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Topological analysis of sharp-wave ripple 
waveforms reveals input mechanisms behind 
feature variations

Enrique R. Sebastian1, Juan P. Quintanilla1, Alberto Sánchez-Aguilera1,2, 
Julio Esparza    1, Elena Cid    1 & Liset M. de la Prida    1 

The reactivation of experience-based neural activity patterns in the 
hippocampus is crucial for learning and memory. These reactivation 
patterns and their associated sharp-wave ripples (SWRs) are highly 
variable. However, this variability is missed by commonly used spectral 
methods. Here, we use topological and dimensionality reduction 
techniques to analyze the waveform of ripples recorded at the pyramidal 
layer of CA1. We show that SWR waveforms distribute along a continuum 
in a low-dimensional space, which conveys information about the 
underlying layer-specific synaptic inputs. A decoder trained in this space 
successfully links individual ripples with their expected sinks and sources, 
demonstrating how physiological mechanisms shape SWR variability. 
Furthermore, we found that SWR waveforms segregated differently during 
wakefulness and sleep before and after a series of cognitive tasks, with 
striking effects of novelty and learning. Our results thus highlight how the 
topological analysis of ripple waveforms enables a deeper physiological 
understanding of SWRs.

Cognitive processes essential for adaptive behavior, such as navigation 
and memory, rely on hippocampal activity. SWRs are local field poten-
tial (LFP) events underlying memory recall and consolidation1. They 
have been reported in both mammals (rodents, monkeys and humans) 
and non-mammals (birds and reptiles), spanning an oscillatory range 
from 80 Hz to 250 Hz (ref. 2). During SWRs, neurons fire in sequences 
representing experience reactivated in the forward and reverse order3–5,  
and single-cell studies have reported cell-type-specific firing pat-
terns6–9. As SWRs interact in a brain-wide manner, intra-hippocampal 
and extra-hippocampal inputs act to shape their features10–12. Their 
organization is influenced by factors such as novelty, learning and 
experience13–15, but identifying the direction of variations is not 
trivial. While LFP signals are known to encode cognitively relevant 
information16,17, analysis of SWRs mostly relies on estimating their 
mean spectral characteristics, posing limits to our understanding of  
these events.

More recently, using unsupervised methods, it has been suggested 
that SWR waveforms can carry much more information than can be 
inferred from spectral approaches7,10,18. An open question is whether 
SWRs can be classified in a finite number of categories, or whether 
they just reflect a continuum of waveforms that can be character-
ized according to their features (for example, slope, amplitude and 
frequency). Previous attempts have used different methods, from 
spectral decomposition to unsupervised analysis of SWRs in a prede-
fined feature space, reaching different conclusions7,10,18–20. Importantly, 
when dealing with methods that implicitly look for clusters and/or rely 
on principal feature distributions, results could be misleading. To fill 
this gap, we transformed SWR classification into an unbiased topologi-
cal problem by projecting LFP ripple traces into a high-dimensional 
waveform space (Fig. 1a). Here, the dimension of the waveform space is 
determined by the sampling rate of SWRs. Events of similar waveforms 
will lie close together, while those of different characteristics will be 
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(SWRs) within a given radius in the cloud are connected through dif-
ferent simplices consisting of a set of dots, lines, triangles and tetrahe-
drons (Fig. 2d). Persistent homology looks for the persistence of these 
connected components (simplicial complexes) as the radius varies, 
which is quantified with the Betti numbers of the different homology 
groups (H): Ho represents path-connected components, H1 refers to 
loops and H2 refers to cavities (Fig. 2d).

We tested the method with a two-dimensional (2D) torus, as 
well as with synthetic SWRs built from three independent features  
(frequency, amplitude and duration) in the 127D space (Methods).  
Synthetic SWRs were built either using a continuous frequency distribu-
tion (hence a continuum was expected) or from three separate frequency 
ranges (hence three separated clusters were expected; Extended Data  
Fig. 1b). Persistent homology successfully identified their topological 
features (Extended Data Fig. 1c). That is, a torus in 127D exhibited one 
cavity and one connected component with two loops, while synthetic 
ripples showed the expected topologies (either one or three connected 
components). When applied to the experimental SWRs, the Betti num-
bers were consistent with a continuous distribution in the 127D space 
(Fig. 2e), without holes or cavities, suggesting that their classification 
is not based on discrete categories.

Next, we examined the intrinsic dimension of SWRs in the 127D 
space, that is, the minimal number of dimensions that preserves 
data structure. We used a set of methods that relied on measuring 
the local structure in the neighborhood of each point of the cloud, 
so that we could infer dimension independently of reconstruction 
approaches. We tested their performance using ground-truth data 
(objects in a 127D space) and found the angle-based intrinsic dimension 
(ABID) method22 to provide the most reliable results (Extended Data  
Fig. 1d). ABID derives the theoretical distribution of angles and uses this 
to construct an estimator for intrinsic dimensionality. We tested the 
continuous synthetic events, which exhibited an intrinsic dimension 
of 3 when estimated with ABID, as expected (Fig. 2f). We found that the 
127D cloud of experimental ripples had an intrinsic dimension of 4, 
similar to the intrinsic dimension of continuous synthetic events with 
equivalent added noise (Fig. 2f). The intrinsic dimension estimated 
with ABID was preserved for different window lengths, number of 
events and sampling rates (Extended Data Fig. 1e–g). Thus, most of 
the high-dimensional SWR waveform structure could be successfully 
recovered in a low-dimensional space.

Low-dimensional embedding of ripple waveforms
To visualize the SWR cloud, we then applied dimensionality reduction 
methods, including uniform manifold approximation and projection 
(UMAP)27, Isomap28 and principal component analysis (PCA), informed 
by the intrinsic dimension (Extended Data Fig. 2a). We first tested the 
continuous synthetic SWRs without noise, which can be reduced to 
three dimensions (3D), and found striking distribution of events by 
frequency (Fig. 3a), amplitude and duration (Extended Data Fig. 2b; 
for UMAP as an example). This suggests that events are mapped into 
the high-dimensional waveform space according to a nontrivial distri-
bution that maximizes the independent structure of their character-
istic features. To quantify this property, we used a graph-based index 
(structure index, SI) that evaluates the overlap between feature values 
projected over the data cloud (Fig. 3b and Extended Data Fig. 2c)23. For 
example, a perfect gradient distribution of a given feature will give SI 
values close to 1, while a random distribution will give values close to 0.

Using this index, we examined how much structure can be obtained 
per feature in the original and the reduced space. For synthetic SWRs, 
UMAP provided reconstructions with feature distributions more simi-
lar to those in the original space than Isomap and PCA (Extended Data 
Fig. 2d). 2D projections of the 3D cloud confirmed variations of feature 
distribution along UMAP axes (Extended Data Fig. 2e). While the UMAP 
embedding can be subject to translation and rotation, the overall 
shape and feature distribution was consistent across reconstruction 

separated. We then apply methods from topological data analysis to 
characterize the shape of the SWR cloud using persistent homology21, 
which inform us about the distribution of points in the data cloud  
(Fig. 1b). By directly estimating the intrinsic dimension22 in the original 
waveform space, dimensionality reduction techniques can then be 
applied for visualization and quantification using structural indices23. 
These topological methods enable unbiased data-driven approaches 
to identify the sources of variability of SWR waveforms.

Adopting this approach allowed us to address some unresolved 
questions in the field. Do SWRs form a continuum of events, or do 
they rather segregate into different categories? Can unsupervised 
analysis of ripple waveforms provide relevant mechanistic information 
about a diversity of SWRs? Are SWRs emitted during the awake and the 
sleep states that follow learning differently influenced by cognitive 
demands? We show that an unbiased topological characterization of 
ripple waveforms provides physiologically relevant information that 
cannot be recovered from a simple feature space.

Results
Topological analysis of ripple waveforms
SWRs were recorded from the dorsal CA1 stratum pyramidale (SP) and 
stratum radiatum (SR) of awake head-fixed mice using linear arrays  
(Fig. 2a). Events were detected and visually validated following con-
sensus methods reported by us and others2 (Methods). SWRs exhib-
ited variability in terms of frequency, amplitude, spectral entropy and 
slope among other features typically used for their characterization2,7  
(Fig. 2b). For instance, SWRs of low (80–100 Hz) and high (>160 Hz) 
dominant frequencies intermingled with different amplitudes and 
slopes in a given recording session (Fig. 2a).

To represent SWR variability from different sessions, LFP sig-
nals from the SP were filtered (70–400 Hz), z-scored and downsam-
pled (2,500 Hz), allowing the projection of individual ripples into a 
127-dimensional (127D) space defined around the event peak (±25 ms; 
one dimension per sample, one point per event; 10,741 events, 58 inde-
pendent sessions, 27 mice; Fig. 2c and Extended Data Fig. 1a). We delib-
erately filtered the LFP of all previously validated ripples in a wide 
frequency range to allow for the evaluation of their feature variability 
and to ease comparison across species. Ripples would distribute in the 
high-dimensional space according to their waveform values, reflecting 
both local and global variations (that is, SWRs of similar frequencies 
but slightly different amplitudes will fall less apart than SWR of con-
trasting frequencies). Importantly, here the high-dimensional axes 
represent temporal LFP samples from one LFP channel, in contrast 
with the structure of transcriptomic (gene space) or neural manifold 
(single-cell space) data24–26.

