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Thereactivation of experience-based neural activity patternsin the
hippocampusis crucial for learning and memory. These reactivation

patterns and their associated sharp-wave ripples (SWRs) are highly
variable. However, this variability is missed by commonly used spectral
methods. Here, we use topological and dimensionality reduction
techniques to analyze the waveform of ripples recorded at the pyramidal
layer of CAl. We show that SWR waveforms distribute along a continuum
inalow-dimensional space, which conveys information about the
underlying layer-specific synaptic inputs. A decoder trained in this space
successfully links individual ripples with their expected sinks and sources,
demonstrating how physiological mechanisms shape SWR variability.
Furthermore, we found that SWR waveforms segregated differently during
wakefulness and sleep before and after a series of cognitive tasks, with
striking effects of novelty and learning. Our results thus highlight how the
topological analysis of ripple waveforms enables a deeper physiological
understanding of SWRs.

Cognitive processes essential for adaptive behavior, such as navigation
and memory, rely on hippocampal activity. SWRs are local field poten-
tial (LFP) events underlying memory recall and consolidation'. They
have beenreported inboth mammals (rodents, monkeys and humans)
and non-mammals (birds and reptiles), spanning an oscillatory range
from 80 Hzto 250 Hz (ref. 2). During SWRs, neurons fire in sequences
representing experience reactivated in the forward and reverse order®,
and single-cell studies have reported cell-type-specific firing pat-
terns®”. As SWRs interact in a brain-wide manner, intra-hippocampal
and extra-hippocampal inputs act to shape their features'*"> Their
organization is influenced by factors such as novelty, learning and
experience™ ™, but identifying the direction of variations is not
trivial. While LFP signals are known to encode cognitively relevant
information'®"”, analysis of SWRs mostly relies on estimating their
mean spectral characteristics, posing limits to our understanding of
these events.

Morerecently, using unsupervised methods, it has been suggested
that SWR waveforms can carry much more information than can be
inferred from spectral approaches™*’, An open question is whether
SWRs can be classified in a finite number of categories, or whether
they just reflect a continuum of waveforms that can be character-
ized according to their features (for example, slope, amplitude and
frequency). Previous attempts have used different methods, from
spectral decomposition to unsupervised analysis of SWRs in a prede-
fined feature space, reaching different conclusions”*'*2°, Importantly,
when dealing with methods thatimplicitly look for clusters and/or rely
on principal feature distributions, results could be misleading. To fill
this gap, we transformed SWR classification into an unbiased topologi-
cal problem by projecting LFP ripple traces into a high-dimensional
waveformspace (Fig. 1a). Here, the dimension of the waveform space is
determined by the sampling rate of SWRs. Events of similar waveforms
will lie close together, while those of different characteristics will be
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Fig.1|The problem of SWR classification based on ripple waveforms.
a, Ripples are analyzed in the waveform space, which is defined from time
samplesinagiven window. b, Each event becomes a pointin the cloud made
from all SWRs. The cloud could adopt different shapes from continuous (solid
or hollow) to clustered. Topological data analysis of SWR events in the waveform
space will help to disambiguate between the different distributions.

separated. We then apply methods from topological data analysis to
characterize the shape of the SWR cloud using persistent homology?,
which inform us about the distribution of points in the data cloud
(Fig.1b). By directly estimating the intrinsic dimension®”in the original
waveform space, dimensionality reduction techniques can then be
applied for visualization and quantification using structural indices®.
These topological methods enable unbiased data-driven approaches
toidentify the sources of variability of SWR waveforms.

Adopting this approach allowed us to address some unresolved
questions in the field. Do SWRs form a continuum of events, or do
they rather segregate into different categories? Can unsupervised
analysis of ripple waveforms provide relevant mechanistic information
aboutadiversity of SWRs? Are SWRs emitted during the awake and the
sleep states that follow learning differently influenced by cognitive
demands? We show that an unbiased topological characterization of
ripple waveforms provides physiologically relevant information that
cannotbe recovered from asimple feature space.

Results

Topological analysis of ripple waveforms

SWRswererecorded fromthe dorsal CAlstratum pyramidale (SP) and
stratum radiatum (SR) of awake head-fixed mice using linear arrays
(Fig. 2a). Events were detected and visually validated following con-
sensus methods reported by us and others? (Methods). SWRs exhib-
ited variability in terms of frequency, amplitude, spectral entropy and
slopeamong other features typically used for their characterization®’
(Fig. 2b). For instance, SWRs of low (80-100 Hz) and high (>160 Hz)
dominant frequencies intermingled with different amplitudes and
slopesinagiven recording session (Fig. 2a).

To represent SWR variability from different sessions, LFP sig-
nals from the SP were filtered (70-400 Hz), z-scored and downsam-
pled (2,500 Hz), allowing the projection of individual ripples into a
127-dimensional (127D) space defined around the event peak (+25 ms;
one dimension per sample, one point per event; 10,741 events, 58 inde-
pendent sessions, 27 mice; Fig. 2c and Extended Data Fig.1a). We delib-
erately filtered the LFP of all previously validated ripples in a wide
frequency range to allow for the evaluation of their feature variability
andto ease comparison across species. Ripples would distribute in the
high-dimensional space according to their waveform values, reflecting
both local and global variations (that is, SWRs of similar frequencies
but slightly different amplitudes will fall less apart than SWR of con-
trasting frequencies). Importantly, here the high-dimensional axes
represent temporal LFP samples from one LFP channel, in contrast
with the structure of transcriptomic (gene space) or neural manifold
(single-cell space) data** 2.

First, we sought to examine the topology of the SWR cloud in the
127D space by estimating the presence of discontinuous components,
holes and cavities with persistent homology?*.. To this purpose, points

(SWRs) within a given radius in the cloud are connected through dif-
ferent simplices consisting of aset of dots, lines, triangles and tetrahe-
drons (Fig. 2d). Persistent homology looks for the persistence of these
connected components (simplicial complexes) as the radius varies,
which s quantified with the Betti numbers of the different homology
groups (H): H, represents path-connected components, H, refers to
loops and H, refers to cavities (Fig. 2d).

We tested the method with a two-dimensional (2D) torus, as
well as with synthetic SWRs built from three independent features
(frequency, amplitude and duration) in the 127D space (Methods).
Synthetic SWRs were built either using a continuous frequency distribu-
tion (henceacontinuumwasexpected) or fromthree separate frequency
ranges (hence three separated clusters were expected; Extended Data
Fig.1b). Persistent homology successfully identified their topological
features (Extended Data Fig. 1c). That s, a torusin 127D exhibited one
cavity and one connected component with two loops, while synthetic
ripples showed the expected topologies (either one or three connected
components). Whenapplied to the experimental SWRs, the Betti num-
bers were consistent with a continuous distribution in the 127D space
(Fig.2e), without holes or cavities, suggesting that their classification
isnot based on discrete categories.

Next, we examined the intrinsic dimension of SWRs in the 127D
space, that is, the minimal number of dimensions that preserves
data structure. We used a set of methods that relied on measuring
the local structure in the neighborhood of each point of the cloud,
so that we could infer dimension independently of reconstruction
approaches. We tested their performance using ground-truth data
(objectsinal27D space) and found the angle-based intrinsic dimension
(ABID) method® to provide the most reliable results (Extended Data
Fig.1d). ABID derives the theoretical distribution of angles and uses this
to construct an estimator for intrinsic dimensionality. We tested the
continuous synthetic events, which exhibited an intrinsic dimension
of 3when estimated with ABID, as expected (Fig. 2f). We found that the
127D cloud of experimental ripples had an intrinsic dimension of 4,
similar to the intrinsic dimension of continuous synthetic events with
equivalent added noise (Fig. 2f). The intrinsic dimension estimated
with ABID was preserved for different window lengths, number of
events and sampling rates (Extended Data Fig. 1e-g). Thus, most of
the high-dimensional SWR waveform structure could be successfully
recovered inalow-dimensional space.

Low-dimensional embedding of ripple waveforms
Tovisualize the SWR cloud, we then applied dimensionality reduction
methods, including uniform manifold approximation and projection
(UMAP)”, Isomap? and principal component analysis (PCA), informed
by the intrinsic dimension (Extended Data Fig. 2a). We first tested the
continuous synthetic SWRs without noise, which can be reduced to
three dimensions (3D), and found striking distribution of events by
frequency (Fig. 3a), amplitude and duration (Extended Data Fig. 2b;
for UMAP as an example). This suggests that events are mapped into
the high-dimensional waveform space according to a nontrivial distri-
bution that maximizes the independent structure of their character-
istic features. To quantify this property, we used a graph-based index
(structureindex, SI) that evaluates the overlap between feature values
projected over the data cloud (Fig. 3b and Extended DataFig. 2c)*. For
example, a perfect gradient distribution of a given feature will give SI
valuescloseto1, whilearandomdistribution will give values close to 0.
Using thisindex, we examined how much structure can be obtained
per featurein the original and the reduced space. For synthetic SWRs,
UMAP provided reconstructions with feature distributions more simi-
lartothoseintheoriginal space thanIsomap and PCA (Extended Data
Fig.2d). 2D projections of the 3D cloud confirmed variations of feature
distribution along UMAP axes (Extended Data Fig. 2e). While the UMAP
embedding can be subject to translation and rotation, the overall
shape and feature distribution was consistent across reconstruction
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Fig.2| Topological analysis of SWR waveforms. a, Experimental setup and
examples of SWRs. Note event-to-event variability in terms of LFP waveforms and
spectra from low (80 Hz, leftmost) to high frequencies (>160 Hz, rightmost).

b, Distribution of SWR features (frequency, amplitude, spectral entropy and
slope) from all SWR events (10,741 events, 58 independent sessions, 27 mice).

¢, Ripplesrecorded at the SP are represented in a high-dimensional waveform space
(127D) determined by the sampling rate (2,500 Hz) and the window size (+25 ms).
Inthis representation, each SWRis a pointin the cloud made by all detected
events. d, Topology of the SWR cloud was examined with persistent homology,
whichidentifies holes and cavities in the data by using simplicial complexes.
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These are made of simplices (for example, dots, lines, triangles and tetrahedrons)
that connect data points (SWRsin this case) in a given radius. Persistent
homology looks for their persistence as the radius around each point varies in
the high-dimensional space. The different homology groups (H) are defined

from the number of cuts that separate simplices in pieces. e, Barcodes for the
three homology groups (H,, H,; and H,) show persistence of only one continuous
componentin the experimental SWR data cloud (data from arandom subset of
n=3,500 events). f, The intrinsic dimension of the SWR data cloud was estimated
using the ABID method?, which looks at the distribution of angles among the
neighbors of a data pointinagivenradius. Bars represent single values.

parameters for both continuous and discontinuous synthetic SWRs
(Extended Data Fig. 2f,g).

We next examined the organization of experimental SWR events
using different features estimated from LFP traces (Extended Data
Fig.3a,b;thatis, ripplefrequency,spectralentropy and duration; Table1).
Maximal structure emerged consistently for frequency in both the
original and the four-dimensional (4D) UMAP space, followed by ampli-
tude, entropy and a proxy for duration (Fig. 3¢), the latter calculated
froman extended window around the event and expressed in arbitrary
units (Extended Data Fig. 3c). We also noted structured distribution of
some nonspectral features such as the slope of the event defined from
the SWR peak (Table1).Inall cases, UMAP outperformed other methods
inrecovering information from the original space, with SWRs from dif-
ferent experimental sessions contributing similarly (Fig. 3¢, bottom;
Extended Data Fig. 3d, right). When compared with a previously used
2D reduction method”®, UMAP yielded comparable results (Extended
Data Fig. 3e), but as expected from the intrinsic dimension, optimal
recovery of information from the high-dimensional space required
atleast four dimensions (Extended Data Fig. 3f). SWRs recorded from
individual mice exhibited similar trends (Extended Data Fig. 3g).

Visualization of feature variability across UMAP projections con-
firmed the continuous organization of experimental SWRs, consistent
with results from persistent homology (Fig. 3d). High-amplitude and
low-amplitude events distributed all along the frequency gradient,
with different trends for entropy and duration. These nontrivial inter-
dependencies between SWR features cannot be captured by linear
correlation analysis (Extended Data Fig. 3b). Instead, analysis along

the embedding allowed for aricher, heuristic, categorization of SWRs
(Fig. 3e) than that resulting from standard percentile distribution of
individual features (Fig. 3f). For instance, using contour analysis of
event density in the embedding (Extended Data Fig. 3h), the region
of low-amplitude/high-entropy SWRs of >160 Hz (a) can be separated
from that of high-amplitude/low-entropy SWRs in the 120-150 Hz
range (b) or from low-amplitude SWRs of 80-100 Hz (c; Fig. 3e). Strik-
ingly, all of them emerged from a continuum. We will use these regions
as examples of how the method can be applied to better understand
SWR mechanisms.

Similar figures were obtained for SWRsin the standard 100-250 Hz
frequency range used in rodent literature’ (Extended DataFig. 3i), while
random LFP events containing no ripples failed to show any structure
(Extended Data Fig. 3j). SWRs recorded in freely moving rats with
high-density probes® (external dataset) showed a similar distribu-
tion than for SWRs recorded in head-fixed conditions (our data), as
quantified by embedding alignment of the two datasets (Extended
DataFig.4).

