using Facemap tracker’s 
base model (white circles) and human annotations (colored circles) on freely-
moving mice face recorded from a head-mounted camera38. Bottom: keypoint 
predictions from the fine-tuned model trained with 10 refined frames. Keypoints 
labels shown for visible bodyparts only. b, Curve shows performance of the 
Facemap tracker measured by average error (px) (mean ± s.e.m. across n = 50 

test frames) as a function of the number of refined frames used for fine-tuning 
the base model (number of refined frames = 0 is the base model), for each 
video in a and average test error across videos (black). c, Average test error 
across subgroups of keypoints after fine-tuning the base model with n = 10 and 
n = 50 refined frames used for fine-tuning. Mean across n = 50 test frames, and 
error bars represent s.e.m. The lab 5 tracking achieved the lowest overall error 
primarily due to the lack of mouth keypoints in the camera view and the high 
fidelity tracking of the nose.
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Extended Data Fig. 4 | Investigating the network prediction model 
performance from keypoints. a–e, We varied different components of the 
deep network model from keypoints and computed the normalized variance 
explained across neurons, choosing the architecture denoted with the star. Pink 
represents the average across visual recordings (n = 10 recordings, 7 mice), and 
purple represents the average across sensorimotor recordings (n = 6 recordings, 
5 mice). a, Varying the number of units in the deep behavioral features layer—
the last fully-connected layer before the output layer. Star denotes 256 units. 
b, Varying the number of core layers—the layers before and including the 

deep behavioral features layer, star denotes 2 layers. c, Varying the number of 
readout layers—the layers after the deep behavioral features layer, star denotes 
1 layer. d, The performance when removing the first linear layer in the network, 
removing the ReLU non-linearity in the convolution layer, or removing the ReLU 
non-linearity in the deep behavioral feature layer. e, Varying the number of one-
dimensional convolution filters, star denotes 10. f, Prediction from all keypoints 
using network, or from all keypoints excluding each face region: eye, whisker and 
nose. Error bars represent s.e.m.: in visual areas, n = 10 recordings in 7 mice; and 
in sensorimotor areas, n = 6 recordings in 5 mice.
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Extended Data Fig. 5 | Frame from face videos in various light conditions. We 
captured videos of the mouse face at various light levels while the infrared LED 
was turned off and the infrared filter was removed from the camera. Left: the 

enclosure was closed, but the visual stimulus monitors were on, illuminance of 
7.80 lux (experimental setup as in ref. 64). Right: the enclosure was closed, and 
the monitors were off, illuminance of 0.00 lux (experimental setup in this study).
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Extended Data Fig. 6 | Activity in an example sensorimotor recording.  
a, Activity of the sensorimotor recording during a test period shown in Fig. 3e 
and Fig. 4c, sorted by Rastermap, along with neural predictions from the deep 

network model and the linear model from the keypoints. b, Example neural 
activity clusters from the recording (purple), plotted with the prediction from 
keypoints in gray.
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Extended Data Fig. 7 | Neural activity clusters from a visual and a 
sensorimotor recording. a, Correlation of each neuron with its assigned cluster 
center across time, averaged across all neurons per recording, as a function of 
the number of cluster centers used in the clustering algorithm (n = 16 recordings 
from 12 mice). b, The spatial locations of neurons from each neural activity 

cluster from the recording shown in Fig. 3d and Fig. 4a,b. Blue indicates  
neurons in the cluster, and gray indicates all other neurons. LI = locality index,  
r = correlation with behavior prediction on test data. c, Same as b, for the neural 
activity clusters from the sensorimotor recording shown in Fig. 3d, Fig. 4c and 
Extended Data Fig. 6.
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Extended Data Fig. 8 | HMM modeling of deep features, keypoints and neural 
activity. a–c, Test log-likelihood for HMM models trained on deep features 
(a), keypoints (b) and neural activity clusters (c), as a function of the number of 
hidden states in the HMM. Curves represent different mice. b, Top: visualization 
of keypoint data (after z scoring). Bottom: inferred states by the HMM model.  

c, Reconstructed keypoint data from the inferred HMM states. d, Top: simulated 
keypoint data from the HMM. Bottom: simulated state dynamics. e–g, Same as 
b–d but for modeling neural activity clusters. Each cluster represents the average 
activity of 100–300 neurons.
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Extended Data Fig. 9 | Comparison of HMM models of deep features and 
neural activity. a,b, Example transition matrices for HMM models with 50 
states trained on the deep features (a) or the neural activity (b). c, Distribution 
of state lifetimes, and error bars represent SEM. d, Transition matrix sparsity 
quantified as cumulative transition probability from one state to all other states, 

and error bars represent SEM. e–g, Reverse, 2-state forward and 2-state backward 
transitions. h, Distribution of forward sequence lengths, and error bars represent 
SEM. i, Neural population responses to all 50 states for the recording illustrated 
in Fig. 5o. j, Number of trials per state for the recording illustrated in Fig. 5o.
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Policy information about availability of computer code

Data collection Scanimage software v2022.1.0 (open source) was used to collect calcium imaging data from awake mice using a two-photon mesoscope 

(Thorlabs 2PRAM microscope). BIAS software (open source, github version: https://github.com/janelia-idf/bias) and custom code were used 

to collect mouse face videos.

Data analysis We processed all of the raw calcium imaging data using our suite2p package https://github.com/mouseland/suite2p (version 0.9.4). We 

processed the mouse face videos using our Facemap software package, available at https://github.com/mouseland/facemap. The code for 

running several of the analyses in the paper is available at https://github.com/MouseLand/facemap/tree/dev/paper/code. 

We ran the code with python=3.8.13, pytorch=1.11.0, numpy=1.23.3, scipy=1.9.1, pyqt5=5.15.7, pyqtgraph=0.12.0, opencv-
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All data generated by the current study is available on figshare, DOI: 10.25378/janelia.23712957
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cortical areas. This is sufficiently many mice, comparable to other studies of spontaneous neural activity (see citations 14, 16, 17).

Data exclusions We did not exclude any data from the analyses.

Replication We have used standard mouse-lines available from JAX and processed the data with an automated algorithm to avoid any personal biases. We 

used a standard commercial microscope (Thorlabs 2P-RAM microscope). We have also made all of the code available for analysis by others, 

and will make the data available to the public upon publication.
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals TetO-GCaMP6s x Emx1-IRESCre mice (available as RRID:IMSR JAX:024742 and RRID:IMSR JAX:005628). These mice were male and 

female, and ranged from 2 to 12 months of age.

Wild animals The study did not involve wild animals.

Reporting on sex All data was aggregated across sex. We did not perform sex-based analyses because our questions were not related to sex-based 

differences in behavior or neural activity.

Field-collected samples The study did not involve field samples.

Ethics oversight All experimental procedures were conducted according to IACUC, ethics approval received from the IACUC board at HHMI Janelia 

Research Campus.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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