First, we sought to examine the topology of the SWR cloud in the 
127D space by estimating the presence of discontinuous components, 
holes and cavities with persistent homology21. To this purpose, points 
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Fig. 1 | The problem of SWR classification based on ripple waveforms.  
a, Ripples are analyzed in the waveform space, which is defined from time 
samples in a given window. b, Each event becomes a point in the cloud made 
from all SWRs. The cloud could adopt different shapes from continuous (solid 
or hollow) to clustered. Topological data analysis of SWR events in the waveform 
space will help to disambiguate between the different distributions.
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parameters for both continuous and discontinuous synthetic SWRs 
(Extended Data Fig. 2f,g).

We next examined the organization of experimental SWR events 
using different features estimated from LFP traces (Extended Data  
Fig. 3a,b; that is, ripple frequency, spectral entropy and duration; Table 1).  
Maximal structure emerged consistently for frequency in both the 
original and the four-dimensional (4D) UMAP space, followed by ampli-
tude, entropy and a proxy for duration (Fig. 3c), the latter calculated 
from an extended window around the event and expressed in arbitrary 
units (Extended Data Fig. 3c). We also noted structured distribution of 
some nonspectral features such as the slope of the event defined from 
the SWR peak (Table 1). In all cases, UMAP outperformed other methods 
in recovering information from the original space, with SWRs from dif-
ferent experimental sessions contributing similarly (Fig. 3c, bottom; 
Extended Data Fig. 3d, right). When compared with a previously used 
2D reduction method7,18, UMAP yielded comparable results (Extended 
Data Fig. 3e), but as expected from the intrinsic dimension, optimal 
recovery of information from the high-dimensional space required 
at least four dimensions (Extended Data Fig. 3f). SWRs recorded from 
individual mice exhibited similar trends (Extended Data Fig. 3g).

Visualization of feature variability across UMAP projections con-
firmed the continuous organization of experimental SWRs, consistent 
with results from persistent homology (Fig. 3d). High-amplitude and 
low-amplitude events distributed all along the frequency gradient, 
with different trends for entropy and duration. These nontrivial inter-
dependencies between SWR features cannot be captured by linear 
correlation analysis (Extended Data Fig. 3b). Instead, analysis along 

the embedding allowed for a richer, heuristic, categorization of SWRs 
(Fig. 3e) than that resulting from standard percentile distribution of 
individual features (Fig. 3f). For instance, using contour analysis of 
event density in the embedding (Extended Data Fig. 3h), the region 
of low-amplitude/high-entropy SWRs of >160 Hz (a) can be separated 
from that of high-amplitude/low-entropy SWRs in the 120–150 Hz 
range (b) or from low-amplitude SWRs of 80–100 Hz (c; Fig. 3e). Strik-
ingly, all of them emerged from a continuum. We will use these regions 
as examples of how the method can be applied to better understand 
SWR mechanisms.

Similar figures were obtained for SWRs in the standard 100–250 Hz 
frequency range used in rodent literature2 (Extended Data Fig. 3i), while 
random LFP events containing no ripples failed to show any structure 
(Extended Data Fig. 3j). SWRs recorded in freely moving rats with 
high-density probes29 (external dataset) showed a similar distribu-
tion than for SWRs recorded in head-fixed conditions (our data), as 
quantified by embedding alignment of the two datasets (Extended 
Data Fig. 4).

The method and analytical steps leading to these results are illus-
trated in the following interactive code notebook, which can be exe-
cuted online: https://colab.research.google.com/drive/1AHG4UQ15N
obY2tI7Kc3hQFEkocdRzIsa?usp=share_link#scrollTo=GI8nBd8hOuSv 
(Code availability).

Input mechanisms underlying a diversity of ripple waveforms
The results above suggest that variations of SWR features are coher-
ently represented in the high-dimensional and the low-dimensional 
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Fig. 2 | Topological analysis of SWR waveforms. a, Experimental setup and 
examples of SWRs. Note event-to-event variability in terms of LFP waveforms and 
spectra from low (80 Hz, leftmost) to high frequencies (>160 Hz, rightmost).  
b, Distribution of SWR features (frequency, amplitude, spectral entropy and 
slope) from all SWR events (10,741 events, 58 independent sessions, 27 mice).  
c, Ripples recorded at the SP are represented in a high-dimensional waveform space 
(127D) determined by the sampling rate (2,500 Hz) and the window size (±25 ms). 
In this representation, each SWR is a point in the cloud made by all detected 
events. d, Topology of the SWR cloud was examined with persistent homology, 
which identifies holes and cavities in the data by using simplicial complexes. 

These are made of simplices (for example, dots, lines, triangles and tetrahedrons) 
that connect data points (SWRs in this case) in a given radius. Persistent 
homology looks for their persistence as the radius around each point varies in 
the high-dimensional space. The different homology groups (H) are defined 
from the number of cuts that separate simplices in pieces. e, Barcodes for the 
three homology groups (Ho, H1 and H2) show persistence of only one continuous 
component in the experimental SWR data cloud (data from a random subset of 
n = 3,500 events). f, The intrinsic dimension of the SWR data cloud was estimated 
using the ABID method22, which looks at the distribution of angles among the 
neighbors of a data point in a given radius. Bars represent single values.
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waveform space. Are there circuit mechanisms underlying the distri-
bution of SWRs along a continuum?

To gain mechanistic insights, we next estimated the current 
source density (CSD) signals of individual SWRs using all channels 
from the recording probe (Fig. 4a; 2,613 events, 17 independent ses-
sions from 9 mice meeting CSD criteria), as well as the associated 
multiunit activity (MUA) firing from the cell body layer. A CSD sink 
(blue) corresponds to active depolarizing currents driven by gluta-
matergic input pathways at the specific hippocampal strata, while 
a CSD source (red) could be interpreted either as the passive return 
current or as an active hyperpolarization driven by GABAergic  
inhibitory inputs.

We projected MUA and CSD values over the embedding that 
resulted from SP ripples (Fig. 4b). Strikingly, CSD values from differ-
ent layers segregated along the embedding, suggesting that ripple 
waveforms are carrying latent laminar information about the assort-
ment of synaptic inputs. By confronting the distribution of CSD and 
MUA values with that of SWR features, and the previously defined 
regions (a, b and c), we noted some remarkable trends (Fig. 4b versus 
4c). For example, MUA values distributed similarly to the spectral 
entropy, consistent with population firing leaking into the ripple 
band. Interestingly, the distribution of the SR sinks (for example, 

CA3 inputs) seemed to follow that of ripple frequency and amplitude, 
whereas CSD values at the stratum oriens (SO; for example, CA2 and 
CA3 inputs) and the stratum lacunosum moleculare (SLM; entorhinal 
inputs) seemed to be associated with the distribution of SWR ampli-
tude and duration, respectively. Similar trends were appreciated 
for input-specific generators (CA3, CA2 and entorhinal inputs from  
layers 3 and 2), estimated with independent component analysis (ICA; 
Extended Data Fig. 5a,b).

We confirmed some of these intuitions by calculating the spa-
tial correlation between CSD values and SWR features for the same 
set of events, using voxels in the 4D UMAP space (Fig. 4d and Meth-
ods). Spatial correlation extracted more structure than direct pair-
wise comparisons between SWR feature values (Fig. 4e; blue and gray 
traces, respectively). To evaluate whether the low-dimensional wave-
form space provided more information as compared with simpler 
approaches, we also looked at the spatial correlation between CSD 
values and SWR features projected in a feature space (that is, the 4D 
space made of frequency, amplitude, entropy and duration; Fig. 4d). 
We found less spatial correlation in a 4D space built from the predefined 
features versus that resulting from the embedded waveform space (4D 
UMAP), and even for pairwise comparisons (Fig. 4e). This is because the 
spatial correlation in the reduced waveform space takes into account 
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the topological organization of events in the voxel neighborhood, in 
contrast to the feature space. Consistently, the SI of CSD values at the 
feature space was lower than in the original and the reduced waveform 
space (Extended Data Fig. 5c; see the same for ICA components in 
Extended Data Fig. 5d).

According to spatial correlation analysis, the organization  
of ripples in the waveform space is mostly determined by the 
assortment of inputs. Inputs arriving at the SR (that is, CA3) mostly 
explain the distribution of SWRs in the waveform space according to  
their frequency and duration, while their distribution by amplitude 
is determined by SO and SR inputs (that is, CA2 and CA3). This is con-
sistent with a CA2 and CA3 origin of different types of SWR events30,31. 
Instead, entorhinal cortical inputs at the SLM may influence the  
distribution of SWRs according to their frequency and duration,  
but not their amplitude, consistent with previous data30,32. No  
significant spatial correlation was found between the distribution of 
CSD and entropy values in the waveform space (all layers at P > 0.05). 
In contrast, events with higher MUA values distributed closer to 
those with higher spectral entropy (correlation coefficient R2 = 0.61) 
and lower amplitude (R2 = 0.19; both at P < 0.0001). Importantly, we 
confirmed different contributions of associated sinks and sources 
in shaping the previously topologically categorized SWR events a, 
b and c (Fig. 4f and Extended Data Fig. 5e), permitting physiological 
interpretation. For instance, while high-amplitude/low-entropy SWRs 
of 120–150 Hz (region b) were associated with the typical large SR 
sink and SLM sources, low-amplitude SWRs of 80–100 Hz (region c) 
instead exhibited sinks at the SLM in association with sources at the 
SR (Extended Data Fig. 5e).

Optogenetic validation of the low-dimensional embedding
To better explore these ideas and to improve interpretation, we sought 
to examine the topological distribution of SWRs generated by CA3 
and CA2 (ref. 31). Thus, we expressed channelrhodopsin in upstream 
CA3 and CA2 pyramidal cells using transgenic and viral strategies  
(Fig. 5a and Extended Data Fig. 6a,b). We mimicked the CA2-specific 
and CA3-specific prolonged synaptic release that accompanies SWRs 
by using green-light pulses of 100-ms duration, which mildly activate 
channelrhodopsin currents (Methods). Consistently, optogenetic 
activation of these terminals resulted in evoked SWRs of different fea-
tures in CA1 (Fig. 5b).