The method and analytical steps leading to these results areillus-
trated in the following interactive code notebook, which can be exe-
cuted online: https://colab.research.google.com/drive/1AHG4UQ15N
obY2t17Kc3hQFEkocdRzlIsa?usp=share_link#scrollTo=GI8nBd8hOuSv
(Code availability).

Input mechanisms underlying a diversity of ripple waveforms
The results above suggest that variations of SWR features are coher-
ently represented in the high-dimensional and the low-dimensional
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Fig.3 | Topological analysis of SWR waveforms. a, Synthetic SWRs generated
using a continuous distribution of frequency (80-240 Hz), as visualized ina 3D
spacereduced by UMAP (n=2,000 events). b, The Sl quantifies the distribution
ofagiven feature (for example, amplitude) over the data cloud (asingle value
per cloud). Feature values are binned (gray boxes) and the overlap between data
points sharing similar bin values is transformed in a weighted directed graph
(right). An Sl of 1identifies zero overlap, while O identifies arandom distribution.
¢, Single values of the Sl characterizing the feature distribution of experimental
SWRsin the original and the 4D UMAP space. Bars at the top reflect single values
of the Sl of the data cloud built from all events (10,741 events, 58 independent

sessions, 27 mice). Bars at the bottom reflects mean + s.d. values per session
with >200 events (n =19 independent sessions from 15 mice). d, UMAP1 and
UMAP2 projections of the 4D embedding (top). The Sl of each feature per UMAP
projection is shown in the matrices below. e, Mean ripple waveform of SWRs
from different regions of the embedding determined by contour analysis of
density distribution in the UMAP plot (Extended Data Fig. 3h). The regions

a (1,147 events), b (1,797 events) and c (1,211 events) were defined based on
exploratory heuristic criteria to identify SWRs of different conjunctive features.
f, Statistical categorization of SWRs (top and lowest distribution percentiles).
a.u., arbitrary units.

waveform space. Are there circuit mechanisms underlying the distri-
bution of SWRs along a continuum?

To gain mechanistic insights, we next estimated the current
source density (CSD) signals of individual SWRs using all channels
from the recording probe (Fig. 4a; 2,613 events, 17 independent ses-
sions from 9 mice meeting CSD criteria), as well as the associated
multiunit activity (MUA) firing from the cell body layer. A CSD sink
(blue) corresponds to active depolarizing currents driven by gluta-
matergic input pathways at the specific hippocampal strata, while
a CSD source (red) could be interpreted either as the passive return
current or as an active hyperpolarization driven by GABAergic
inhibitory inputs.

We projected MUA and CSD values over the embedding that
resulted from SPripples (Fig. 4b). Strikingly, CSD values from differ-
ent layers segregated along the embedding, suggesting that ripple
waveforms are carrying latent laminar information about the assort-
ment of synaptic inputs. By confronting the distribution of CSD and
MUA values with that of SWR features, and the previously defined
regions (a,band c), we noted some remarkable trends (Fig. 4b versus
4c). For example, MUA values distributed similarly to the spectral
entropy, consistent with population firing leaking into the ripple
band. Interestingly, the distribution of the SR sinks (for example,

CA3inputs) seemed to follow that of ripple frequency and amplitude,
whereas CSD values at the stratum oriens (SO; for example, CA2 and
CA3inputs) and the stratum lacunosum moleculare (SLM; entorhinal
inputs) seemed to be associated with the distribution of SWR ampli-
tude and duration, respectively. Similar trends were appreciated
for input-specific generators (CA3, CA2 and entorhinal inputs from
layers 3 and 2), estimated withindependent component analysis (ICA;
Extended Data Fig. 5a,b).

We confirmed some of these intuitions by calculating the spa-
tial correlation between CSD values and SWR features for the same
set of events, using voxels in the 4D UMAP space (Fig. 4d and Meth-
ods). Spatial correlation extracted more structure than direct pair-
wise comparisons between SWR feature values (Fig. 4e; blue and gray
traces, respectively). To evaluate whether the low-dimensional wave-
form space provided more information as compared with simpler
approaches, we also looked at the spatial correlation between CSD
values and SWR features projected in a feature space (that is, the 4D
space made of frequency, amplitude, entropy and duration; Fig. 4d).
Wefound less spatial correlationina4D space built from the predefined
features versus that resulting from the embedded waveform space (4D
UMAP), and even for pairwise comparisons (Fig. 4e). This is because the
spatial correlation in the reduced waveform space takes into account
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Table 1| Sl of SWR features over the waveform space

All events

Original space Reduced space Original space Reduced space Original space Reduced space

50ms 50ms 100ms 100ms 200ms 200ms
Frequency 0.64 0.59 0.62 0.56 0.59 0.56
Amplitude 0.53 0.46 0.47 0.43 0.43 0.43
Entropy 0.33 0.30 0.32 0.30 0.30 0.27
Duration-env 0.09 0.06 omn 0.07 0.10 0.05
Duration-AUC 0.24 017 0.25 017 0.24 0.20
Slope-to-peak (ripple) 0.16 013 0.04 0.03 0.02 0.02
Slope-from-peak (ripple) 012 0.10 0.07 0.05 0.04 0.03
Slope-to-peak (SW) 0.10 0.08 0.09 0.08 0.09 0.08
Slope-from-peak (SW) 013 on 013 on 0.10 0.10
SWR offset 0.03 0.03 0.04 0.04 0.05 0.03
Per session
Frequency 0.3802**** 0.40971**** 0.3485**** 0.3668**** 0.3381**** 0.3617****
Amplitude 0.2968**** 0.2466**** 0.2694**** 0.2481**** 0.2665**** 0.2805****
Entropy 0.1463**** 0.1426**** 0.13071**** 01467**** 0.1148**** 01257****
Duration-env 0.0260**** 0.0198**** 0.0192**** 0.0210 0.0138**** 0.0146
Duration-AUC 0.0997**** 0.0719**** 0.0919**** 0.07571%*** 0.0904**** 0.0874****
Slope-to-peak (ripple) 0.0916**** 0.0883**** 0.0147%*** 0.0160 0.0016 0.0052
Slope-from-peak (ripple) 0.0671**** 0.0681**** 0.0206**** 0.0272**** 0.0235**** 0.0288****
Slope-to-peak (SW) 0.0477%*** 0.0437**** 0.0547**** 0.0540**** 0.0494**** 0.0552****
Slope-from-peak (SW) 0.0688**** 0.0724**** 0.0692**** 0.0785**** 0.0689**** 0.0848****
SWR offset 0.0374**** 0.0347**** 0.0477**** 0.0482**** 0.0417**** 0.0467****

Data for all events represent single values of the Sl calculated over the entire data cloud (10,741 events, SWRs, all sessions) in the original and the 4D UMAP space built with different windows
lengths. Data per session represent the mean value of the Sl over the ripple cloud calculated per sessions with >200 events (n=19 independent sessions). Bold values indicate consistent
structure (SI>0.1) in the original and the reduced space across windows. Values were significantly different than shuffled distribution at ****P<0.0001 (one-sample one-sided t-test). AUC, area

under the curve; Env, envelope.

the topological organization of events in the voxel neighborhood, in
contrast to the feature space. Consistently, the Sl of CSD values at the
feature space was lower thanin the original and the reduced waveform
space (Extended Data Fig. 5¢c; see the same for ICA components in
Extended Data Fig. 5d).

According to spatial correlation analysis, the organization
of ripples in the waveform space is mostly determined by the
assortment of inputs. Inputs arriving at the SR (that is, CA3) mostly
explain the distribution of SWRs in the waveform space according to
their frequency and duration, while their distribution by amplitude
is determined by SO and SR inputs (that is, CA2 and CA3). This is con-
sistent with a CA2 and CA3 origin of different types of SWR events®®*",
Instead, entorhinal cortical inputs at the SLM may influence the
distribution of SWRs according to their frequency and duration,
but not their amplitude, consistent with previous data***2, No
significant spatial correlation was found between the distribution of
CSD and entropy values in the waveform space (all layers at P> 0.05).
In contrast, events with higher MUA values distributed closer to
those with higher spectral entropy (correlation coefficient R*= 0.61)
and lower amplitude (R*= 0.19; both at P< 0.0001). Importantly, we
confirmed different contributions of associated sinks and sources
in shaping the previously topologically categorized SWR events a,
b and c (Fig. 4f and Extended Data Fig. 5e), permitting physiological
interpretation. For instance, while high-amplitude/low-entropy SWRs
0of 120-150 Hz (region b) were associated with the typical large SR
sink and SLM sources, low-amplitude SWRs of 80-100 Hz (region c)
instead exhibited sinks at the SLM in association with sources at the
SR (Extended Data Fig. Se).

Optogenetic validation of the low-dimensional embedding
Tobetter explore theseideas and toimprove interpretation, we sought
to examine the topological distribution of SWRs generated by CA3
and CA2 (ref. 31). Thus, we expressed channelrhodopsin in upstream
CA3 and CA2 pyramidal cells using transgenic and viral strategies
(Fig. 5a and Extended Data Fig. 6a,b). We mimicked the CA2-specific
and CA3-specific prolonged synaptic release that accompanies SWRs
by using green-light pulses of 100-ms duration, which mildly activate
channelrhodopsin currents (Methods). Consistently, optogenetic
activation of these terminals resulted in evoked SWRs of different fea-
turesin CAl (Fig. 5b).

In agreement with correlation analysis, we noted that the fre-
quency and amplitude of CA2-evoked events could not be modu-
lated by increasing the light power, in contrast to CA3-evoked SWRs
(Extended Data Fig. 6¢,d). To compare with spontaneous events, we
isolated evoked SWRs in windows around their power spectral peaks
(25 ms), as before. Strikingly, optogenetically evoked SWRs fitted
differently across the UMAP embedding (Fig. 5c and Extended Data
Fig.6e). CA3-evoked events spread toward the region of high-amplitude/
high-frequency (forexample, regionb), while CA2-evoked SWR events
remained more confined toward the low-frequency/low-amplitude
region (for example, region c). These results did not simply reflect
differences on the mean frequency of evoked SWRs (Extended Data
Fig. 6f), instead all feature values were consistently distributed in the
UMAP embedding (Extended Data Fig. 6g). The different distribution
of CA2-evoked and CA3-evoked SWRs was confirmed by computing the
distance between centroids across all UMAP projections (Fig. 5¢; 1,220
events from CA2; 1,715 events from CA3), with centroid distance per
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Fig. 4 |Input mechanisms underlying the distribution of SWR features.

a, SWR-associated CSD signals estimated from linear silicon probes. Arrowhead
marks the SP channel used for topological analysis. Color scale indicates the
intensity of sinks (blue) and sources (red). b, Distribution of CSD sink and source
intensities per SWR confirms that the embedding built from SP signals contains
layer-resolved information of the underlying input generators. MUA values
were also distributed over the UMAP cloud (color scale from 0 to 0.07 spectral
power 300-400 Hz). Data from 2,613 events, 17 independent sessions and 9 mice
met CSD criteria. ¢, SWR features and event categorization are shown in Fig. 3e
(a,band c) for comparison with the CSD distribution. The color scale indicates
minimal and maximal feature values as shown in Fig. 3d. d, Spatial correlation
between SWR features and CSD values was calculated in a4D space using voxels.

The 4D space was defined by either the UMAP coordinates (blue axes) or by SWR
features (green axes). In both cases, the SWRs will form a point cloud, but they
will differin their shapes. e, Significant correlation coefficients between SWR
features and CSD values as estimated pairwise comparisons (gray) and from
UMAP (blue) and feature (green) spaces. f, Box plots show median CSD values
atthe SO, the SR and the SLM for the different categories of events as horizontal
lines, with the first and third quartiles denoting box limits (a, 1,147 events; b, 1,797
events; and ¢, 1,211 events). Whiskers indicate the data point farthest from the
quartile values that is within 1.5 times the interquartile range. One-way ANOVA
per layer:SO F(2) = 67.3; SR F(2) =102.3; SLM F(2) = 61.4, all at P < 0.0001. Post hoc
Tukey-Kramer two-tailed tests ***P < 0.001; ****P < 0.0001.

projection/session tested significantly against the shuffled distribution
(Fig.5d). Importantly, the distribution of CA3-evoked and CA2-evoked
SWRs over the UMAP embedding resembled the region where ICA
localized their associated active synaptic sinks (Extended Data Fig. 5a).

Overall, these results suggest that layer-resolved information of
individualripplesis represented in both the high-dimensional and the
low-dimensional spaces built from SP signals. We therefore trained a
support vector decoder (SVD) to infer CSD values using only the posi-
tion of spontaneous SWRsin the input space (Fig. Se; tenfold design for
training and test; see Extended Data Fig. 7 for details and results from
other decoders). We found that this strategy successfully explained a
large part of the CSD variance (Fig. 5f). While results were in general
better using data from the high-dimensional space, trends were best
preserved using coordinates of the 4D UMAP space as compared with
the feature space. Actually, an SV classifier operating over the 4D UMAP
space successfully identified evoked SWRs from CA3 and CA2 at 0.65
accuracy, well above chance level (P < 0.0001) and independently on
differences of frequency and amplitude (0.67 and 0.62 accuracy for
SWR events equalized by frequency and amplitude, respectively).