In agreement with correlation analysis, we noted that the fre-
quency and amplitude of CA2-evoked events could not be modu-
lated by increasing the light power, in contrast to CA3-evoked SWRs 
(Extended Data Fig. 6c,d). To compare with spontaneous events, we 
isolated evoked SWRs in windows around their power spectral peaks 
(±25 ms), as before. Strikingly, optogenetically evoked SWRs fitted 
differently across the UMAP embedding (Fig. 5c and Extended Data  
Fig. 6e). CA3-evoked events spread toward the region of high-amplitude/
high-frequency (for example, region b), while CA2-evoked SWR events 
remained more confined toward the low-frequency/low-amplitude 
region (for example, region c). These results did not simply reflect 
differences on the mean frequency of evoked SWRs (Extended Data 
Fig. 6f), instead all feature values were consistently distributed in the 
UMAP embedding (Extended Data Fig. 6g). The different distribution 
of CA2-evoked and CA3-evoked SWRs was confirmed by computing the 
distance between centroids across all UMAP projections (Fig. 5c; 1,220 
events from CA2; 1,715 events from CA3), with centroid distance per 

Table 1 | SI of SWR features over the waveform space

All events

Original space 
50 ms

Reduced space 
50 ms

Original space 
100 ms

Reduced space 
100 ms

Original space 
200 ms

Reduced space 
200 ms

Frequency 0.64 0.59 0.62 0.56 0.59 0.56

Amplitude 0.53 0.46 0.47 0.43 0.43 0.43

Entropy 0.33 0.30 0.32 0.30 0.30 0.27

Duration-env 0.09 0.06 0.11 0.07 0.10 0.05

Duration-AUC 0.24 0.17 0.25 0.17 0.24 0.20

Slope-to-peak (ripple) 0.16 0.13 0.04 0.03 0.02 0.02

Slope-from-peak (ripple) 0.12 0.10 0.07 0.05 0.04 0.03

Slope-to-peak (SW) 0.10 0.08 0.09 0.08 0.09 0.08

Slope-from-peak (SW) 0.13 0.11 0.13 0.11 0.10 0.10

SWR offset 0.03 0.03 0.04 0.04 0.05 0.03

Per session

Frequency 0.3802**** 0.4091**** 0.3485**** 0.3668**** 0.3381**** 0.3617****

Amplitude 0.2968**** 0.2466**** 0.2694**** 0.2481**** 0.2665**** 0.2805****

Entropy 0.1463**** 0.1426**** 0.1301**** 0.1467**** 0.1148**** 0.1251****

Duration-env 0.0260**** 0.0198**** 0.0192**** 0.0210 0.0138**** 0.0146

Duration-AUC 0.0997**** 0.0719**** 0.0919**** 0.0751**** 0.0904**** 0.0874****

Slope-to-peak (ripple) 0.0916**** 0.0883**** 0.0141**** 0.0160 0.0016 0.0052

Slope-from-peak (ripple) 0.0671**** 0.0681**** 0.0206**** 0.0272**** 0.0235**** 0.0288****

Slope-to-peak (SW) 0.0471**** 0.0437**** 0.0547**** 0.0540**** 0.0494**** 0.0552****

Slope-from-peak (SW) 0.0688**** 0.0724**** 0.0692**** 0.0785**** 0.0689**** 0.0848****

SWR offset 0.0374**** 0.0347**** 0.0477**** 0.0482**** 0.0417**** 0.0467****

Data for all events represent single values of the SI calculated over the entire data cloud (10,741 events, SWRs, all sessions) in the original and the 4D UMAP space built with different windows 
lengths. Data per session represent the mean value of the SI over the ripple cloud calculated per sessions with >200 events (n = 19 independent sessions). Bold values indicate consistent 
structure (SI > 0.1) in the original and the reduced space across windows. Values were significantly different than shuffled distribution at ****P < 0.0001 (one-sample one-sided t-test). AUC, area 
under the curve; Env, envelope.
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projection/session tested significantly against the shuffled distribution 
(Fig. 5d). Importantly, the distribution of CA3-evoked and CA2-evoked 
SWRs over the UMAP embedding resembled the region where ICA 
localized their associated active synaptic sinks (Extended Data Fig. 5a).

Overall, these results suggest that layer-resolved information of 
individual ripples is represented in both the high-dimensional and the 
low-dimensional spaces built from SP signals. We therefore trained a 
support vector decoder (SVD) to infer CSD values using only the posi-
tion of spontaneous SWRs in the input space (Fig. 5e; tenfold design for 
training and test; see Extended Data Fig. 7 for details and results from 
other decoders). We found that this strategy successfully explained a 
large part of the CSD variance (Fig. 5f). While results were in general 
better using data from the high-dimensional space, trends were best 
preserved using coordinates of the 4D UMAP space as compared with 
the feature space. Actually, an SV classifier operating over the 4D UMAP 
space successfully identified evoked SWRs from CA3 and CA2 at 0.65 
accuracy, well above chance level (P < 0.0001) and independently on 
differences of frequency and amplitude (0.67 and 0.62 accuracy for 
SWR events equalized by frequency and amplitude, respectively).

Thus, our topological and low-dimensional analysis of ripple wave-
forms can provide mechanistic interpretation of SWR feature variations 
depending on CA1 microcircuit activation by different input pathways. 
Importantly, this strategy may allow for inference of the underlying 
mechanisms from single-channel recordings even in the absence of 
precise laminar information.

Effects of brain states and cognitive demands
Inspired by these ideas, we sought to evaluate how cognitive demands 
(novelty, learning) and brain state (wakefulness, sleep) influence the 
expression of SWRs. A long-standing question in the field is what deter-
mines differences between SWRs in awake and sleep conditions5. With 
the aim to compare awake versus sleep SWR preceding and following 
a series of cognitive tasks, we recorded from mice exposed to novel 
or familiar contexts (rooms A and B, 6 mice implanted with wires), 
while they were trained for the first time to alternate for water reward 
in either linear tracks (LTs) or semicircular tracks (CTs), or allowed 

to explore a two-chamber (TC) field (Fig. 6a). The order of the tasks 
was the same for all animals. SWRs were recorded in the home cage 
before and after each task. To provide additional data for training the 
topological decoder, three additional mice were recorded with linear 
arrays during the first task only (Extended Data Fig. 8a). SWRs (59,907 
events) were classified as belonging to rest (immobility; 11,593 events), 
awake (exploratory pauses; 9,164 events) and sleep states (non-rapid 
eye movement (REM) sleep; 39,149 events; data 36 sessions from 9 
mice; Extended Data Fig. 8b,c).

Similarly to data above, SWRs exhibited more SI for frequency in 
both the original and the reduced space, built separately for events 
recorded before and after the tasks (Fig. 6b; intrinsic dimension of 4 in 
all cases). This observation cannot be explained by differences between 
sessions (Extended Data Fig. 8d), nor by the different rate of SWRs 
(Extended Data Fig. 8e; bootstrapped). Visualization of SWR features 
projected over the reduced embedding confirmed these trends (Fig. 6c 
and Extended Data Fig. 9a). Note that while the embedding is rotated 
as compared with that from head-fixed recordings, the relationship 
between the distributed features is preserved due to UMAP invariance.

We first focused on evaluating the influence of brain state (awake/
rest/sleep) on the organization of SWRs. Analysis of the distribution of 
awake SWRs revealed remarkable biases, especially in the post-training 
embedding (Fig. 6c), which were dominant along some UMAP projec-
tions (that is, UMAP1 versus UMAP2/3/4 projections; Fig. 6d). We next 
compared the effects of awake and sleep states before and after tasks 
to evaluate their potential mechanisms. We estimated the topological 
distance between the centroids of awake and sleep SWRs per UMAP 
projection, and confirmed a major influence of training in their separa-
tion (Fig. 6e). Standard statistical comparison of awake and sleep events 
provided only a partial view (Extended Data Fig. 9b).

To dissect these effects closely, we bootstrapped all SWRs for each 
task/session in the UMAP1 versus UMAP2/3/4 projections, and tested 
them against the shuffled distribution. We found that the nature of 
the performed tasks had a major influence on segregating awake and 
sleep SWRs recorded after training but not before (Fig. 6f). Novelty 
(tasks ALT1 and BTC) and new learning (task ALT1) had major impact, 

ba

CSD 

SO

SP

SR

SLM

Sink Source

50 
ms

0.5 
mV

d e f

SO SP SR SLM

UMAP1
2 4 6 8

U
M

AP
2

0
2 4 6 8

0

UMAP1UMAP1
2 4 6 8

0

UMAP1
2 4 6 8

0

2

4

6

2

4

6

2

4

6

2

4

6
Source

Sink

Frequency
b

ca

Amplitude

c

b

a

Entropy
b

a c

Duration
b

ca

MaxMin
UMAP1
2 4 6 8

2

4

6

0

MUA
Max

Min

c

CSD
(per layer)

SWR
feature

UMAP
space

–2

SR

0

2

cba

*******

SLM
*******

c
–2

0

2

ba

0

cba

********

SO

2

–2

C
SD

 (z
-s

co
re

d)

C
SD

 (z
-s

co
re

d)

C
SD

 (z
-s

co
re

d)

C
or

re
la

tio
n 

co
e�

Freq vs. 
CSD

Amp vs. 
CSD

Duration vs. 
CSD

4D-UMAP
4D-Features
Pairwise

0

0.3

0.6

SL
MSRSPSO SL
MSRSPSO SL
MSRSPSO

0

0.3

0.6

0

0.3

0.6

Feature
space

Spatial correlation

U
M

AP
2

U
M

AP
2

U
M

AP
2

U
M

AP
2

Fig. 4 | Input mechanisms underlying the distribution of SWR features.  
a, SWR-associated CSD signals estimated from linear silicon probes. Arrowhead 
marks the SP channel used for topological analysis. Color scale indicates the 
intensity of sinks (blue) and sources (red). b, Distribution of CSD sink and source 
intensities per SWR confirms that the embedding built from SP signals contains 
layer-resolved information of the underlying input generators. MUA values 
were also distributed over the UMAP cloud (color scale from 0 to 0.07 spectral 
power 300–400 Hz). Data from 2,613 events, 17 independent sessions and 9 mice 
met CSD criteria. c, SWR features and event categorization are shown in Fig. 3e 
(a, b and c) for comparison with the CSD distribution. The color scale indicates 
minimal and maximal feature values as shown in Fig. 3d. d, Spatial correlation 
between SWR features and CSD values was calculated in a 4D space using voxels. 

The 4D space was defined by either the UMAP coordinates (blue axes) or by SWR 
features (green axes). In both cases, the SWRs will form a point cloud, but they 
will differ in their shapes. e, Significant correlation coefficients between SWR 
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at the SO, the SR and the SLM for the different categories of events as horizontal 
lines, with the first and third quartiles denoting box limits (a, 1,147 events; b, 1,797 
events; and c, 1,211 events). Whiskers indicate the data point farthest from the 
quartile values that is within 1.5 times the interquartile range. One-way ANOVA 
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as reflected in larger centroid separation between post-training awake 
and sleep SWRs (Fig. 6f). This maximal segregation of SWRs from the 
first session was consistent for all animals, and may reflect the major 
role of hippocampus in one-shot learning. Instead, centroid separation 
decreased significantly for repeated contexts (ACT) and task (ALT2). 
These results suggest that awake SWRs become more similar to sleep 
and rest SWRs after habituation to tasks. Instead, SWRs during sleep 
and rest distributed more homogeneously (Extended Data Fig. 9c) with 
no effects across tasks (Extended Data Fig. 9d).

To focus on the cognitive effects, and to exclude potential differ-
ences between embedded data, we evaluated their distribution across 
tasks by building the high-dimensional and low-dimensional repre-
sentations of events recorded before and after the tasks together, for 
the awake and sleep conditions separately (Fig. 6g and Extended Data  
Fig. 10a). The distribution of bootstrapped awake SWRs before and 
after the tasks exhibited maximal separation in different rooms (nov-
elty; ALT1 and BTC) and for the first track (original training; ALT1), and 
dropped to shuffle distribution with habituation (experience; ALT2; 
Fig. 6h). Instead, pre/post SWRs recorded during sleep distributed 
homogeneously and did not differ from shuffled data (Fig. 6h).

Topological decoding of inputs underlying ripple variability
Finally, we took advantage of topological decoding and used mice with 
linear array recordings from the first day (ALT1; Extended Data Fig. 10b) 
to train and test an SVD model (Fig. 7a). Using these data, we found that 
CSD values reconstructed from the high-dimensional space were more 
accurate than those obtained from the reduced UMAP embedding 
(Fig. 7b, top; P < 0.0001; two-way analysis of variance (ANOVA) for 
methods and layers), suggesting that low-dimensional representations 
may even lose some information when large cognitive load is at play. 
Strikingly, the explained variance of layer-specific CSD values from 
freely moving recordings was similar to that from head-fixed data in 
the original space (nonsignificant two-way ANOVA), while predicted 
CSD values from the 4D feature space yielded even poorer results closer 

to chance level at zero (Fig. 7b). Notably, prediction errors from the 
SVD trained in the low-dimensional and high-dimensional spaces were 
rather similar (Fig. 7b).

To ease visualization across tasks, we next sought to apply the 
SVD trained in the 4D embedding while tracking results in the original 
space. We found that CSD′ values predicted from wires were roughly 
similar to CSD values recorded with the linear arrays in the same ALT1 
task (Fig. 7c and Extended Data Fig. 10c). We then estimated CSD values 
at the SR and the SLM of pre/post awake SWRs from wire recordings 
across tasks using the SVD trained in the 4D UMAP space, and found 
significant differences (Fig. 7d; see Extended Data Fig. 10d for SVD 
in the original space). These results support the idea that changes of 
awake SWR distribution result from different input pathway activity 
induced after learning. Consistently, the centroid distance between 
pre/post awake SWRs estimated in the dominant UMAP projections 
significantly correlated with alternation performance in the ALT1 
task (R2 = 0.29, P = 0.0115, Fig. 7e; no correlation with speed or total 
distance), consistent with major roles of awake SWRs in signaling novel 
experience and learning.

Discussion
Using topological and low-dimensional analysis of ripple waveforms 
recorded within the CA1 cell body layer, we demonstrate that their vari-
ability can be precisely quantified and mechanistically explained. We 
found that SWRs distribute along a continuum of waveforms, which 
reflect layer-resolved information. For decades, observation of the effect 
of brain state and cognitive demands on SWRs has remained elusive with 
changes in frequency, rate, amplitude and the content of replay being 
described. Here, we show that the intricacy of the accompanying changes 
can only be partially extracted using statistical and spectral methods. 
Instead, transforming classification of ripple waveforms into a topo-
logical problem reveals dominant mechanistic biases of input pathways.

Uncovering the diversity of SWRs is key to understanding 
their roles in memory function and dysfunction1,12. The attempts to 
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categorize these events based on discrete clusters have been typi-
cally confronted with difficulties in defining clear-cut entities7,10,18–20. 
Our topological analysis provides support to the idea that the SWR 
waveforms represent a continuum, which can be embedded into a 
low-dimensional space. Similar strategies can be applied to the study 
of other types of oscillations and LFP signals33,34. This permits visualiza-
tion of the distribution of predefined features such as frequency and 
amplitude, which can be quantified at the original and the reduced 
spaces using informational geometry23,35. While different SWR catego-
ries can be defined using clustering strategies, their interpretability 
and relationship with specific ripple waveforms will not be necessarily 
obvious. Future work can examine the relationship between the conti-
nuity of ripple waveforms and their categorization from local ensemble 
patterns and large-scale brain dynamics7,10,19,20.

Our analysis provides mechanistic support for interpreting 
changes of ripple waveforms associated with brain states and learn-
ing. Instead of relying on abstractly reduced representations, we chose 

to evaluate the intrinsic dimension of the data cloud for constraining 
analysis and visualization. The distribution of SWR waveforms carried 
layered information on the associated input pathways, which can be 
extracted from the topological organization in both the original and 
the reduced space. A decoder trained in both representational spaces 
successfully connects individual SWRs with the expected sink-source 
values without relying on laminar information. This permits inference 
of the underlying inputs and makes the method interpretable in physi-
ological terms. Importantly, while for inputs arriving at the SR (that 
is, CA3) the decoder is able to explain more than 60% of the variance, 
there is more information in the ripple waveforms than can be extracted 
from input generators alone. In contrast, the variance of CSD values at 
the SP (mostly reflecting passive currents intermixed with perisomatic 
GABAergic inputs) is less well explained by the decoding strategy. This 
is consistent with the idea of a major contribution of the local microcir-
cuit in shaping CA1 dynamics6,12,17,36,37 and the very nature of SWR events, 
which reflect ensemble representations brought about by different 

a

b h
Room A LT1 Room B TC Room A CT Room A LT2

Aw
ak

e 
pr

e/
po

st

Room A LT1 Room B TC Room A CT Room A LT2

Sl
ee

p 
pr

e/
po

st

c

120

160

240

80

200

Freq (Hz)
Pre-training
SWR-awake
SWR-sleep

Post-training
SWR-awake
SWR-sleep

UMAP1
4 6 8

2

4

6

U
M

AP
2

2

Freq (Hz)

UMAP1
3 5 7

1

3

5

U
M

AP
2

1

7

d

4
1 2 3

2
1 2.0

0

3

4
4

1 2 3

2
1

U
M

AP

3

4

UMAP

Centroids distance
Awake vs Sleep

g

Pre-training

4
1 2 3

2
1

U
M

AP

3

4

UMAP

Structure index (freq)

4
1 2 3

2
1

1.0

0

3

4

Post-training Pre-training Post-training

e

f

Awake

Pr
e/

po
st

 c
en

tr
oi

ds
 d

is
ta

nc
e

(U
M

AP
 u

ni
t)

Pre-training

Post-training

Aw
ak

e 
vs

 s
le

ep (U
M

AP
 u

ni
t)

BTCALT1 ACT ALT2
0

1

2

3

BTCALT1 ACT ALT2
0

1

2

3 Per session
Shu�led

Sleep

0

0.5

1.0

BTCALT1 ACT ALT2

** *** **

127D space (original)
4D space (reduced)

Pr
e

Po
st

Duration
0

0.5

1.0

EntropyAmpFreq

Duration
0

0.5

1.0

EntropyAmpFreq

SI
SI

All events

Per session

Per mouse
Shu�led

0

0.5

2.0

BTCALT1 ACT ALT2

**
****

Task
SWR post

Awake Sleep

Pre-training vs post-training

SWR pre

Awake Sleep

ALT1 Room A  linear track
BTC Room B two-chamber
ACT Room A circular track
ALT2 Room A linear track