Thus, our topological and low-dimensional analysis of ripple wave-
forms can provide mechanistic interpretation of SWR feature variations
depending on CAl microcircuitactivation by differentinput pathways.
Importantly, this strategy may allow for inference of the underlying
mechanisms from single-channel recordings even in the absence of
precise laminar information.

Effects of brain states and cognitive demands

Inspired by these ideas, we sought to evaluate how cognitive demands
(novelty, learning) and brain state (wakefulness, sleep) influence the
expression of SWRs. A long-standing questionin the field iswhat deter-
mines differences between SWRs in awake and sleep conditions’. With
the aim to compare awake versus sleep SWR preceding and following
aseries of cognitive tasks, we recorded from mice exposed to novel
or familiar contexts (rooms A and B, 6 mice implanted with wires),
while they were trained for the first time to alternate for water reward
in either linear tracks (LTs) or semicircular tracks (CTs), or allowed

to explore a two-chamber (TC) field (Fig. 6a). The order of the tasks
was the same for all animals. SWRs were recorded in the home cage
before and after each task. To provide additional data for training the
topological decoder, three additional mice were recorded with linear
arrays during the first task only (Extended Data Fig. 8a). SWRs (59,907
events) were classified as belonging to rest (immobility; 11,593 events),
awake (exploratory pauses; 9,164 events) and sleep states (non-rapid
eye movement (REM) sleep; 39,149 events; data 36 sessions from 9
mice; Extended Data Fig. 8b,c).

Similarly to data above, SWRs exhibited more Sl for frequencyin
both the original and the reduced space, built separately for events
recorded before and after the tasks (Fig. 6b; intrinsic dimension of 4 in
allcases). This observation cannot be explained by differences between
sessions (Extended Data Fig. 8d), nor by the different rate of SWRs
(Extended DataFig. 8e; bootstrapped). Visualization of SWR features
projected over the reduced embedding confirmed these trends (Fig. 6¢
and Extended Data Fig. 9a). Note that while the embedding is rotated
as compared with that from head-fixed recordings, the relationship
between the distributed featuresis preserved due to UMAP invariance.

We first focused on evaluating the influence of brain state (awake/
rest/sleep) on the organization of SWRs. Analysis of the distribution of
awake SWRsrevealed remarkable biases, especially in the post-training
embedding (Fig. 6¢), which were dominant along some UMAP projec-
tions (thatis, UMAP1versus UMAP2/3/4 projections; Fig. 6d). We next
compared the effects of awake and sleep states before and after tasks
to evaluate their potential mechanisms. We estimated the topological
distance between the centroids of awake and sleep SWRs per UMAP
projection, and confirmed amajorinfluence of training in their separa-
tion (Fig. 6e). Standard statistical comparison of awake and sleep events
provided only a partial view (Extended Data Fig. 9b).

Todissect these effects closely, we bootstrapped all SWRs for each
task/sessionin the UMAP1 versus UMAP2/3/4 projections, and tested
them against the shuffled distribution. We found that the nature of
the performed tasks had a major influence on segregating awake and
sleep SWRs recorded after training but not before (Fig. 6f). Novelty
(tasks ALT1 and BTC) and new learning (task ALT1) had major impact,
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asreflectedinlarger centroid separation between post-training awake
and sleep SWRs (Fig. 6f). This maximal segregation of SWRs from the
first session was consistent for all animals, and may reflect the major
role of hippocampusinone-shot learning. Instead, centroid separation
decreased significantly for repeated contexts (ACT) and task (ALT2).
These results suggest that awake SWRs become more similar to sleep
and rest SWRs after habituation to tasks. Instead, SWRs during sleep
andrest distributed more homogeneously (Extended DataFig. 9c) with
no effects across tasks (Extended Data Fig. 9d).

To focus on the cognitive effects, and to exclude potential differ-
ences betweenembedded data, we evaluated their distribution across
tasks by building the high-dimensional and low-dimensional repre-
sentations of events recorded before and after the tasks together, for
the awake and sleep conditions separately (Fig. 6g and Extended Data
Fig.10a). The distribution of bootstrapped awake SWRs before and
after the tasks exhibited maximal separation in different rooms (nov-
elty; ALT1and BTC) and for the first track (original training; ALT1), and
dropped to shuffle distribution with habituation (experience; ALT2;
Fig. 6h). Instead, pre/post SWRs recorded during sleep distributed
homogeneously and did not differ from shuffled data (Fig. 6h).

Topological decoding of inputs underlying ripple variability

Finally, we took advantage of topological decoding and used mice with
linear array recordings from the first day (ALT1; Extended DataFig. 10b)
totrainand testan SVD model (Fig. 7a). Using these data, we found that
CSDvaluesreconstructed from the high-dimensional space were more
accurate than those obtained from the reduced UMAP embedding
(Fig. 7b, top; P < 0.0001; two-way analysis of variance (ANOVA) for
methods andlayers), suggesting that low-dimensional representations
may even lose some information when large cognitive load is at play.
Strikingly, the explained variance of layer-specific CSD values from
freely moving recordings was similar to that from head-fixed datain
the original space (nonsignificant two-way ANOVA), while predicted
CSDvalues fromthe 4D feature space yielded even poorer results closer

to chance level at zero (Fig. 7b). Notably, prediction errors from the
SVD trained in the low-dimensional and high-dimensional spaces were
rather similar (Fig. 7b).

To ease visualization across tasks, we next sought to apply the
SVD trainedinthe 4D embedding while tracking resultsin the original
space. We found that CSD’ values predicted from wires were roughly
similar to CSD values recorded with the linear arraysin the same ALT1
task (Fig. 7cand Extended Data Fig.10c). We then estimated CSD values
at the SR and the SLM of pre/post awake SWRs from wire recordings
across tasks using the SVD trained in the 4D UMAP space, and found
significant differences (Fig. 7d; see Extended Data Fig. 10d for SVD
in the original space). These results support the idea that changes of
awake SWR distribution result from different input pathway activity
induced after learning. Consistently, the centroid distance between
pre/post awake SWRs estimated in the dominant UMAP projections
significantly correlated with alternation performance in the ALT1
task (R?>=0.29, P=0.0115, Fig. 7¢; no correlation with speed or total
distance), consistent with major roles of awake SWRs in signaling novel
experience and learning.

Discussion
Using topological and low-dimensional analysis of ripple waveforms
recorded within the CAl cellbody layer, we demonstrate that their vari-
ability can be precisely quantified and mechanistically explained. We
found that SWRs distribute along a continuum of waveforms, which
reflectlayer-resolved information. For decades, observation of the effect
ofbrainstate and cognitive demands on SWRs has remained elusive with
changes in frequency, rate, amplitude and the content of replay being
described. Here, we show that the intricacy of the accompanying changes
can only be partially extracted using statistical and spectral methods.
Instead, transforming classification of ripple waveforms into a topo-
logical problem reveals dominant mechanistic biases of input pathways.
Uncovering the diversity of SWRs is key to understanding
their roles in memory function and dysfunction. The attempts to
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Fig. 6| Topological analysis of state and cognitive influences on SWRs.

a, Multiple tasks evaluated the effect of novelty, learning and experience. Mice
implanted with wires experienced the tasks in the same order across days. Mice
recorded with silicon probes performed only the first task and were used for
topological analysis and decoding. SWRs were recorded over 2 h before and
after each task. b, Sl per feature before and after tasks, as estimated from the
original and the reduced space, for all events together at top (single values) and
for each pre-/post-training session with >200 events at bottom (mean + s.d; pre:
n=12independent sessions, 7 mice; post: n = 22 independent sessions, 8 mice).
¢, UMAP1/2 projection from the 4D embedding built from SWRs recorded pre-
training (left) and post-training (right) (all tasks). Note centroid separation of
awake and sleep SWRs. Frequency distribution is shown to the right. d, Sl for the
frequency distribution per UMAP projection of SWRs before and after training.
e, Distance between awake and sleep SWR centroids before and after training
inall UMAP projections. Note maximal structure and centroid separation along
UMAP1 projections. f, Distance between awake and sleep SWR centroids per
session with more than 50 events in both conditions before (top) and after

ALT1 BTC ACT ALT2

(bottom) the different tasks. Plots reflect the mean + s.d. centroid distance for
all possible combinations of sessions and the three UMAP1 projections (pre:
n=9 combinations for ALT1, n = 6 for BTC, n=3 for ACT and n =3 for ALT2; post:
n=21forALT1,n=18for BTC,n=15for ACT and n =15 for ALT2). Data were
bootstrapped (black), and tested against the shuffled distribution (100 shuffles,
gray). Effects for task (post-training): one-way ANOVA F(3) = 22.8, P< 0.0001.
Post hoc Tukey-Kramer two-tailed tests, **P < 0.01; ***P < 0.001. g, Topological
distribution of pre-/post-training SWR across tasks. Note different trends of
pre/post centroid separation for awake and sleep SWR. h, Distance between
pre/post SWR centroids recorded in awake (top) and sleep (bottom) across
tasks, calculated as in f. Plots reflect the mean + s.d. centroid distance for all
possible combinations of sessions and the three UMAP1 projections (awake:
n=21combinations for ALT1,n =9 for BTC,n=12for ACT and n=9 for ALT2;
sleep:n=12for ALT1, n=9 for BTC,n= 6 for ACT and n =9 for ALT2). Datawere
bootstrapped (black), and tested against the shuffled distribution (100 shuffles,
gray). Effect for task (awake): one-way ANOVA F(3) = 25.8, P < 0.0001. Post hoc
Tukey-Kramer two-tailed tests **P < 0.01; ***P < 0.0001.

categorize these events based on discrete clusters have been typi-
cally confronted with difficulties in defining clear-cut entities”'*'*2°,
Our topological analysis provides support to the idea that the SWR
waveforms represent a continuum, which can be embedded into a
low-dimensional space. Similar strategies can be applied to the study
of other types of oscillations and LFP signals***, This permits visualiza-
tion of the distribution of predefined features such as frequency and
amplitude, which can be quantified at the original and the reduced
spaces using informational geometry?*, While different SWR catego-
ries can be defined using clustering strategies, their interpretability
and relationship with specific ripple waveforms will not be necessarily
obvious. Future work can examine the relationship between the conti-
nuity of ripple waveforms and their categorization fromlocal ensemble
patterns and large-scale brain dynamics™***%°,

Our analysis provides mechanistic support for interpreting
changes of ripple waveforms associated with brain states and learn-
ing. Instead of relying on abstractly reduced representations, we chose

to evaluate the intrinsic dimension of the data cloud for constraining
analysis and visualization. The distribution of SWR waveforms carried
layered information on the associated input pathways, which can be
extracted from the topological organization in both the original and
thereducedspace. A decoder trained inboth representational spaces
successfully connects individual SWRs with the expected sink-source
values without relying on laminar information. This permitsinference
ofthe underlying inputs and makes the method interpretable in physi-
ological terms. Importantly, while for inputs arriving at the SR (that
is, CA3) the decoder is able to explain more than 60% of the variance,
thereis moreinformationintheripple waveforms than canbe extracted
frominput generators alone. In contrast, the variance of CSD values at
the SP (mostly reflecting passive currents intermixed with perisomatic
GABAergicinputs) is less well explained by the decoding strategy. This
is consistent with theidea of amajor contribution of the local microcir-
cuitinshaping CA1dynamics®'>"***” and the very nature of SWR events,
which reflect ensemble representations brought about by different
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Fig.7| Topological decoding of input mechanisms underlying pre/post
differences. a, Linear array recordings from the first task (ALT1) were used for
training an SVD model to predict CSD values from the waveform space. Once
validated, the decoder was applied to wire recordings to evaluate changes across
tasks. b, Explained variance of CSD values from the linear array test set (n = 10
tests), as predicted by the SVD (chance level of shuffled data is shown). Box plots
show the median explained variance (horizontal line) at all layers as estimated
from the tenfold predictions (n =10 tests), with the first and third quartiles as box
limits. Whiskers indicate the data point farthest from quartile values that is within
1.5times the interquartile range. Two-way ANOVA effects for layer (F(3,2) = 487),
spatial dimension (F(3,2) = 987) and interaction (F(3,2) = 53) all at ***P < 0.001

and ***P < 0.0001for all post hoc comparisons with a Tukey-Kramer two-tailed
test. The median absolute error exhibited differences for the interaction between
methods and layers (F(3,2) = 5.6; P< 0.0001). **P < 0.01 for post hoc as indicated.
¢, Pre/post CSD values recorded during ALT1 using linear arrays as projected

inthe 4D UMAP embedding. d, Pre/post CSD’ values predicted at the SR and

the SLM from wire recordings using the SVD trained in the 4D UMAP space with
linear array data. Box plots show the median predicted CSD’ per task (horizontal
line) for all pre/post SWRs as input data points (n = 491/1,693 for ALT1 pre/post,
n=764/1,531for BTC pre/post, n = 398/918 for ACT pre/post and n = 395/781 for
ALT2 pre/post; n =4 independent sessions, 6 mice). Box limits indicate the first
and third quartiles. Whiskers indicate the data point farthest from quartile values
thatis within 1.5 times the interquartile range. Significant differences across tasks
(two-way ANOVA F(1,7) =58, P< 0.0001 at the SR; ANOVA F(1,7) = 54, P< 0.0001 at
the SLM).**P < 0.01and **P < 0.0001 for all post hoc comparisons with a Tukey-
Kramer two-tailed test. e, Correlation between performance in the ALT1alternate
task and the centroid separation in UMAP1 versus UMAP2/3/4 projections
between pre/post awake SWRs. Data are from three UMAP projections per mouse
(n=7 mice with pre/post sessions with >200 SWR). *P< 0.05. f, Summary of the
findings from topological analysis of SWR.

input assortments®**, Similarly, other input pathways (for example,
thalamic head-directional inputs) can contribute differently to shape
SWR waveforms across different recording conditions*>*'. Therefore,
further studies should address what the additional contributions of
local cell-type-specific and extra-hippocampal microcircuits are to
the variation of SWR waveforms.

We found striking differences between awake and sleep SWRs,
consistent with previous results®. In contrast with standard statisti-
cal methods, our approach allows for characterizing the topological
direction of changes, providing physiological explanations. SWR events
during exploratory pauses shifted toward the high-frequency and
high-amplitude regions of the embedding, with cognitive demands
associated to novelty, learning and habituation having major impact
intheir low-dimensional reorganization (Fig. 7f). Our optogenetically
informed analysis suggests that low-amplitude slower (80-100 Hz)
and high-amplitude faster (120-150 Hz) ripples might involve CA3 and
CA2inputs distinctly. Consistently, novelty signals characteristic of
alertness, which tend to upregulate CA3 activity in novel contexts***,
provide support for the drift of awake SWRs toward the region of the
low-dimensional embedding characterized by stronger SR sinks.
Similarly, awake SWRs are known to reactivate prefrontal cortical
circuits more strongly than during sleep phases** suggesting that

their topological segregation can also reflect changes in the strength
of cortico-hippocampal interaction'*%.

Quite contrastingly, during sleep and prolonged immobility, SWR
features fluctuate homogeneously along the embedding, consistent
with a homeostatic regularization of brain-wide excitability*® (Fig. 7f).
The homogeneous topological distribution of sleep SWRs recorded
before and after experience likely reflects the large representational
variability accompanying memory consolidation*®*. During this
period, memory traces resulting from experience are synaptically
scaled and integrated into existing representations**®, We hypothesize
that a diversity of SWRs spanning all along the topological space may
bereflecting the myriad of ensemblesin the process of consolidation.

Our method allows exploitation of the topological organization of
ripple waveformsin the high-dimensional and low-dimensional spaces
toinformdata-driven analysis. Here, we projected well-known features
such asthe frequency, amplitude and CSD values of SWRs toillustrate
howinformation canbeinferred from the datacloud. However, the low
structural values of some of these features suggest additional mecha-
nisms may be required to fully explain waveform variability, such asthe
local cell-type-specific microcircuits and other input pathways men-
tioned above. By projecting the firing rate from different cell types from
the local circuit and afferent regions, our method can help to inform
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on their different contribution. Finally, topological analysis of SWR
waveforms can facilitate identification of the mechanisms underlying
disease-specific alterations, such as fast ripples in temporal lobe epi-
lepsy’, or slow-frequency ripples in Alzheimer’s disease*” and in some
forms of interneuropathies®. Such a level of understanding of SWR
variability using topological and low-dimensional analysis provides
a unique opportunity to better dissect the microcircuit mechanisms
underlying hippocampal memory function and dysfunction.
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Methods

Animals

Male and female mice (Mus musculus) between 2 and 12 months of age
were used in this study. All protocols and procedures were performed
according to the Spanish legislation (R.D. 1201/2005 and L.32/2007)
and the European Communities Council Directive 2003 (2003/65/CE).
Experiments were approved by the Ethics Committee of the Instituto
Cajal, the Spanish Research Council (CSIC) and Comunidad de Madrid
(protocolno. PROEX162/19). Experimentsincludedin this paper follow
the principle of reduction, to minimize the number of animals. Thus,
we obtained several sessions (electrode penetration) per animal, which
were treated as independent observations. Whenever critical for the
scientific question at hand, data are reported by animals. Mice were
housed either alone or together with othersto secure their well-being
(for example, when implants were compromised and/or there was a
dominant mouse in the cage requiring separation). They were main-
tainedinal2-hlight-dark cycle (07:00t019:00) at 21-23 °Cand 50-65%
humidity with access to food and drink ad libitum.

Study design

Mice from different lines were randomly assigned to head-fixed and
freely moving experiments, as described below. No statistical method
was used to predetermine sample sizes, which were similar to those
reported previously for this type of study”?’. Data collection was
not performed blind to the conditions of the experiments (that is,
head-fixed, freely moving, optogenetic stimulation, sleep, awake,
tasks) due to execution requirement. For data analysis, detection of
SWRswasblind to the topological analysis. AllSWR events and record-
ing sessions were used, except for analysis requiring specificinclusion
criteria (for example, sleep, rest, awake conditions), which areindicated
inthe corresponding section.

Head-fixed electrophysiological recordings from awake mice.
Adult wild-type C57BL/6 male and female mice were implanted with
fixation head bars underisoflurane anesthesia (1.5-2% mixed in oxygen;
400 ml min™). Two silver wires, previously chlorinated, and screws
were inserted over the cerebellum for reference/ground connec-
tions. Implants of wires and screws were secured to the skull with
light-cured glue (Optibond Universal, Kerr Dental) and secured with
dental cement (Unifast LC, GC America). For optogenetic experiments,
mice were injected in the same surgical act with adeno-associated
viruses (AAVs) to drive expression at specific hippocampal regions,
including: (a) CA2 pyramidal cells, which were targeted by injecting
AAV5-DIO-EF1a-hChR2-mCherry (1 pl, 3.4 x 10 viral genomes per
ml) in Amigo2-Cre mice’' (now available at The Jackson Laboratory,
as Amigo2-crelSieg/J, 030215); and (b) CA3 pyramidal cells, which
were targeted with PHPeB-CamKII-ChRger2-TS-EYFP-WPRE® (0.5 pl,
2.6 x 10" viral genomes per ml at 1:4 dilution in saline) in C57BL/6
mice. Injection coordinates were: for CA2, —1.6 mm anteroposterior
and 1.5 mm mediolateral from bregma, depth 1.1 mm; for CA3,-2 mm
anteroposterior and 1.75 mediolateral (angle 10°) frombregma, depth
1.9 mm.

All mice were habituated to the head-fixed setup, consisting of
awheel (20 cm radius) coupled to a stereotactic frame. Habituation
sessions (5-7 d, two sessions per day) included handling and placing/
removing mice on the apparatus for increasing periods of time (from
5-10 min to more than 1 h). Once mice were habituated to staying in
the wheel for long periods, a cranial window was opened over CAl at
2 mm posterior from bregma and 1.25 mm lateral from the midline in
each hemisphere under isoflurane anesthesia. Then, the craniotomy
was covered with a low-toxicity silicone elastomer (Kwik-Sil, World
Precision Instruments).

Recordings started the day after craniotomy and proceeded over
the following 3-4 d. Individual penetrations were considered aninde-
pendent experimental session, thus providing several sessions per

animal. At the end of each recording day, the craniotomy was clean
and sealed with Kwik-Sil. Mice returned to their home cage until the
next recording day.

For recordings, we used a 16-channel silicon probe comprising
alinear array with 100 pum resolution and 703 um? electrode area
(A1x16-5 mm-100-703; Neuronexus). For optogenetic experiments,
a105-pm optical fiber was attached to the probe over the 8th-10th
electrode fromthe bottom. Extracellular signals were pre-amplified (4x
gain) and recorded witha16-channel AC amplifier (100x, Multichannel
Systems), and sampled at 20 kHz per channel (Digidata1440, Molecular
Devices). Datawere acquired with Axoscope (v11). Silicon probes were
inserted up to400-500 umbelow the cellbody layer of the CAlregion
ofthe dorsal hippocampusto get alaminar profile, including SO, SP, SR
and SLM. Relevant LFP events (ripples, multiunit firing, sharp-waves
and theta-gamma oscillations) helped to identify penetration.

Optogenetic stimulation. To evoke SWRs optogenetically, we applied
100-mssquare pulses of light at 0.2-0.33 Hz with a 532-nm-wavelength
laser (MGL-FN-532-300 mW, CNI Optoelectronics Tech) to stimulate
axon terminals of CA2 pyramidal neurons (SO) and CA3 pyramidal
neurons (SRand SO) inthe CAlregion. Inboth cases, the fiber remained
over the alveus. The laser power was adjusted in each experiment to
obtain physiological-like oscillations comparable to spontaneous
SWRs (CA2,200-1,000 pW; CA3, 2-500 pW). Note we did not use
the 473-nm-wavelength light (optimal wavelength to activate chan-
nelrhodopsin) because it evoked large amplitude nonphysiological
oscillations. Inasubset of experiments, we tested half-sinusoidal pulses
of 50-100 ms and found similar types of events as generated with
square pulses.

Electrophysiological recordings from freely moving mice. Adult
male and female mice, either wild-type (C57BL/6, in-house) or from
the B6.Cg-Tg(Thy1-CO P4/EYFP)18Gfng/] (JAX mice, 007612) line, were
implanted with optrodes consisting of four tungsten wires (0.002-inch,
bare; 0.004-inch, PFA coated; AM Systems) coupled to optic fibers
(200 umdiameter; Thorlabs). The wire tips protruded between100 pm
and 400 pm from the fiber flat surface (located at the alveus) allow-
ing for laminar recordings around the SP and the SR. Implants tar-
geted both hemispheres (anteroposterior: —2.5 mm; mediolateral
2.2 mm from bregma; -1.1 mm depth from the dura). Once the wires
were located in their final position, the shanks were glued to the skull
with OptiBond Universal (Kerr Dental, Switzerland) and secured with
light-cured acrylic resin (Unifast LC, GC Corporation).

In addition, some adult C57BL/6 wild-type mice were implanted
with32-channelsilicon probes (A4X8-5mm100-200-413; Neuronexus).
Animals were anesthetized with isoflurane (2% for induction, 1-2% for
maintenance, 500 ml min™) mixed with oxygen. Probes targeted the
right dorsal hippocampus (anteroposterior: —2.0 mm; mediolateral:
1.5 mm from bregma; -1.7 mm depth from the dura). Reference and
ground electrodes were placed at the skull above the cerebellum. Once
inplace, silicon probes were covered by Vaseline and cemented to the
skull. Agrounded copper mesh cage was built to protect the probes and
to ground the system. All mice received doses of enrofloxacin (20 mg
perkgbody weight), dexamethasone (0.2 mg per kg body weight) and
buprenorphine (0.05 mg per kg body weight) subcutaneously on the
day of surgery and 24 h later.

Animals were allowed torecover for at least a week before habitu-
ation began. Signals were recorded at 30 kHz with an Open Ephys
system using an Intan RHD2132 32-channel head-stage, including a
3-axis accelerometer (Intan Technologies). Data were acquired with
Open Ephys GUI 0.4.6.

Freely moving tasks and recordings. The experimental protocol
consisted of four tasks done with at least 3 d of separation between
them. Behavioral tasks started after a habituation phase consisting of
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atleast 3 d of handling, followed by 2 d of habituation to the recording
box. Thisbox, used throughout the experimental protocol, consisted
ofablack polypropylene enclosure (28 cm x 22 cm x 42 cm height) with
bedding up to 2 cm. Habituation took place in the familiar room where
mice were about to run the first round of tasks (room A). Animals were
water deprived for 24 hbefore the tasks. Tasks lasted 20 min each, and
SWRswererecorded immediately before (pre) and after (post) during
2 hinthe home cage. Habituation mimicked the behavioral tasks, and
consisted of 2 h of recording (pre), followed by a 15-min exposition to
the home cage with access towater, and thenback to the recording box
foranother 2 h of recording (post).

Thefirst behavioral tasks consisted of an alternationtaskinalinear
track (LT1; 74 cmlong x 7 cmwide, with 12-cm-tall walls) located in the
already familiar room A. This linear track had visual (three vertical white
stripeson each side) and somatosensory (three polishing paper stripes
onthefloor) cuesinone-halfofthe corridor. Mice were transported to
the maze and allowed to run for reward (4 pl sugar water, 10%) during
15 min. Rewards were automatically delivered through a water valve,
which was activated by an infrared sensor controlled by an Arduino
system. A reward was delivered only if mice successfully alternated
inthe maze.

The second task consisted of free exploration (15 min) of
a two-chamber place preference enclosure (TC, chambers of
18 cm x 20 cm and 25 cm height, connected by a 7-cm-wide corridor)
located in aroom the mice had never visited (room B). This task was the
only one that did not require the animals to be water deprived and was
used totest for effects of novelty inthe absence of training and reward.

For the next two tasks, mice returned to the familiar room A. The
third task was runinasemicircular track (CT; 120 cmlong x 7 cm wide,
2-cm-tallwalls) with somatosensory cues like in the linear track, where
animals had to alternate (15 min). Water port rewards were available at
both extremes of the semicircular track.