N
ovelty

Learning

Experience

Wires
recording

Linear
array

Rewarded task

Recording Recording

C
en

tr
oi

ds
 d

is
ta

nc
e

Fig. 6 | Topological analysis of state and cognitive influences on SWRs.  
a, Multiple tasks evaluated the effect of novelty, learning and experience. Mice 
implanted with wires experienced the tasks in the same order across days. Mice 
recorded with silicon probes performed only the first task and were used for 
topological analysis and decoding. SWRs were recorded over 2 h before and 
after each task. b, SI per feature before and after tasks, as estimated from the 
original and the reduced space, for all events together at top (single values) and 
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n = 12 independent sessions, 7 mice; post: n = 22 independent sessions, 8 mice). 
c, UMAP1/2 projection from the 4D embedding built from SWRs recorded pre-
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awake and sleep SWRs. Frequency distribution is shown to the right. d, SI for the 
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(bottom) the different tasks. Plots reflect the mean ± s.d. centroid distance for 
all possible combinations of sessions and the three UMAP1 projections (pre: 
n = 9 combinations for ALT1, n = 6 for BTC, n = 3 for ACT and n = 3 for ALT2; post: 
n = 21 for ALT1, n = 18 for BTC, n = 15 for ACT and n = 15 for ALT2). Data were 
bootstrapped (black), and tested against the shuffled distribution (100 shuffles, 
gray). Effects for task (post-training): one-way ANOVA F(3) = 22.8, P < 0.0001. 
Post hoc Tukey–Kramer two-tailed tests, **P < 0.01; ***P < 0.001. g, Topological 
distribution of pre-/post-training SWR across tasks. Note different trends of 
pre/post centroid separation for awake and sleep SWR. h, Distance between 
pre/post SWR centroids recorded in awake (top) and sleep (bottom) across 
tasks, calculated as in f. Plots reflect the mean ± s.d. centroid distance for all 
possible combinations of sessions and the three UMAP1 projections (awake: 
n = 21 combinations for ALT1, n = 9 for BTC, n = 12 for ACT and n = 9 for ALT2; 
sleep: n = 12 for ALT1, n = 9 for BTC, n = 6 for ACT and n = 9 for ALT2). Data were 
bootstrapped (black), and tested against the shuffled distribution (100 shuffles, 
gray). Effect for task (awake): one-way ANOVA F(3) = 25.8, P < 0.0001. Post hoc 
Tukey–Kramer two-tailed tests **P < 0.01; ****P < 0.0001.
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input assortments38,39. Similarly, other input pathways (for example, 
thalamic head-directional inputs) can contribute differently to shape 
SWR waveforms across different recording conditions40,41. Therefore, 
further studies should address what the additional contributions of 
local cell-type-specific and extra-hippocampal microcircuits are to 
the variation of SWR waveforms.

We found striking differences between awake and sleep SWRs, 
consistent with previous results5. In contrast with standard statisti-
cal methods, our approach allows for characterizing the topological 
direction of changes, providing physiological explanations. SWR events 
during exploratory pauses shifted toward the high-frequency and 
high-amplitude regions of the embedding, with cognitive demands 
associated to novelty, learning and habituation having major impact 
in their low-dimensional reorganization (Fig. 7f). Our optogenetically 
informed analysis suggests that low-amplitude slower (80–100 Hz) 
and high-amplitude faster (120–150 Hz) ripples might involve CA3 and 
CA2 inputs distinctly. Consistently, novelty signals characteristic of 
alertness, which tend to upregulate CA3 activity in novel contexts42,43, 
provide support for the drift of awake SWRs toward the region of the 
low-dimensional embedding characterized by stronger SR sinks. 
Similarly, awake SWRs are known to reactivate prefrontal cortical 
circuits more strongly than during sleep phases44 suggesting that 

their topological segregation can also reflect changes in the strength 
of cortico–hippocampal interaction10,20.

Quite contrastingly, during sleep and prolonged immobility, SWR 
features fluctuate homogeneously along the embedding, consistent 
with a homeostatic regularization of brain-wide excitability45 (Fig. 7f). 
The homogeneous topological distribution of sleep SWRs recorded 
before and after experience likely reflects the large representational 
variability accompanying memory consolidation46,47. During this 
period, memory traces resulting from experience are synaptically 
scaled and integrated into existing representations4,48. We hypothesize 
that a diversity of SWRs spanning all along the topological space may 
be reflecting the myriad of ensembles in the process of consolidation.

Our method allows exploitation of the topological organization of 
ripple waveforms in the high-dimensional and low-dimensional spaces 
to inform data-driven analysis. Here, we projected well-known features 
such as the frequency, amplitude and CSD values of SWRs to illustrate 
how information can be inferred from the data cloud. However, the low 
structural values of some of these features suggest additional mecha-
nisms may be required to fully explain waveform variability, such as the 
local cell-type-specific microcircuits and other input pathways men-
tioned above. By projecting the firing rate from different cell types from 
the local circuit and afferent regions, our method can help to inform 
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on their different contribution. Finally, topological analysis of SWR 
waveforms can facilitate identification of the mechanisms underlying 
disease-specific alterations, such as fast ripples in temporal lobe epi-
lepsy7, or slow-frequency ripples in Alzheimer’s disease49 and in some 
forms of interneuropathies50. Such a level of understanding of SWR 
variability using topological and low-dimensional analysis provides 
a unique opportunity to better dissect the microcircuit mechanisms 
underlying hippocampal memory function and dysfunction.
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Methods
Animals
Male and female mice (Mus musculus) between 2 and 12 months of age 
were used in this study. All protocols and procedures were performed 
according to the Spanish legislation (R.D. 1201/2005 and L.32/2007) 
and the European Communities Council Directive 2003 (2003/65/CE). 
Experiments were approved by the Ethics Committee of the Instituto 
Cajal, the Spanish Research Council (CSIC) and Comunidad de Madrid 
(protocol no. PROEX 162/19). Experiments included in this paper follow 
the principle of reduction, to minimize the number of animals. Thus, 
we obtained several sessions (electrode penetration) per animal, which 
were treated as independent observations. Whenever critical for the 
scientific question at hand, data are reported by animals. Mice were 
housed either alone or together with others to secure their well-being 
(for example, when implants were compromised and/or there was a 
dominant mouse in the cage requiring separation). They were main-
tained in a 12-h light–dark cycle (07:00 to 19:00) at 21–23 °C and 50–65% 
humidity with access to food and drink ad libitum.

Study design
Mice from different lines were randomly assigned to head-fixed and 
freely moving experiments, as described below. No statistical method 
was used to predetermine sample sizes, which were similar to those 
reported previously for this type of study7,29. Data collection was 
not performed blind to the conditions of the experiments (that is, 
head-fixed, freely moving, optogenetic stimulation, sleep, awake, 
tasks) due to execution requirement. For data analysis, detection of 
SWRs was blind to the topological analysis. All SWR events and record-
ing sessions were used, except for analysis requiring specific inclusion 
criteria (for example, sleep, rest, awake conditions), which are indicated 
in the corresponding section.

Head-fixed electrophysiological recordings from awake mice. 
Adult wild-type C57BL/6 male and female mice were implanted with 
fixation head bars under isoflurane anesthesia (1.5–2% mixed in oxygen; 
400 ml min−1). Two silver wires, previously chlorinated, and screws 
were inserted over the cerebellum for reference/ground connec-
tions. Implants of wires and screws were secured to the skull with 
light-cured glue (Optibond Universal, Kerr Dental) and secured with 
dental cement (Unifast LC, GC America). For optogenetic experiments, 
mice were injected in the same surgical act with adeno-associated 
viruses (AAVs) to drive expression at specific hippocampal regions, 
including: (a) CA2 pyramidal cells, which were targeted by injecting 
AAV5-DIO-EF1a-hChR2-mCherry (1 µl, 3.4 × 1012 viral genomes per 
ml) in Amigo2-Cre mice51 (now available at The Jackson Laboratory, 
as Amigo2-cre1Sieg/J, 030215); and (b) CA3 pyramidal cells, which 
were targeted with PHPeB-CamKII-ChRger2-TS-EYFP-WPRE52 (0.5 µl, 
2.6 × 1013 viral genomes per ml at 1:4 dilution in saline) in C57BL/6 
mice. Injection coordinates were: for CA2, −1.6 mm anteroposterior 
and 1.5 mm mediolateral from bregma, depth 1.1 mm; for CA3, −2 mm 
anteroposterior and 1.75 mediolateral (angle 10°) from bregma, depth 
1.9 mm.

All mice were habituated to the head-fixed setup, consisting of 
a wheel (20 cm radius) coupled to a stereotactic frame. Habituation 
sessions (5–7 d, two sessions per day) included handling and placing/
removing mice on the apparatus for increasing periods of time (from 
5–10 min to more than 1 h). Once mice were habituated to staying in 
the wheel for long periods, a cranial window was opened over CA1 at 
2 mm posterior from bregma and 1.25 mm lateral from the midline in 
each hemisphere under isoflurane anesthesia. Then, the craniotomy 
was covered with a low-toxicity silicone elastomer (Kwik-Sil, World 
Precision Instruments).

Recordings started the day after craniotomy and proceeded over 
the following 3–4 d. Individual penetrations were considered an inde-
pendent experimental session, thus providing several sessions per 

animal. At the end of each recording day, the craniotomy was clean 
and sealed with Kwik-Sil. Mice returned to their home cage until the 
next recording day.