Finally, the fourth task consisted of arepetition of the first linear
track (LT2) over 15 min. Mice carrying wires performed all the tasks in
arow. Mice carryingsilicon probes were recorded only during the first
task (LT1) to provide data for CSD analysis.

SWR detection and feature analysis. For detecting SWR events, we
followed consensus criteria”. First, we removed noisy epochs deter-
mined by excessive signal similarity between two separated recording
channels (for example, masticatory artifacts). LFP signals from these
channels were summed, and epochs deviating >10 times the s.d. from
the mean were deleted.

Next, we selected the SP channel from the different shanks and/
or wires, which was characterized by the larger ripples and MUA fir-
ing, as judged from the maximal power in the ripple (100-250 Hz)
and MUA bands (300-400 Hz), respectively. SP signals were filtered
(forward-backward-zero-phase finite impulse response filter of
order 512 implemented in either MATLAB 2020a and 2021b (Math-
Works) between 70 Hz and 400 Hz, and the envelope calculated with
afourth-order Savitzky-Golay filter with awindow duration of 33.4 ms,
followed by two smoothing moving windows of 2.3 and 6.7 ms, using
the ‘movmean’ function. We intentionally left the bottom filter cutoff
at 70 Hztoallow for detection of awide diversity of SWR events, includ-
ing slow SWRs of 80-100 Hz, similar to those recorded in primates.
Theupper filter at 400 Hz permitted detection of MUA firing, whichiis
typically used for replay studies. These detection limits are within the
ranges reported by consensus’. Importantly, all candidate SWR events
were validated (see below). AMUA index was estimated from the area
of'the spectral power at 300-400 Hz bandwidth.

For detection, candidate events were detected by threshold-
ing over 2-5 s.d. of the envelope signal. Detected events closer than
15 ms were merged. All candidate events were centered by the mini-
mum value of the waveform closer to the peak of the envelope using a
30-ms window. Finally, an expert validated all candidate events using

a custom-made MATLAB GUI. Validation was based on the following
criteria: (a) a clear LFP ripple oscillation should be confined to SP,
sometimes intermixed with MUA; (b) the ripple should be associated
with a sharp-wave at SR. Importantly, all events are detected from
non-theta periods.

Analysis of LFP signals was implemented in MATLAB. To estimate
SWRfeatures of validated events, raw signals at the SP (ripples) and the
SR (sharp-waves) were filtered in different bands. The amplitude of the
ripple was defined from the envelope of the 70-400 Hz filtered SP sig-
nal. We deliberately chose awide frequency range to evaluate potential
segregation between events in the fast gamma (80-100 Hz) and the
ripple (>120 Hz) bands. The slopes were defined for both the ripples and
the sharp-waves using a 1-10 Hz filtered signal from the SP and the SR,
respectively. Slopesto (slope-to-peak) and from (slope-from-peak) the
peak were defined similarly from both signals using alinear fit. These fea-
tures were estimated in the £25 ms window centered on the ripple peak.

The ripple spectral features were computed from the individual
power spectra of the SP channel. The ripple frequency was defined as
the power peak (estimated from the spectral bump) inthe 70-400 Hz
range. To account for the exponential power decay in higher frequen-
cies, we subtracted a fitted exponential curve (‘fitnlm’ from MATLAB
toolbox) before looking for the ripple frequency. The spectral entropy
was computed from the normalized power spectrum (divided by the
sum of all power values along all frequencies) as:

Entropy = — Z Power(f) - log,(Power(f))

Wherefisthe frequencybinned at10 Hz. The spectral entropy has
been described as useful for characterizing normal and pathological
SWRs’. The ripple duration was estimated either directly from the
envelope of the 70-400 Hz filtered SP signal or from the AUC of the
amplitude-normalized 70-400 Hz filtered SP signal, using extended
windows of 100 ms around the peak. To validate estimation of SWR
duration, we manually tagged the onset and end of SWRs using three
sessions (259 events).

CSD signals were calculated from the second spatial derivative.
Weincluded only those sessions meeting spatial criteria (at least eight
channels covering continuously from SO to SLM layers). Smoothing
was applied to CSD signals for visualization purposes only. Tissue
conductivity was considered isotropic across layers. ICA was applied
to dissect the different spatial generators®?, using the ‘runica’ and
‘icaproj’ functions from the EEGLAB ICA toolbox (https://sccn.ucsd.
edu/eeglab/index.php).Each session was analyzed separately, and the
ICAinitialization matrix was always the identity matrix toreproduce the
order of components. After excluding ICA components correspond-
ing to noise and artifacts, the remaining SWR-associated ICA spatial
profiles were visually inspected and only those fitting the definition
of input current generators were selected (1,789 events). Definitions
include: (a) the CA2 SWR generator characterized by a sink at SO and
asource at the SP/SR border; (b) the CA3 generator characterized by
sinks at SO and SR flanking a source at the SP (contralateral), or those
associated to SRsinks and SP sources (ipsilateral); (c) the EC3 generator
characterized by a sink at deep SLM layer with a source at SR; and (d)
the EC2 di-synaptic inhibition generator characterized by a source at
the SLM and a sink at the SR. These definitions were derived from the
existing knowledge regarding cell-type-specific input pathways>*.

Histological analysis. Upon completion of experiments, allmice were
deeply anesthetized with sodium pentobarbital (300 mg per kg body
weight) and transcardially perfused with PBS (pH 7.4) followed by 4%
paraformaldehyde and 15% saturated picric acid in 0.1 PBS. Brains
were post-fixed and cut into 50-um coronal sections in a vibratome
(LeicaVT1000S).

Selected sections were washed in 1% Triton X-100 (Sigma) in
PBS (PBS-Tx), treated with 10% FBS in PBS-Tx for 1 h, and incubated
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overnight with the primary antibody solution: rabbit anti-PCP4 (1:100
dilution; Sigma, HPA005792) in 1% FBS in PBS-Tx. After three washes
in PBS-TX, sections were incubated for 2 h at room temperature with
the secondary antibody: donkey anti-rabbit Alexa Fluor 647 (1:200
dilution; Invitrogen, A-32795), in PBS-Tx-1% FBS. Following 10 min
of incubation with bisbenzimide H33258 (1:10,000 dilution in PBS;
Sigma, B2883) for labeling nuclei, sections were washed and mounted
onglassslidesin Mowiol (17% polyvinyl alcohol 4-88,33% glycerin and
2% thimerosal in PBS).

Multichannel fluorescence stacks were acquired in a confocal
microscope (Leica SP5), with the LAS AF software v2.6.0 build 7266
(Leica), and objectives HC PL APO CS10.0 x 0.40 DRY UV or HCX PL
APO lambda blue 20.0 x 0.70 IMM UV. The pinhole was set at 1 Airy
unit, and the following channel settings were applied (fluorophore,
laser, excitation wavelength, emission spectralfilter): (a) bisbenzimide,
Diode, 405 nm,415-485 nm; (b) EYFP or track autofluorescence, Argon,
488 nm,499-535 nm; (c) mCherry, DPSS, 561 nm, 571-620 nm; (d) Alexa
Fluor 647, HeNe, 633 nm, 652-738 nm. For epifluorescence imaging,
amicroscope (LEICA AF 6500/7000) witha10 x 0.3 dry objective and
the following filters were used (excitation, dicroic, emission spectral
filters):N2.1(BP515-560, LP590, 580). Fiji software (National Institutes
of Health Image; v.2.13.0) was used for subsequent image adjustment
and analysis.

Quantification of mCherry’/PCP4" cells were made in x20 confo-
calimages at one confocal plane per mouse. For illustration purposes,
z-projections (average intensity) were made. Estimation of CA3 infec-
tionwas achieved in x10 epifluorescence images, measuring the linear
extension along the pyramidallayer for both the EYFP* region and the
complete CA3 region (from CA3c at the hilus to the border with CA2
defined by PCP4). These analyses were made in one or two sections for
eachanimal ataround -2 mm anteroposterior frombregma, coinciding
with the recordings coordinate.

Methods for estimation of the intrinsic dimension of the wave-
form space. Our topological method starts by projecting the ripple
waveforms in a high-dimensional space determined by the temporal
sampling rate. To build the high-dimensional space, we first down-
sampled SP signals to 2,500 Hz and cut £25-ms windows around the
peak of detected and filtered SWRs (rounded to 127 points). Projecting
all SWRs into the 127D space (one dimension per sample, one point
per SWR) resulted in a data cloud, which could be recovered into a
low-dimensional space. This idea was inspired by early work on unbi-
ased classification of SWRs using unsupervised methods™%**, However,
instead of predefining the visualization dimension to 2D, we looked for
the minimal number of dimensions that preserves the data structure.

We first compared different methods for estimating intrinsic
dimension of the data cloud in the 127D space. To this purpose, we
used theRlibrary ‘intrinsicDimension’in Python (version1.2.0; https://
cran.r-project.org/web/packages/intrinsicDimension/vignettes/
intrinsic-dimension-estimation.html). This includes methods such as
local expected simplex skewness (ESS Local), dimension estimation via
translated poissondistributions (MaxL Local) and local PCA (PCA Local).
Inaddition, we used an ABID method, which does not rely on distances
butinstead estimates the angle distributionin the vicinity of each point™.

Tovalidate the different methods, we built the ground truth from
several objectsin the high-dimensional space, including 2D plane and
Swissroll, and a five-dimensional hyperball using codes from the R
library. For building a2D torus, we adapted the R functions to Python.
To generate the objects, N points were uniformly distributed along
the corresponding surface or volume defined by their parametric
equations. They were subsequently embeddedin127 dimensions, with
added Gaussian noise (s.d. = 0.01) inall directions of space.

Synthetic SWRs. In addition to objects, we also simulated synthetic
SWRssimilarly to experimental events. To generate synthetic ripples,

we convolved a sinusoidal signal of agiven frequency with a Gaussian
signal of agiven amplitude and s.d., which defined duration. For each of
the three parameters, we used a uniformrandom distribution of 2,000
samples between the values corresponding to percentiles 5/95% of the
real data for the amplitude and the frequency, and between 0.5 and
2s.d. for duration. Synthetic SWRs were created at the same sampling
rate as experimental events. Two different synthetic datasets were
built, one with a continuous distribution of frequencies (80-240 Hz);
andthe other built from three different frequency ranges (80-100 Hz,
130-150 Hz,190-210 Hz). To make them comparable to experimental
SWRs, noise equivalent to the root mean square error of LFP signals
was added.

Persistent homology analysis. We evaluated the topology of the data
clouddirectly inthe high-dimensional space (127D) using the persistent
homology package Ripser.py (https://github.com/scikit-tda/ripser.
py/). Persistent homology looks for the persistence of n-dimensional
simplicial complexes as varying the radius around each data point. The
different homology groups are defined from the number of cuts that
separate datain pieces of different dimensions (H,, H; and H,), with the
Betti numbersrepresenting the rank of the homology group. InH,, the
number of connected components that persist after increasing the
radius is shown. H; quantifies the number of loops. H, identifies the
number of cavities in the data. To validate analysis, we used objects
of known topology (torus, ball, plane, and so on) and synthetic SWR
data (continuous and 3-clustered distributions). For this analysis,
we excluded outliers as in ref. 56. Analysis was executed in the super-
computer cluster Artemisa (https://artemisa.ific.uv.es/web/content/
nvidia-tesla-volta-v100-sxm2/) using >400 Gb RAM. To this purpose,
datawere bootstrapped 100 times in groups of 3,500 points and results
were tested for consistency across different realizations.

Dimensionality reduction techniques. To reduce dimension from
the original 127D space to the intrinsic dimension, we used differ-
ent methods. Isomap was applied using the Python library sklearn.
manifold version 0.24.2 (https://scikit-learn.org/stable/modules/
manifold.html). We used the UMAP version 0.5.1 (https://umap-learn.
readthedocs.io/en/latest/) in Python 3.8.10 Anaconda, whichis known
toproperly preserve local and global distances whileembedding datain
alower-dimensional space. A standard PCA was also applied. We found
UMAP to be very efficient in computational terms with execution time
independent of the number of data points. In contrast, Isomap was
computationally costly especially for >10,000 data points. We also
tested t-SNE¥, which had a bit better computer efficiency thanIsomap,
but canreduce space only up to3D. Inall cases, we used default values
for reconstruction parameters. Algorithms wereinitialized randomly.
We found UMAP to provide robust results independent of initializa-
tion. Because the symmetric Laplacian of the graph G is a discrete
approximation of the Laplace Beltrami operator of the manifold, the
method uses aspectrallayout toinitialize the embedding. This provides
convergence and stability within the algorithm.

Feature space. To evaluate the advantage of UMAP versus simpler
approaches, we constructed aspace using the SWR features (frequency,
amplitude, entropy and duration). In this 4D space, SWRs will form a
point cloud similarly to the waveform space, but they will differin loca-
tioninthe space coordinates and hence their shapes will be different.
Note that that neighborsinthe 4D feature space will not necessarily be
neighborsinthe 4D UMAP space.

Structure index. We used the Sl to quantify the amount of structure
the projection of a given feature presents over the data cloud®. We
started with a datacloudinwhich each pointhasavalue of an arbitrary
feature. First, we divided the feature values into ten equal bins, and
then we assigned each point to a group associated with a feature bin
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(bin group). Next, we computed the pairwise overlap between bin
groups as follows. Given two bin groups, % and v, we define the overlap
score (OS) from % to V(0S4 as the ratio of k-nearest neighbors of
allthe points of % that belongto v in the point cloud space. That s,

0Sqy (K) = ﬁ Z%|{N{;(cuuv-{u})|j=1,...,k}nv

where M, (% UV — {u}) is the j,, nearest neighbor of point u in the set
UVUYV —{u}.

Computingthe OS for each pair of bin groups (%, and 13) yields an
adjacency matrix (A4,,,) whose entry (a,b) equals fg. A can be thought
of asrepresentingaweighted directed graph, where eachnodeis abin
group, and the edges represent the overlap (or connection) between
them. We do not allow any self-edges in the weighted directed graph
sothatwe set 0Sq_q (k) = 0.

Finally, we define the Sl as1 minus the mean weighted out-degree
ofthe nodes after scaling it:

2 n n
swu)=1-(nz_n ;;m)

The Sltakes values between O (random feature distribution, fully
connected graph) and 1 (maximally separated feature distribution,
non-connected graph). According to this definition, on small data-
sets and using a small number of neighbors (k), the non-symmetry of
k-nearest neighborhoods can yield slightly negative values. Thus, we
define the final SIto be the maximum of 0 and the result of the equation
above.Importantly, by definition the Slagnostic to the type of structure
(forexample, gradient and patchy). Instead, itis the weighted directed
graph that provides additional insights. Note that this metric can be
applied to n-dimensional spaces and any arbitrary cloud distribution
(forexample, torus, Swissrolls and planes).

Importantly, for quantitative comparison of structural indices
from different features, the same set of points should be used. For
instance, since CSD values are typically estimated from a subset of
recordings meeting methodological criteria, their structural values
cannot be directly compared with that of frequency or amplitude for
the full dataset.

Spatial correlation analysis. Spatial correlation analysis of SWR fea-
tures was implemented at 4D by using voxels of different resolutions.
To validate the voxel size, a toy model of anticorrelated and random
feature distributions was simulated over the 4D experimental SWR
embedding. The number of experimental data points per voxels of dif-
ferentsizes (in UMAP coordinates), as well as mean values per feature,
were estimated to match the expected correlation of the toy model. The
spatial correlation coefficient was calculated using the Pearson correla-
tionbetween mean voxel features for both the anticorrelated (expected
R?=1) and random (expected R*=0) distributions. The optimal voxel
size was defined as the value that best optimized the expected correla-
tion for both distributions at 4D (voxel size of 1 corresponding to about
200 events). Note that thisisalinear correlation between two features
in4D voxels, not requiring corrections for multiple dimensions.

Topological categorization of SWRs in the UMAP embedding. We
defined different categories of SWR events in the UMAP embedding
by looking at the complementary distribution of different features
using Python (3.8.10 Anaconda) with libraries Numpy (1.18.5), SciPy
(1.5.4) and Matplotlib (3.3.3). Regions of interest (ROls) were operation-
ally defined along the topological limits of gradient distribution per
feature. To this purpose, we first defined the ranges of interest of the
SWRindividual features (for example, frequency, amplitude, entropy).
For the n ripples with feature values in a predetermined range, their
coordinates X, in the UMAP embedding were used to estimate their

probability density fix)ina2D grid space, x.For this, we computed the
bivariate kernel density estimator making use of the seaborn ‘kdeplot’
functionwitha Gaussian kernel Kand asmoothing bandwidth hdeter-
mined internally using the Scott method (https://seaborn.pydata.org/
generated/seaborn.kdeplot.html). The grid space x had a size of
200 x 200 points evenly spaced from the extreme values of X,,.

A 1
f(x)=?

S

n
i=1

The estimator f(x) allowed representing the scattered discrete
eventsinto a continuous probability density function, which was nor-
malized by the number of ripples n such that the total area under all
densitiessumstol.Each point of the grid space x was assigned a density
value, which canbe considered as a third axis z. To visualize the density
values as contours in two dimensions, the probability density function
was partitionedin10 levels of the same density proportionin the zaxis.
Each curve shows alevel set such that aproportion of the total density
lies below it, with contour plots of smallest area representing higher
density. The iso-contour that best controlled the over-smoothing and
under-smoothing of the distribution was selected for each SWR feature.
This was often the 6th or 7th contour from highest to lowest density,
which represents 60% to 70% of the highest density iso-proportions.
Density contours from each feature were then combined, and the
overlapping ROIs were identified.

We also estimated the centroid location of the data cloud by
selecting events with different characteristics (for example, percen-
tile values) or SWRs of different origin (for example, sleep/awake;
optogenetically evoked, and so on). The distance between centroids
or between data points was calculated using the Euclidean distance in
UMAP coordinates eitherin 2D projections or inthe reduced 4D space.

For bootstrapping analysis, we subsampled the embedding by
picking up asimilar number of events for each session/task and repeat-
ing this process 10-100 times, resulting in a mean value per session.
The sample size was typically 200,100 or 50 events depending on the
analysis and data availability for each observation unit (session). For
shuffling, we randomized the SWR coordinates at the UMAP embed-
ding and repeated the process 100 times, resulting in a mean value
per session. Bootstrapping and shuffling were performed per UMAP
projection and at4D.

Alignment of different datasets. To compare between datasets, we
used manifold alignment’®. To this purpose, the center of mass of
points sharing similar bin values of a given feature (20 bins) was esti-
mated for each manifold in the 4D reduced space. The two point sets
{prand{ptwithi=1,2,...,20; follow aone-to-onerelation of the form
p/ =Rp;+ T+ N, whereRisarotation matrix, Tatranslation vector, and
N;anoise vector. Using the algorithm presented by ref. 58, we computed
theleast squares solution of Rand Tto calculate the optimal manifold
alignment. Once aligned by a given feature, the spatial correlation
between featuresin the two datasets was estimated using the method
explained above (UMAP voxels of 1 corresponding to 200 events).

Fitting new data into an existing embedding. To align evoked SWRs
into an existing embedding, we used spontaneous SWRs of the optoge-
netic experiments as the control. To avoid on/off effects of light, we
used pulses of 100 ms to isolate a £25 ms window. The window was
centered at the power peak of the evoked ripple. Evoked SWRs were
aligned into the existing embedding 1built with the original spontane-
ous SWRs. To evaluate correspondence, we built anew embedding 2 by
poolingtogether the original events and the spontaneous SWRs from
the optogenetic experiments. This provided areference location for the
distribution of both the original and the new spontaneous eventsin the
new resultingembedding 2. Inthe third step, we used the coordinates of
the original eventsinembedding1versus 2 to estimate the error of the
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original spontaneous events (alignment error) and those fitted (fitting
error). Finally, evoked events were aligned directly into the original
embedding and their distance distribution was confronted with the
fitting and the alignment error of spontaneous events, which were
always significantly lower than the data (distance between centroids
of CA3-evoked and CA2-evoked SWRs; P< 0.00001).

Topological decoding of SWR laminar information. To evaluate
the explanatory capability of topological representation of SWRs,
we adopted a decoder approach to predict laminar information from
SWRs (both in the original space and 4D reduced topological spaces,
aswellasinthe4D feature space). First, we divided the dataset of SWRs
with anassociated CSDinto the training and test sets through a tenfold
cross-validationapproach. Toensureindependence between training
and testing in the 4D reduced space, the UMAP embedding was rec-
omputed for each fold using the training set, and then the test set was
projectedinto thefitted space. We then preprocessed the CSD values by
dividing each layer by its standard deviation (without subtracting the
mean to avoid losing polarity information). Then, a decoder for each
CSD layer was trained using the SWR position in the original space, in
the 4D reduced space orinthe 4D feature space.

To determine the goodness of fit of each decoder, we computed
the explained variance regression score between the test CSD values
and the predicted ones. To determine a confidence chance level, we
evaluated the explained variance of shuffled data. The explained vari-
ance was calculated using the following formula:

varly - y'}

explained variance (y,y)=1- varsy)

where yis the original (or the shuffled) variable and y’is the predicted
variable.

Following this schema, multiple decoders were tested, including
Wiener Filter, Wiener Cascade, Extreme Gradient Boosting (XGBoost)
and support vector regression, with support vector regression yielding
the best performance.

To predict laminar information of SWR without an associated CSD,
weinput the SWRtopological coordinates either in the original space
or in the 4D reduced space to all tenfold decoders, and the average
CSD prediction was computed. We confirmed that the median error of
predictions across layers was roughly at zero level, supporting no bias
ofthe decoder trained either in the original or in the low-dimensional
space.

An SV classifier was used by leveraging the sklearn library
(C-support vector classification). A tenfold approach was used for
trainingthe decoder to classify evoked SWRs from CA3 and CA2 based
intheir positioninthe 4D UMAP space. The regularization parameter
Cwassettol,and astationary kernel radial basis function was used as
suggested by the library. The accuracy classification score (fraction)
was used to evaluate the performance of the trained decoders and
tested against shuffling data.

Sleep scoring and state classification of SWRs. Brain state scoring
was implemented semiautomatically. Information from lateral and
ceiling cameras was used to validate movementindices calculated from
the head-stage accelerometer. The theta/delta signal was estimated
fromthe time frequency spectrum calculated using the ‘bz_WaveSpec’
function from the Buzcode (https://github.com/buzsakilab/).Periods
ofimmobility were separated from periods of running (awake). Immo-
bility periods were subsequently reclassified as ‘rest’ (no movement
awake) and ‘sleep’ based on spectral criteria (skewed distribution of
spectral values across time epochs). The maximal powerinthe 1-35-Hz
band was used toidentify episodes of REM sleep, which helped to define
flanked periods of slow-wave sleep. Sensory thresholds during sleep
were tested with mild sound stimulation (clicks), which permitted

benchmarking of separate periods of rest and sleep during immobility.
AlISWRs detected in the different periods were classified accordingly.

Standard statistical analysis. Statistical analysis was performed
with Python and/or MATLAB. Normality and homoscedasticity were
confirmed with the Kolmogorov-Smirnov and Levene’s tests, respec-
tively. The number of replicationsis specified in the text and figures.

Several-way ANOVAs and/or other non-parametric tests were
applied for group analysis. Post hoc comparisons were evaluated
with Tukey-Kramer two-tailed tests with appropriate adjustment for
multiple comparisons. For two-sample comparisons, the one-tailed
and two-tailed Student’s t-test or another equivalent test was used.
Correlation between variables was evaluated with the Pearson
product-moment correlation coefficient, which was tested against O
(thatis, no correlation was the null hypothesis) at P < 0.05 (two-sided).
Inmost cases, values were z-scored (subtract the mean from each value
and divide the result by the s.d.) to make data comparable between
experimental sessions and across layers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data analyzed in this study are publicly available in Figshare at
https://figshare.com/projects/Topological SWR/125359.

This includes ripple waveforms in the 50-ms window (+20 ms) from
head-fixed and freely moving experiments, as well as syntheticripples.

Code availability

Code used in this study is available in the following interactive note-
book: https://colab.research.google.com/drive/1IAHG4UQ15NobY?2
tI7Kc3hQFEkocdRzIsa?usp=share_link#scrollTo=GISnBd8hOuSyv/.
Codes and notebook are also deposited in GitHub at https://github.
com/PridaLab/Topological SWR/.
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Extended Data Fig. 1| Topological analysis of SWR waveforms in the high-
dimensional space. a, Flow diagram of the method. LFP signals from the channel
with the maximalripple power are selected (note that this is not limited to silicon
probe recordings). First, the timing of all detected and validated SWR are used

to center analysis. Next, LFP signals are subsampled (for example 2500 Hz; see
other sampling ratesin g) and all validated events aligned around the ripple peak
(for example +25 ms; see other window lengths in f). For agiven sampling rate
and window length there is a fixed number of time points making the SWR (for
example 127 points considering the first and latest samples). The third step is to
project each SWR event into the high-dimensional space defined by temporal
samples (for example 127D). All events will form a cloud, from which we estimate
the topological structure using persistent homology (Betti numbers) and the
intrinsic dimension (ID). Once the ID of the SWR is determined, dimensionality
reduction techniques can be used to embed data into the ID-low dimensional
space. b, Synthetic SWR were build using three parameters: amplitude, frequency
and duration. ¢, Barcodes for the three homology dimensions as calculated for
a2D-torus and synthetic SWRin the 127D-space (2000 events). HO indicates the
number of connected components that persist after increasing R. H1 quantifies
the number of loops. H2 identifies the number of cavities.