For recordings, we used a 16-channel silicon probe comprising 
a linear array with 100 µm resolution and 703 µm2 electrode area 
(A1x16-5 mm-100-703; Neuronexus). For optogenetic experiments, 
a 105-µm optical fiber was attached to the probe over the 8th–10th 
electrode from the bottom. Extracellular signals were pre-amplified (4× 
gain) and recorded with a 16-channel AC amplifier (100×, Multichannel 
Systems), and sampled at 20 kHz per channel (Digidata 1440, Molecular 
Devices). Data were acquired with Axoscope (v11). Silicon probes were 
inserted up to 400–500 µm below the cell body layer of the CA1 region 
of the dorsal hippocampus to get a laminar profile, including SO, SP, SR 
and SLM. Relevant LFP events (ripples, multiunit firing, sharp-waves 
and theta-gamma oscillations) helped to identify penetration.

Optogenetic stimulation. To evoke SWRs optogenetically, we applied 
100-ms square pulses of light at 0.2–0.33 Hz with a 532-nm-wavelength 
laser (MGL-FN-532-300 mW, CNI Optoelectronics Tech) to stimulate 
axon terminals of CA2 pyramidal neurons (SO) and CA3 pyramidal 
neurons (SR and SO) in the CA1 region. In both cases, the fiber remained 
over the alveus. The laser power was adjusted in each experiment to 
obtain physiological-like oscillations comparable to spontaneous 
SWRs (CA2, 200–1,000 µW; CA3, 2–500 µW). Note we did not use 
the 473-nm-wavelength light (optimal wavelength to activate chan-
nelrhodopsin) because it evoked large amplitude nonphysiological 
oscillations. In a subset of experiments, we tested half-sinusoidal pulses 
of 50–100 ms and found similar types of events as generated with 
square pulses.

Electrophysiological recordings from freely moving mice. Adult 
male and female mice, either wild-type (C57BL/6, in-house) or from 
the B6.Cg-Tg(Thy1-CO P4/EYFP)18Gfng/J ( JAX mice, 007612) line, were 
implanted with optrodes consisting of four tungsten wires (0.002-inch, 
bare; 0.004-inch, PFA coated; AM Systems) coupled to optic fibers 
(200 µm diameter; Thorlabs). The wire tips protruded between 100 µm 
and 400 µm from the fiber flat surface (located at the alveus) allow-
ing for laminar recordings around the SP and the SR. Implants tar-
geted both hemispheres (anteroposterior: −2.5 mm; mediolateral 
2.2 mm from bregma; −1.1 mm depth from the dura). Once the wires 
were located in their final position, the shanks were glued to the skull 
with OptiBond Universal (Kerr Dental, Switzerland) and secured with 
light-cured acrylic resin (Unifast LC, GC Corporation).

In addition, some adult C57BL/6 wild-type mice were implanted 
with 32-channel silicon probes (A4X8-5mm 100-200-413; Neuronexus). 
Animals were anesthetized with isoflurane (2% for induction, 1–2% for 
maintenance, 500 ml min−1) mixed with oxygen. Probes targeted the 
right dorsal hippocampus (anteroposterior: −2.0 mm; mediolateral: 
1.5 mm from bregma; −1.7 mm depth from the dura). Reference and 
ground electrodes were placed at the skull above the cerebellum. Once 
in place, silicon probes were covered by Vaseline and cemented to the 
skull. A grounded copper mesh cage was built to protect the probes and 
to ground the system. All mice received doses of enrofloxacin (20 mg 
per kg body weight), dexamethasone (0.2 mg per kg body weight) and 
buprenorphine (0.05 mg per kg body weight) subcutaneously on the 
day of surgery and 24 h later.

Animals were allowed to recover for at least a week before habitu-
ation began. Signals were recorded at 30 kHz with an Open Ephys 
system using an Intan RHD2132 32-channel head-stage, including a 
3-axis accelerometer (Intan Technologies). Data were acquired with 
Open Ephys GUI 0.4.6.

Freely moving tasks and recordings. The experimental protocol 
consisted of four tasks done with at least 3 d of separation between 
them. Behavioral tasks started after a habituation phase consisting of 
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at least 3 d of handling, followed by 2 d of habituation to the recording 
box. This box, used throughout the experimental protocol, consisted 
of a black polypropylene enclosure (28 cm × 22 cm × 42 cm height) with 
bedding up to 2 cm. Habituation took place in the familiar room where 
mice were about to run the first round of tasks (room A). Animals were 
water deprived for 24 h before the tasks. Tasks lasted 20 min each, and 
SWRs were recorded immediately before (pre) and after (post) during 
2 h in the home cage. Habituation mimicked the behavioral tasks, and 
consisted of 2 h of recording (pre), followed by a 15-min exposition to 
the home cage with access to water, and then back to the recording box 
for another 2 h of recording (post).

The first behavioral tasks consisted of an alternation task in a linear 
track (LT1; 74 cm long × 7 cm wide, with 12-cm-tall walls) located in the 
already familiar room A. This linear track had visual (three vertical white 
stripes on each side) and somatosensory (three polishing paper stripes 
on the floor) cues in one-half of the corridor. Mice were transported to 
the maze and allowed to run for reward (4 µl sugar water, 10%) during 
15 min. Rewards were automatically delivered through a water valve, 
which was activated by an infrared sensor controlled by an Arduino 
system. A reward was delivered only if mice successfully alternated 
in the maze.

The second task consisted of free exploration (15 min) of 
a two-chamber place preference enclosure (TC, chambers of 
18 cm × 20 cm and 25 cm height, connected by a 7-cm-wide corridor) 
located in a room the mice had never visited (room B). This task was the 
only one that did not require the animals to be water deprived and was 
used to test for effects of novelty in the absence of training and reward.

For the next two tasks, mice returned to the familiar room A. The 
third task was run in a semicircular track (CT; 120 cm long × 7 cm wide, 
2-cm-tall walls) with somatosensory cues like in the linear track, where 
animals had to alternate (15 min). Water port rewards were available at 
both extremes of the semicircular track.

Finally, the fourth task consisted of a repetition of the first linear 
track (LT2) over 15 min. Mice carrying wires performed all the tasks in 
a row. Mice carrying silicon probes were recorded only during the first 
task (LT1) to provide data for CSD analysis.

SWR detection and feature analysis. For detecting SWR events, we 
followed consensus criteria2. First, we removed noisy epochs deter-
mined by excessive signal similarity between two separated recording 
channels (for example, masticatory artifacts). LFP signals from these 
channels were summed, and epochs deviating >10 times the s.d. from 
the mean were deleted.

Next, we selected the SP channel from the different shanks and/
or wires, which was characterized by the larger ripples and MUA fir-
ing, as judged from the maximal power in the ripple (100–250 Hz) 
and MUA bands (300–400 Hz), respectively. SP signals were filtered 
(forward-backward-zero-phase finite impulse response filter of 
order 512 implemented in either MATLAB 2020a and 2021b (Math-
Works) between 70 Hz and 400 Hz, and the envelope calculated with 
a fourth-order Savitzky-Golay filter with a window duration of 33.4 ms, 
followed by two smoothing moving windows of 2.3 and 6.7 ms, using 
the ‘movmean’ function. We intentionally left the bottom filter cutoff 
at 70 Hz to allow for detection of a wide diversity of SWR events, includ-
ing slow SWRs of 80–100 Hz, similar to those recorded in primates. 
The upper filter at 400 Hz permitted detection of MUA firing, which is 
typically used for replay studies. These detection limits are within the 
ranges reported by consensus2. Importantly, all candidate SWR events 
were validated (see below). A MUA index was estimated from the area 
of the spectral power at 300–400 Hz bandwidth.

For detection, candidate events were detected by threshold-
ing over 2–5 s.d. of the envelope signal. Detected events closer than 
15 ms were merged. All candidate events were centered by the mini-
mum value of the waveform closer to the peak of the envelope using a 
30-ms window. Finally, an expert validated all candidate events using 

a custom-made MATLAB GUI. Validation was based on the following 
criteria: (a) a clear LFP ripple oscillation should be confined to SP, 
sometimes intermixed with MUA; (b) the ripple should be associated 
with a sharp-wave at SR. Importantly, all events are detected from 
non-theta periods.

Analysis of LFP signals was implemented in MATLAB. To estimate 
SWR features of validated events, raw signals at the SP (ripples) and the 
SR (sharp-waves) were filtered in different bands. The amplitude of the 
ripple was defined from the envelope of the 70–400 Hz filtered SP sig-
nal. We deliberately chose a wide frequency range to evaluate potential 
segregation between events in the fast gamma (80–100 Hz) and the 
ripple (>120 Hz) bands. The slopes were defined for both the ripples and 
the sharp-waves using a 1–10 Hz filtered signal from the SP and the SR, 
respectively. Slopes to (slope-to-peak) and from (slope-from-peak) the 
peak were defined similarly from both signals using a linear fit. These fea-
tures were estimated in the ±25 ms window centered on the ripple peak.

The ripple spectral features were computed from the individual 
power spectra of the SP channel. The ripple frequency was defined as 
the power peak (estimated from the spectral bump) in the 70–400 Hz 
range. To account for the exponential power decay in higher frequen-
cies, we subtracted a fitted exponential curve (‘fitnlm’ from MATLAB 
toolbox) before looking for the ripple frequency. The spectral entropy 
was computed from the normalized power spectrum (divided by the 
sum of all power values along all frequencies) as:

Entropy = −∑Power( f ) ⋅ log2(Power( f ))

Where f is the frequency binned at 10 Hz. The spectral entropy has 
been described as useful for characterizing normal and pathological 
SWRs7. The ripple duration was estimated either directly from the 
envelope of the 70–400 Hz filtered SP signal or from the AUC of the 
amplitude-normalized 70–400 Hz filtered SP signal, using extended 
windows of ±100 ms around the peak. To validate estimation of SWR 
duration, we manually tagged the onset and end of SWRs using three 
sessions (259 events).