Note different topological features for the torus (1 continuous component,
2loops and1hole), a continuous distribution (80-240 Hz) of synthetic SWR

(1 continuous component, no loops, no holes) and a 3-cluster distribution
(80-100 Hz;130-150 Hz;190-210 Hz) of synthetic SWR (3 continuous
components, no loops, no cavities). d, Noisy objects (noise equivalent to 0.1

of the object amplitude) were created in 127D to provide ground truth (GT)

for ID estimation. Note GT dimension is consistently estimated only with the
Angle-based Intrinsic Dimension (ABID) method, while ESS (Expected Simplex
Skewness) and PCA (Principal Component Analysis) resultin some biases. PCA
Local, EES Local and Maximal Likelihood Local (MaxL) all assume that the data
islocal (thatis the curvature and noise within the neighborhood is small) and
so they fail to capture GT for challenging objects such as the torus and the Swiss
Roll. Instead, ABID is based on angle estimation in the local neighborhood and
soitbetter fits to curved topologies. Bars reflect single values. e, Effect of data
density (number of SWR events) at the 127D input space in ID estimation for
experimental and synthetic SWR, as well as for random LFP segments of similar
length. f, Effect of the window length in ID estimation of experimental SWR

as calculated from EES Local, PCA Local and ABID. Note consistency of ABID
estimations. g, Effect of the LFP sampling rate in estimation of ID.
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Extended Data Fig. 2| Quantification of SWR feature distributionin the
high- and low-dimensional spaces. a, Sketch of the dimensionality reduction
approachapplied to synthetic SWR without noise (ID = 3). b, Feature distribution
inthe 3D embedding of synthetic SWR events without noise as reconstructed
with UMAP (2000 events). ¢, Structure Index as a metric to evaluate data feature
distribution. The range value of each feature is n-binned (n =10) and bin-values
mapped onto the cloud to identify bin-groups (points sharing similar bin-values).
Feature values can be patterned or randomly distributed over the datainany
arbitrary dimension. In the example they are distributed with some gradient
overlap over aSwiss Rollin a3D-space. Overlapping between bin-groups was
evaluated using graph analysis (see Methods). The Structure Index (SI) takes
values between O (random feature distribution, fully connected graph) and 1
(maximally separated feature distribution, non-connected graph). Note that this
metric canbe applied to arbitrary cloud distributions in n-dimensional spaces.
d, Single values of the Sl characterizing the feature distribution of synthetic
SWRin the original and 4D UMAP space, built with different methods (Isomap,
UMAP and PCA). Bars at left reflect single values of the structure index of the

datacloud fromall events. Results from synthetic SWR without (top) and with
added noise (bottom) are shown separately for the intrinsic dimension of 3

and 4, respectively. Bars at right represent the mean + SD, with individual data
points per feature projected in each space (n = 3 features). Note UMAP maximally
retrieves the high-dimensional information from all features at the reduced
embedding (SIFraction recovered from the original space, shown at right).

e, Two-dimensional projection of the 3D UMAP embedding of synthetic SWR at
coordinates with maximal structure per feature (upper plots; thatis UMAPL,2
for frequency and duration; UMAPL,3 for amplitude). The Structure Index of
each feature per UMAP projection is shown in the matrices below. f, Parametric
dependence of the shape and orientation of the UMAP reduced embedding, and
frequency mapping for a continuous distribution of synthetic SWR (80-240 Hz)
without noise. Note that the UMAP embedding is invariant to rotation and
translation, with the shape preserved. UMAP reconstruction parameters used by
default were 0.1 minimal distance and 15 neighbors. g, Same as in f for a clustered
distribution of synthetic SWR (80-100 Hz;130-150 Hz and 190-210 Hz).

Note consistent embedding in three separate clusters.
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Extended Data Fig. 3| Experimental SWR feature analysis. a, Processing of
experimental LFP signals for estimating different SWR features. Raw signals at SP
(defined from the maximal ripple power) and SR (sharp-waves) were filtered in
different bands to define amplitude (70-400 Hz envelope), slopes (1-10 Hz) and
duration-env, from the 70-400 Hz envelope at the mean amplitude; duration-
AUC from the area under the curve of the amplitude normalized signal). Spectral
features (frequency and entropy) were obtained from the individual SP spectra.
The frequency was estimated from the bump spectral peak of each SWR event.
The entropy was defined after normalizing the entire spectra (area=1) binned at
10 Hz. Slopes from the sharp-wave were calculated from the SR filtered signal. See
Methods for details. b, Pearson R-values between features exhibiting significant
correlation (p < 0.001; two-sided). Significant R-values above/below +0.25 are
showninbold. ¢, Correlation between the two measurements of ripple duration
(Duration-env and Duration-AUC) as compared against ground truth (SWR starts
and ends were manually evaluated by an expert; see Methods). We found that
defining the ripple duration from the AUC provided best correlation with the
ground truth. Note the two measures correlated significantly between each other
(R=0.56;p <0.00001asshowninb).d, Single values of the Sl characterizing

the feature distribution of experimental SWR in the original and 4D space built
with different methods (Isomap, UMAP and PCA). Bars reflect single values of the
structure index of the data cloud from all events. At inset, bars reflect mean + SD
of the fraction of structure from the original space thatis lost in the 4D space

2 46 8
UMAP1

4 6 8

UMAP1
built with different methods using data from all features (n = 4 features per
method). Note UMAP maximally retrieves the high-dimensional information at
the reduced embedding. The UMAPL,2 projection per session is shown at right.
e, Comparison with Self-Organizing Maps (SOM). SOM acts to fit a2D-mesh to the
datacloud in the original 127D-space. A 2D-UMAP was built similarly and
the distribution of SWR was compared by using SOM-based colormaps. Note
roughly similar organization of events in the 2D-mesh and the 2D-UMAP.
f, Structure index fraction recovered from the original space while embedding
experimental SWR with UMAP at progressively lower dimensions. Note that the
feature structure is maximally retrieved with UMAP up to the estimated intrinsic
dimension of 4, suggesting suboptimal representations with 2D-UMAP. g, UMAP
embedding from SWR from two different mice (mousel: 808 events; mouse2:
1248 events). Note similar distribution invariant to rotation and translation in
the UMAP coordinates. h, Definition of Region of Interests (ROIs) in the UMAP
embedding using heuristic criteria. Contour lines are defined based on the
density of points (SWR) sharing particular feature values. In the example, SWR
0f120-150 Hz are identified and the contour density lines are defined from the
probability density distribution. Same for SWR of > 4 z-scored amplitude and
>3.75 entropy values. The ROl is defined from the overlapping region. i, UMAP
projections of SWR detected in the 100-250 Hz band. j, UMAP projection of
random LFP events. Note lack of structure for frequency.
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Extended Data Fig. 4 | Comparisons between datasets across species.

a, Analysis of SWR events recorded in freely moving rats with high-density probes
inan external dataset. The channel with the maximal ripple power was selected
for topological data analysis. Note similar structure distribution per feature than
in head-fixed mice, as quantified by the Structure Index (bottom) in the original
and the reduced space (intrinsic dimension 4, as estimated by ABID). Bar reflect
single values of the Sl of the data cloud from all events. b, UMAP1,2 projections
built from the SP channel with the maximal ripple power. The Structure

Index matrices for each feature are shown at bottom. ¢, The 4D frequency
representations of the two datasets (mouse head-fixed and rat freely moving)

are aligned using feature values at UMAP coordinates. To this purpose the center
of mass of points (SWR) with similar feature values (20 bins) were estimated and
used for alignment in the 4D reduced space. Once aligned by a given feature, the
spatial correlation between features in the two datasets were estimated (UMAP
voxels of 1 corresponding to 200 SWRs). d, Spatial correlation coefficient (all
significant at p > 0.001, two-sided) between features per alignment supporting
quantitatively similar distributions in mice and rats. The best alignment
strategy of the two embeddings is by frequency. Aligning by entropy yielded no
significant correlationand itis not shown.
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Extended Data Fig. 5| Input pathway generators. a, Independent component
analysis (ICA) of SWR-associated current generators were estimated by spatial
discrimination of LFP signals in a subset of experiments meeting methodological
criteria for CSD and ICA reconstruction. Each generator was identified according
to existing knowledge on pathway-specific sinks and sources (see b). The CA2
generator was heuristically identified from ICA components exhibiting a SWR-
associated sink at SO and asource at SP/SR border (406 SWR from 5 sessions).
The CA3 SWR generator was associated with sinks at SO and SR, which are shown
separately (625 SWR from 7 sessions). Similarly, we identified two entorhinal
cortex (EC) generators, associated to the layer 3 direct glutamatergic input
pathway (EC3-SLM; 173 SWR from 4 sessions) and the indirect inhibitory EC2
inputs (EC2-SLM; 585 SWR from 7 sessions), via CCK interneurons. The location of
the active sinks and sources from each generator is indicated in the embedding.
b, Summary of knowledge base used to inform identification of ICA generators.
Note the two different EC input pathways associated with active sinks (EC3) and
sources (EC2 via feedforward inhibition), which are located at two different
depthsinto SLM. ¢, Distribution of CSD values per layer in the 127D original space,
the 4D-UMAP space and the 4D-Feature space was evaluated using the structure

index. Bars at left reflect single values per layer. Note similar distributionin the
original and the UMAP space, and lower structure index values for all layers in the
4D-feature space. Box plots at right show the median structure index (horizontal
bars) per space for all layers as data points (n = 4), with the first and third quartiles
asbox limits. Whiskers indicate the data point further from quartile values that

is within 1.5 times the interquartile range. Significant differences between the
feature space and each of the topological spaces are indicated (****p < 0.0001;
two-sided Student t-test). d, Structure index of the distribution of CSD values per
ICA generator in the 127D original space, the 4D-UMAP space and the 4D-Feature
space. Bars at left reflect single values per generator. The EC3-SLM generator is
not shown due to poor sampling. Box plots at right show the median structure
index per space (horizontal lines) for all generators as data points (n = 4), with
the first and third quartiles as box limits. Whiskers indicate the data point further
from quartile values that is within 1.5 times the interquartile range. Significant
differences between the feature space and each of the topological spaces are
indicated are indicated (***p < 0.001; two-sided Student t-test). e, CSD maps

of SWReventsinregiona, b and c, defined according to exploratory heuristic
criteria.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-023-01471-9

b

Amigo2-Cre+AAV5-DIO-EF 1a-ChR2-mCherry

[[] mCherry- |l EYFP+

B mCherry+
100 1 100
& 80 80
5
3 60 1 60
£ 40- 40
x
w
20 1 20
0- 0
CA2
e
CA2 opto-evoked SWR
“ CA3 opto-evoked SWR
®
=
o 7 4
© ® [se <
— o
[o]
S %4 e g3
2 = = %
S ] 2 ] 2
g 3
= 0 1
2 4 6 8 2 4 6 2 4 6
UMAP1 UMAP2 UMAP2
8 Frequency Amplitude
B (Hz) (z-scored)
% xx 8 *kkk
160 6
s ==
> 120 ‘ 4
S oW T T
g 80 \
[T

Extended DataFig. 6 | Input dissection with optogenetics. a, Immunostaining
validation of channelrhodopsin (ChR2) expression specificity (mCherry) in the
Amigo2-cre line used to target CA2 pyramidal cells (PCP4+). Scale bar correspond
to 130 pm. b, Quantification of ChR2 expressing cells (mCherry+) among PCP4+
CA2 pyramidal cells (mean + SD data from 4 sections from 4 mice). At right,
quantification of CA3 specificity of channelrhodopsin expression obtained with
the AAV PHP.eB CaMKII-ChRger2-EYFP strategy (expressed as percentage of
EYFP+ pyramidal cell layer along the CA3 region defined from CA3c to CA3aat
the border with CA2) (mean + SD data from 2 histological sections from 2 mice).
¢, Dependence of the frequency of SWR evoked optogenetically from CA2 and
CA3 terminals. Note relatively constant ripple frequency, independent of light
stimulation intensity for CA2 but not for CA3 evoked SWR, consistent with results
from spatial correlation. Plots show the mean + SD frequency of evoked SWR per
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lightintensity for CA2 (n =3 sessions, 3 mice) and CA3 terminals (n = 3 sessions,
2mice), separately. d, Same as ind for the ripple power. e, Topological analysis of
optogenetically evoked SWR. The centroid of each experimental group is shown
indifferent UMAP projections. f, Feature value statistics of optogenetically-
evoked SWR. Box plots show the median feature value for CA2 (n =1220 events
from 5 sessions, 3 mice) and CA3 evoked SWR (n =1715 events from 3 sessions,

2 mice) as horizontal bars, with the first and third quartiles as box limits. Whiskers
indicate the data point further from quartile values that is within 1.5 times

the interquartile range. Given the evoked nature of the events, duration is not
reported. Two-sided Student t-test, ***, p < 0.001; ****, p < 0.0001. g, Distribution
of feature values of optogenetically-evoked SWR over the UMAPL,2 projection.
Note consistent feature distribution over the embedding as compared with
spontaneous SWR and differences between CA2- and CA3-triggered events.
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Extended Data Fig. 7 | Topological decoding. a, Schematic representation
ofthe decoding strategy to predict CSD values from the SWR space. In any
arbitrary space, SWR occupies different positions along the cloud. Each position
isassociated with specific CSD values. Any decoder seeks to map the real values
of CSDinto the representational space, so that they can be unambiguously
predicted. A Support Vector Decoder (SVD; right) is a regression algorithm that
looks to minimize the error tube, instead of seeking the best curve for a decision
boundary. SVD find the closest match between data points and the mapping
function. b, Schematic representation of the 10-fold cross-validation strategy.
The SWRdatacloud is divided in 10 samples. Nine of these samples are used for
training and the remaining for testing; an error is computed. The procedure
isrepeated 10 times, providing mean results. ¢, CSD explained variance as
predicted from the Wiener Filter, Wiener Cascade and XGBoost models of SWR
mapped into the D-dimensional space (127D original and 4D reduced). Results

from the Support Vector Decoder (SVD) are shown in the main figure. Box plots
show the median explained variance (horizontal line) at all layers per space for
the 10-fold prediction (n =10 tests), with the first and third quartiles as box limits.
Whiskers indicate the data point further from quartile values that is within 1.5
times the interquartile range. d, Comparison between decoders in the original
and the reduced space. Data per layer was aggregated to estimate the mean
explained variance per decoder and tested with two-way ANOVA. Box plots show
the median explained variance (horizontal line) per decoder resulting from
aggregating data from all layers (n = 4), with the first and third quartiles as box
limits. Whiskers indicate the data point further from quartile values that is within
1.5times the interquartile range. Effects for decoders (F(3,1) =13.9, p < 0.00001)
and input space (F(3,1) =20.5, p < 0.00001). Posthoc Tukey-Kramer two-tailed
tests*, p <0.05. The SVD was chosen for all simulations, given maximal mean
values.
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Extended Data Fig. 8 | Analysis of SWR recorded from freely moving mice.

a, Histological validation of silicon probe tracks implanted chronically in freely
moving mice. PCP4 immunostaining was used to delineate the border with
CA2.Probe and electrode tracks were validated in all mice. b, Images from the
lateral cameras used to validate the identification of Rest and Sleep states in

the home cage. ¢, State scoring approach. Information from the lateral and
ceiling cameras were used to validate movement indices calculated from the
head-stage accelerometer. The theta/delta signal was estimated from the time
frequency spectrum. First, periods of immobility were separated from periods
of running (Awake). Immobility periods were classified as Rest (no movement
awake) and Sleep based on spectral criteria. The maximal power in the 1-35 Hz
band was used to identify REM sleep. Sensory threshold along sleep were tested
with mild sound stimulation (clicks; arrowheads), which provided ground truth
to separate periods of Rest and Sleep duringimmobility. SWR detected in the
different periods were classified accordingly. d, Quantification of the rate of SWR
recorded in Awake, Rest and Sleep conditions, both Pre- (left) and Post-training
(right). The mean SWR waveform from each state is also shown at the top. Only
mice recorded with wires and tested in all tasks were included in the analysis

(4 sessions, 6 mice). ALT1: Room A Linear Track 1, BTC: Room B Two-chamber;
ACT:Room A Circular Track; ALT2: Room A Linear rack 2. Box plots at left

show the median SWR rate at Pre-training per state and task as horizontal bars
(n=510/1824/496 events from Awake/Rest/Sleep in ALT1; n = 821/1972/1141 events
from Awake/Rest/Sleep in BTC; n =417/555/1133 events from Awake/Rest/Sleep

in ACT; and n = 425/1774/361 events from Awake/Rest/Sleep in ALT2). Box plots at
right show the same for Post-training (n = 1834/2700/2482 events from Awake/
Rest/Sleep in ALTL; n =1692/8706/1154 events from Awake/Rest/Sleep in BTC;
n=1007/5227/1299 events from Awake/Rest/Sleep in ACT; and n = 834/4599/1070
events from Awake/Rest/Sleep in ALT2).The first and third quartiles as box limits.
Whiskers indicate the data point further from quartile values that is within 1.5
times the interquartile range. Significant effect of state in a two-way ANOVA

for Pre (F(3,2) =22.9, p < 0.0001) and Post events (F(3,2) = 60.3, p < 0.0001).
Asterisks indicate significant differences of post-hoc Tukey-Kramer two-tailed
tests: *, p < 0.05;**, p < 0.01. e, Structure index per feature after normalizing by
same number of SWR events (15144) before and after training (bootstrapped, 10
samples). Bars show the mean + SD structure index per feature for each sample
(n=10bootstrapped samples).
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Extended Data Fig. 9 | Analysis of SWR across states and conditions.
a,UMAPIL,2 and structure index matrices per feature in the different projections
before and after training. b, Median features values from all SWR recorded Pre
(n=2706 Awake and n = 9259 Sleep) and Post-training (n = 6458 Awake and
n=29890 Sleep), shown as horizontal bars in the box plots, with the first and
third quartiles as box limits. Whiskers indicate the data point further from
quartile values thatis within 1.5 times the interquartile range. Statistics analysis
with a two-way ANOVA for Frequency: Awake/Sleep F(1,1) =433, p < 0.00001;
Pre/Post F(1,1) =1862, p < 0.00001 and interaction p < 0.0001. Entropy: Pre/
Post F(1,1) =3071, p < 0.00001; interaction p = 0.0023; Duration: Awake/Sleep
F(1,1) =893, p <0.0001; Pre/Post F(1,1) = 567, p < 0.00001 and interaction

p <0.0001. Post-hoc tests with Tukey-Kramer two-tailed tests ***, p < 0.001;

***% p <0.0001.c, UMAP embedding pre- and post-training showing distribution
of Rest SWR as compared to Awake and Sleep events. d, Mean distance between
centroids for the embedding distribution of Awake versus Rest (left) and Sleep
versus Rest (right) SWR recorded Pre- and Post-training across tasks. Plots reflect
the mean + SD centroid distance for all possible combinations of sessions and the
three UMAPI1 projections. Awake vs Rest (Pre: n =12 combinations for ALT1,n=3
for BTC,n=6for ACT and n=3for ALT2; Post:n =24 for ALT1,n=12for BTC,n=9
for ACT and n =9 for ALT2). Sleep vs Rest (Pre: n =9 combinations for ALT1,n=3
for BTC,n=6for ACT and n = 6 for ALT2; Post: n =21for ALT1,n=12for BTC,n=9
for ACT and n =9 for ALT2). Data was bootstrapped (black), and tested against
the shuffled distribution (100 shuffles, gray). No effect of tasks (one-way ANOVA,
p>0.05).
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Extended Data Fig.10 | Topological analysis of Pre/Post SWR. a, Median
frequency and rate of Pre/Post SWR recorded during Awake (left) and Sleep
conditions. Only mice recorded with wires and tested in all tasks were included in
the analysis (6 mice). Box plots at left show the median Pre/Post SWR frequency
and rate during Awake condition per task, as horizontal lines (n = 510/1834 events
from Pre/Postin ALT1; n = 821/1692 events from Pre/Post in BTC; n = 417/1007
events from Pre/Postin ACT; and n = 425/834 events from Pre/Post in ALT2). Box
plots at right show the median Pre/Post SWR frequency and rate during Sleep
condition per task, as horizontal lines (n =1824/2700 events from Pre/Post in
ALT1; n=1972/8706 events from Pre/Post in BTC; n = 555/5227 events from
Pre/Post in ACT; and n =1774/4599 events from Pre/Post in ALT2). Significant
effects in atwo-way ANOVA for Awake SWR frequency (state: F(3,1) =132.3,
p <0.0001; task: F(3,1) =48.7, p < 0.001) and rate (state only F(3,1) = 27.0,
p <0.0001). Asterisks indicate significant differences of post-hoc Tukey-Kramer
two-tailed tests: **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. No significant effects
for Sleep SWR. b, CSD values recorded at SR and SLM using linear array silicon
probes. Datashown for Awake and Sleep SWR as projected in the pre- and post-
training UMAP1,2 projection. ¢, Comparison between Pre/Post and Awake/Sleep

ALT2

CSDsignals of SWRrecorded with the linear arrays versus those predicted from
wire recordings in Room A LT1. Box plots show the median CSD value (horizontal
lines) from all recorded SWR (SR: n = 559 Pre-Awake, n =1630 Pre-Sleep, n =1011
Post-Awake and n = 7870 Post-Sleep; SLM: n = 474 Pre-Awake, n = 1168 Pre-Sleep,
n =829 Post-Awake and n = 7137 Post-Sleep) and predicted SWR in the reduced
space (n =491Pre-Awake, n =1602 Pre-Sleep, n =1693 Post-Awake and n = 2405
Post-Sleep; same for SR and SLM). Box limits indicate the first and third quartiles.
Whiskers indicate the data point further from quartile values that is within 1.5
times theinterquartile range. d, Pre/Post CSD’ values predicted at SR and SLM
from wire recordings using the SVD trained in the original space using data from
linear arrays. Box plots show the median CSD’ value (horizontal lines) from all
predicted SWR per task (n = 491/1693 Pre/Post for ALT1, n = 764/1531 Pre/Post

for BTC, n =398/918 Pre/Post for ACT, n =395/781 Pre/Post for ALT2). Box limits
indicate the first and third quartiles. Whiskers indicate the data point further
from quartile values that is within 1.5 times the interquartile range. Significant
differences across tasks in Awake SWR (ANOVAF(1,7) =45, p < 0.0001 at SR;
ANOVAF(1,7) =54, p < 0.0001 at SLM). Post-hoc tests with Tukey-Kramer
two-tailed tests **, p < 0.01, ***, p < 0.001; ****, p < 0.0001.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data acquired with Open Ephys GUI 0.4.6; Axoscope (v11).

Data analysis External software: Python (3.8.10 Anaconda) with libraries Numpy (1.18.5), SciPy (1.5.4), Matplotlib (3.3.3); R library "intrinsic
dimension' (1.2.0); Isomap library sklearn.manifold (0.24.2); UMAP library (0.5.1); Matlab (v2020a & 2021b). Fiji software (NIH Image;
v.2.13.0); Simulations and parameter search was implemented in Artemisa supercomputer infrastructure (https://artemisa.ific.uv.es/web/
content/nvidia-tesla-volta-v100-sxm2).

Codes in this study are available in the following interactive notebook: https://colab.research.google.com/
drive/1AHG4UQ15NobY2tI7Kc3hQFEkocdRzlsa?usp=share_link#scrollTo=GI8nBd8hOuSv
Codes and notebook are also deposited at Github: https://github.com/PridaLab/Topological _SWR

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data analyzed in this study is available at the public repository: https://figshare.com/projects/Topological _SWR/125359
This includes ripple waveforms in the 50 ms window (+20 ms) from head-fixed and freely moving experiments, as well as synthetic ripples.
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Humans were not studied

Reporting on race, ethnicity, or Humans were not studied
other socially relevant

groupings

Population characteristics Humans were not studied
Recruitment Humans were not studied
Ethics oversight Humans were not studied

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample sizes. All ripples examined in this paper were obtained from multiple recording
sessions in a number of mice following the principle of reduction. The total number of ripple events were 10741 events, 58 independent
sessions, 27 mice recorded head-fixed; and 59907 events, 36 sessions, 9 mice recorded freely moving. Whenever critical for the scientific
question at hand, data is reported by animals. This sample size is similar to those reported before for similar studies (e.g., Valero et al.,
Neuron 94, 2017 and Grosmark and Buzsaki Sc ience 351, 2016)

Data exclusions  All events and sessions were used. Exclusion criteria were applied to subsets of analysis and indicated in every case.
Replication The exact number of replications for each experiment is detailed in text and figures (as events, sessions, mice, etc..)

Randomization  Mice from different lines were randomly assigned to head-fixed and freely-moving experiments. Randomization strategies were applied to
test distribution against shuffling data (see details for each type of analysis in the Methods)

Blinding Data collection was not performed blind to the conditions of the experiments (i.e., head-fixed, freely-moving, optogenetic stimulation, sleep,
awake, tasks) due to execution requirement. For data analysis, detection of SWR was blind to the topological analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Antibodies

Antibodies used Primary: rabbit anti-PCP4 (1:100, Sigma HPA005792)
Secondary: donkey anti-rabbit Alexa Fluor647 (1:200, Invitrogen, A-32795)
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Validation The PCP4 antibody was validated by the literature and previous testing (Fernandez-Lamo et al Cell reports 2019). The secondary
donkey anti-rabbit Alexa Fluor647 antibody was verified by the manufacturer, as declared in their website.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Mus musculus from both sexes and 2-12 months of age. To complain with 3R, in this work we used different mouse lines aimed to
target different cell-type specific populations for optogenetic and imaging experiments. This include the following lines: Mouse
Amigo2-Cre now avilable as (Amigo2-cre1Sieg/J) Jackson Labs Stock #030215 ; B6.Cg-Tg(Thy1-CO P4/EYFP)18Gfng/J (Jaxmice Stock
#007612 and (C57BL/6, in-house (all adult of 2-12months, both sexes)
Mice were all housed either alone or together with others to secure their wellbeing (e.g., when implants were compromised and/or
there was a dominant mouse in the cage requiring separation). They were maintained in a 12h light—dark cycle (7a.m. to 7p.m.) at
21-23°C and 50-65 % humidity with access to food and drink ad libitum.

Wild animals No wild type animals are used
Reporting on sex Animals from both sex were used
Field-collected samples  NO field collected samples are used

Ethics oversight All protocols and procedures were performed according to the Spanish legislation (R.D. 1201/2005 and L.32/2007) and the European
Communities Council Directive 2003 (2003/65/CE). Experiments were approved by the Ethics Committee of the Instituto Cajal, the
Spanish Research Council (CSIC) and Comunidad de Madrid (protocol number PROEX 162/19).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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