CSD signals were calculated from the second spatial derivative. 
We included only those sessions meeting spatial criteria (at least eight 
channels covering continuously from SO to SLM layers). Smoothing 
was applied to CSD signals for visualization purposes only. Tissue 
conductivity was considered isotropic across layers. ICA was applied 
to dissect the different spatial generators53, using the ‘runica’ and 
‘icaproj’ functions from the EEGLAB ICA toolbox (https://sccn.ucsd.
edu/eeglab/index.php). Each session was analyzed separately, and the 
ICA initialization matrix was always the identity matrix to reproduce the 
order of components. After excluding ICA components correspond-
ing to noise and artifacts, the remaining SWR-associated ICA spatial 
profiles were visually inspected and only those fitting the definition 
of input current generators were selected (1,789 events). Definitions 
include: (a) the CA2 SWR generator characterized by a sink at SO and 
a source at the SP/SR border; (b) the CA3 generator characterized by 
sinks at SO and SR flanking a source at the SP (contralateral), or those 
associated to SR sinks and SP sources (ipsilateral); (c) the EC3 generator 
characterized by a sink at deep SLM layer with a source at SR; and (d) 
the EC2 di-synaptic inhibition generator characterized by a source at 
the SLM and a sink at the SR. These definitions were derived from the 
existing knowledge regarding cell-type-specific input pathways54,55.

Histological analysis. Upon completion of experiments, all mice were 
deeply anesthetized with sodium pentobarbital (300 mg per kg body 
weight) and transcardially perfused with PBS (pH 7.4) followed by 4% 
paraformaldehyde and 15% saturated picric acid in 0.1 PBS. Brains 
were post-fixed and cut into 50-µm coronal sections in a vibratome 
(Leica VT 1000S).

Selected sections were washed in 1% Triton X-100 (Sigma) in 
PBS (PBS-Tx), treated with 10% FBS in PBS-Tx for 1 h, and incubated 
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overnight with the primary antibody solution: rabbit anti-PCP4 (1:100 
dilution; Sigma, HPA005792) in 1% FBS in PBS-Tx. After three washes 
in PBS-Tx, sections were incubated for 2 h at room temperature with 
the secondary antibody: donkey anti-rabbit Alexa Fluor 647 (1:200 
dilution; Invitrogen, A-32795), in PBS-Tx-1% FBS. Following 10 min 
of incubation with bisbenzimide H33258 (1:10,000 dilution in PBS; 
Sigma, B2883) for labeling nuclei, sections were washed and mounted 
on glass slides in Mowiol (17% polyvinyl alcohol 4–88, 33% glycerin and 
2% thimerosal in PBS).

Multichannel fluorescence stacks were acquired in a confocal 
microscope (Leica SP5), with the LAS AF software v2.6.0 build 7266 
(Leica), and objectives HC PL APO CS 10.0 × 0.40 DRY UV or HCX PL 
APO lambda blue 20.0 × 0.70 IMM UV. The pinhole was set at 1 Airy 
unit, and the following channel settings were applied (fluorophore, 
laser, excitation wavelength, emission spectral filter): (a) bisbenzimide, 
Diode, 405 nm, 415–485 nm; (b) EYFP or track autofluorescence, Argon, 
488 nm, 499–535 nm; (c) mCherry, DPSS, 561 nm, 571–620 nm; (d) Alexa 
Fluor 647, HeNe, 633 nm, 652–738 nm. For epifluorescence imaging, 
a microscope (LEICA AF 6500/7000) with a 10 × 0.3 dry objective and 
the following filters were used (excitation, dicroic, emission spectral 
filters): N2.1 (BP515-560, LP590, 580). Fiji software (National Institutes 
of Health Image; v.2.13.0) was used for subsequent image adjustment 
and analysis.

Quantification of mCherry+/PCP4+ cells were made in ×20 confo-
cal images at one confocal plane per mouse. For illustration purposes, 
z-projections (average intensity) were made. Estimation of CA3 infec-
tion was achieved in ×10 epifluorescence images, measuring the linear 
extension along the pyramidal layer for both the EYFP+ region and the 
complete CA3 region (from CA3c at the hilus to the border with CA2 
defined by PCP4). These analyses were made in one or two sections for 
each animal at around −2 mm anteroposterior from bregma, coinciding 
with the recordings coordinate.

Methods for estimation of the intrinsic dimension of the wave-
form space. Our topological method starts by projecting the ripple 
waveforms in a high-dimensional space determined by the temporal 
sampling rate. To build the high-dimensional space, we first down-
sampled SP signals to 2,500 Hz and cut ±25-ms windows around the 
peak of detected and filtered SWRs (rounded to 127 points). Projecting 
all SWRs into the 127D space (one dimension per sample, one point 
per SWR) resulted in a data cloud, which could be recovered into a 
low-dimensional space. This idea was inspired by early work on unbi-
ased classification of SWRs using unsupervised methods7,10,18. However, 
instead of predefining the visualization dimension to 2D, we looked for 
the minimal number of dimensions that preserves the data structure.

We first compared different methods for estimating intrinsic 
dimension of the data cloud in the 127D space. To this purpose, we 
used the R library ‘intrinsicDimension’ in Python (version 1.2.0; https://
cran.r-project.org/web/packages/intrinsicDimension/vignettes/
intrinsic-dimension-estimation.html). This includes methods such as 
local expected simplex skewness (ESS Local), dimension estimation via 
translated poisson distributions (MaxL Local) and local PCA (PCA Local). 
In addition, we used an ABID method, which does not rely on distances 
but instead estimates the angle distribution in the vicinity of each point22.

To validate the different methods, we built the ground truth from 
several objects in the high-dimensional space, including 2D plane and 
Swissroll, and a five-dimensional hyperball using codes from the R 
library. For building a 2D torus, we adapted the R functions to Python. 
To generate the objects, N points were uniformly distributed along 
the corresponding surface or volume defined by their parametric 
equations. They were subsequently embedded in 127 dimensions, with 
added Gaussian noise (s.d. = 0.01) in all directions of space.

Synthetic SWRs. In addition to objects, we also simulated synthetic 
SWRs similarly to experimental events. To generate synthetic ripples, 

we convolved a sinusoidal signal of a given frequency with a Gaussian 
signal of a given amplitude and s.d., which defined duration. For each of 
the three parameters, we used a uniform random distribution of 2,000 
samples between the values corresponding to percentiles 5/95% of the 
real data for the amplitude and the frequency, and between 0.5 and 
2 s.d. for duration. Synthetic SWRs were created at the same sampling 
rate as experimental events. Two different synthetic datasets were 
built, one with a continuous distribution of frequencies (80–240 Hz); 
and the other built from three different frequency ranges (80–100 Hz, 
130–150 Hz, 190–210 Hz). To make them comparable to experimental 
SWRs, noise equivalent to the root mean square error of LFP signals 
was added.

Persistent homology analysis. We evaluated the topology of the data 
cloud directly in the high-dimensional space (127D) using the persistent 
homology package Ripser.py (https://github.com/scikit-tda/ripser.
py/). Persistent homology looks for the persistence of n-dimensional 
simplicial complexes as varying the radius around each data point. The 
different homology groups are defined from the number of cuts that 
separate data in pieces of different dimensions (H0, H1 and H2), with the 
Betti numbers representing the rank of the homology group. In H0, the 
number of connected components that persist after increasing the 
radius is shown. H1 quantifies the number of loops. H2 identifies the 
number of cavities in the data. To validate analysis, we used objects 
of known topology (torus, ball, plane, and so on) and synthetic SWR 
data (continuous and 3-clustered distributions). For this analysis, 
we excluded outliers as in ref. 56. Analysis was executed in the super-
computer cluster Artemisa (https://artemisa.ific.uv.es/web/content/
nvidia-tesla-volta-v100-sxm2/) using >400 Gb RAM. To this purpose, 
data were bootstrapped 100 times in groups of 3,500 points and results 
were tested for consistency across different realizations.

Dimensionality reduction techniques. To reduce dimension from 
the original 127D space to the intrinsic dimension, we used differ-
ent methods. Isomap was applied using the Python library sklearn.
manifold version 0.24.2 (https://scikit-learn.org/stable/modules/
manifold.html). We used the UMAP version 0.5.1 (https://umap-learn.
readthedocs.io/en/latest/) in Python 3.8.10 Anaconda, which is known 
to properly preserve local and global distances while embedding data in 
a lower-dimensional space. A standard PCA was also applied. We found 
UMAP to be very efficient in computational terms with execution time 
independent of the number of data points. In contrast, Isomap was 
computationally costly especially for >10,000 data points. We also 
tested t-SNE57, which had a bit better computer efficiency than Isomap, 
but can reduce space only up to 3D. In all cases, we used default values 
for reconstruction parameters. Algorithms were initialized randomly. 
We found UMAP to provide robust results independent of initializa-
tion. Because the symmetric Laplacian of the graph G is a discrete 
approximation of the Laplace Beltrami operator of the manifold, the 
method uses a spectral layout to initialize the embedding. This provides 
convergence and stability within the algorithm.

Feature space. To evaluate the advantage of UMAP versus simpler 
approaches, we constructed a space using the SWR features (frequency, 
amplitude, entropy and duration). In this 4D space, SWRs will form a 
point cloud similarly to the waveform space, but they will differ in loca-
tion in the space coordinates and hence their shapes will be different. 
Note that that neighbors in the 4D feature space will not necessarily be 
neighbors in the 4D UMAP space.

Structure index. We used the SI to quantify the amount of structure 
the projection of a given feature presents over the data cloud23. We 
started with a data cloud in which each point has a value of an arbitrary 
feature. First, we divided the feature values into ten equal bins, and 
then we assigned each point to a group associated with a feature bin 
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(bin group). Next, we computed the pairwise overlap between bin 
groups as follows. Given two bin groups, 𝒰𝒰 and 𝒱𝒱, we define the overlap 
score (OS) from 𝒰𝒰 to 𝒱𝒱(OS𝒰𝒰𝒰𝒰𝒰) as the ratio of k-nearest neighbors of 
all the points of 𝒰𝒰 that belong to 𝒱𝒱  in the point cloud space. That is,

OS𝒰𝒰𝒰𝒰𝒰 (k) =
1

𝒰𝒰 𝒰 k
∑
u∈𝒰𝒰

|{Nj
u (𝒰𝒰 𝒰 𝒱𝒱 − 𝒰u}) | j = 1,… , k} ∩ 𝒱𝒱

where Nj
u (𝒰𝒰 𝒰 𝒱𝒱 − 𝒰u})  is the jth nearest neighbor of point u in the set 

𝒰𝒰 𝒰 𝒱𝒱 − 𝒰u}.
Computing the OS for each pair of bin groups (𝒰𝒰a and 𝒱𝒱b) yields an 

adjacency matrix (Anxn) whose entry (a,b) equals fg. A can be thought 
of as representing a weighted directed graph, where each node is a bin 
group, and the edges represent the overlap (or connection) between 
them. We do not allow any self-edges in the weighted directed graph 
so that we set OS𝒰𝒰𝒰𝒰𝒰 (k) = 0.

Finally, we define the SI as 1 minus the mean weighted out-degree 
of the nodes after scaling it:

SI (ℳ) = 1 − ( 2
n2 − n

n
∑
a

n
∑
b
Aa,b)

The SI takes values between 0 (random feature distribution, fully 
connected graph) and 1 (maximally separated feature distribution, 
non-connected graph). According to this definition, on small data-
sets and using a small number of neighbors (k), the non-symmetry of 
k-nearest neighborhoods can yield slightly negative values. Thus, we 
define the final SI to be the maximum of 0 and the result of the equation 
above. Importantly, by definition the SI agnostic to the type of structure 
(for example, gradient and patchy). Instead, it is the weighted directed 
graph that provides additional insights. Note that this metric can be 
applied to n-dimensional spaces and any arbitrary cloud distribution 
(for example, torus, Swissrolls and planes).

Importantly, for quantitative comparison of structural indices 
from different features, the same set of points should be used. For 
instance, since CSD values are typically estimated from a subset of 
recordings meeting methodological criteria, their structural values 
cannot be directly compared with that of frequency or amplitude for 
the full dataset.

Spatial correlation analysis. Spatial correlation analysis of SWR fea-
tures was implemented at 4D by using voxels of different resolutions. 
To validate the voxel size, a toy model of anticorrelated and random 
feature distributions was simulated over the 4D experimental SWR 
embedding. The number of experimental data points per voxels of dif-
ferent sizes (in UMAP coordinates), as well as mean values per feature, 
were estimated to match the expected correlation of the toy model. The 
spatial correlation coefficient was calculated using the Pearson correla-
tion between mean voxel features for both the anticorrelated (expected 
R2 = 1) and random (expected R2 = 0) distributions. The optimal voxel 
size was defined as the value that best optimized the expected correla-
tion for both distributions at 4D (voxel size of 1 corresponding to about 
200 events). Note that this is a linear correlation between two features 
in 4D voxels, not requiring corrections for multiple dimensions.

Topological categorization of SWRs in the UMAP embedding. We 
defined different categories of SWR events in the UMAP embedding 
by looking at the complementary distribution of different features 
using Python (3.8.10 Anaconda) with libraries Numpy (1.18.5), SciPy 
(1.5.4) and Matplotlib (3.3.3). Regions of interest (ROIs) were operation-
ally defined along the topological limits of gradient distribution per 
feature. To this purpose, we first defined the ranges of interest of the 
SWR individual features (for example, frequency, amplitude, entropy). 
For the n ripples with feature values in a predetermined range, their 
coordinates Xn in the UMAP embedding were used to estimate their 

probability density ̂f(xxx) in a 2D grid space, x. For this, we computed the 
bivariate kernel density estimator making use of the seaborn ‘kdeplot’ 
function with a Gaussian kernel K and a smoothing bandwidth h deter-
mined internally using the Scott method (https://seaborn.pydata.org/
generated/seaborn.kdeplot.html). The grid space x had a size of 
200 × 200 points evenly spaced from the extreme values of XXXn.

̂f(xxx) = 1
nh2

n
∑
i=1

K { 1
h
(xxx −XXXi)}

The estimator ̂f(xxx) allowed representing the scattered discrete 
events into a continuous probability density function, which was nor-
malized by the number of ripples n such that the total area under all 
densities sums to 1. Each point of the grid space x was assigned a density 
value, which can be considered as a third axis z. To visualize the density 
values as contours in two dimensions, the probability density function 
was partitioned in 10 levels of the same density proportion in the z axis. 
Each curve shows a level set such that a proportion of the total density 
lies below it, with contour plots of smallest area representing higher 
density. The iso-contour that best controlled the over-smoothing and 
under-smoothing of the distribution was selected for each SWR feature. 
This was often the 6th or 7th contour from highest to lowest density, 
which represents 60% to 70% of the highest density iso-proportions. 
Density contours from each feature were then combined, and the 
overlapping ROIs were identified.

We also estimated the centroid location of the data cloud by 
selecting events with different characteristics (for example, percen-
tile values) or SWRs of different origin (for example, sleep/awake; 
optogenetically evoked, and so on). The distance between centroids 
or between data points was calculated using the Euclidean distance in 
UMAP coordinates either in 2D projections or in the reduced 4D space.

For bootstrapping analysis, we subsampled the embedding by 
picking up a similar number of events for each session/task and repeat-
ing this process 10–100 times, resulting in a mean value per session. 
The sample size was typically 200, 100 or 50 events depending on the 
analysis and data availability for each observation unit (session). For 
shuffling, we randomized the SWR coordinates at the UMAP embed-
ding and repeated the process 100 times, resulting in a mean value 
per session. Bootstrapping and shuffling were performed per UMAP 
projection and at 4D.

Alignment of different datasets. To compare between datasets, we 
used manifold alignment58. To this purpose, the center of mass of 
points sharing similar bin values of a given feature (20 bins) was esti-
mated for each manifold in the 4D reduced space. The two point sets 
{pi} and {pi’} with i = 1, 2,…, 20; follow a one-to-one relation of the form 
pi’ = Rpi + T + Ni, where R is a rotation matrix, T a translation vector, and 
Ni a noise vector. Using the algorithm presented by ref. 58, we computed 
the least squares solution of R and T to calculate the optimal manifold 
alignment. Once aligned by a given feature, the spatial correlation 
between features in the two datasets was estimated using the method 
explained above (UMAP voxels of 1 corresponding to 200 events).

Fitting new data into an existing embedding. To align evoked SWRs 
into an existing embedding, we used spontaneous SWRs of the optoge-
netic experiments as the control. To avoid on/off effects of light, we 
used pulses of 100 ms to isolate a ±25 ms window. The window was 
centered at the power peak of the evoked ripple. Evoked SWRs were 
aligned into the existing embedding 1 built with the original spontane-
ous SWRs. To evaluate correspondence, we built a new embedding 2 by 
pooling together the original events and the spontaneous SWRs from 
the optogenetic experiments. This provided a reference location for the 
distribution of both the original and the new spontaneous events in the 
new resulting embedding 2. In the third step, we used the coordinates of 
the original events in embedding 1 versus 2 to estimate the error of the 
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original spontaneous events (alignment error) and those fitted (fitting 
error). Finally, evoked events were aligned directly into the original 
embedding and their distance distribution was confronted with the 
fitting and the alignment error of spontaneous events, which were 
always significantly lower than the data (distance between centroids 
of CA3-evoked and CA2-evoked SWRs; P < 0.00001).

Topological decoding of SWR laminar information. To evaluate 
the explanatory capability of topological representation of SWRs, 
we adopted a decoder approach to predict laminar information from 
SWRs (both in the original space and 4D reduced topological spaces, 
as well as in the 4D feature space). First, we divided the dataset of SWRs 
with an associated CSD into the training and test sets through a tenfold 
cross-validation approach. To ensure independence between training 
and testing in the 4D reduced space, the UMAP embedding was rec-
omputed for each fold using the training set, and then the test set was 
projected into the fitted space. We then preprocessed the CSD values by 
dividing each layer by its standard deviation (without subtracting the 
mean to avoid losing polarity information). Then, a decoder for each 
CSD layer was trained using the SWR position in the original space, in 
the 4D reduced space or in the 4D feature space.

To determine the goodness of fit of each decoder, we computed 
the explained variance regression score between the test CSD values 
and the predicted ones. To determine a confidence chance level, we 
evaluated the explained variance of shuffled data. The explained vari-
ance was calculated using the following formula:

explained variance ( y, y′) = 1 − var𝒰 y − y′}
var𝒰 y}

where y is the original (or the shuffled) variable and y’ is the predicted 
variable.

Following this schema, multiple decoders were tested, including 
Wiener Filter, Wiener Cascade, Extreme Gradient Boosting (XGBoost) 
and support vector regression, with support vector regression yielding 
the best performance.

To predict laminar information of SWR without an associated CSD, 
we input the SWR topological coordinates either in the original space 
or in the 4D reduced space to all tenfold decoders, and the average 
CSD prediction was computed. We confirmed that the median error of 
predictions across layers was roughly at zero level, supporting no bias 
of the decoder trained either in the original or in the low-dimensional 
space.

An SV classifier was used by leveraging the sklearn library 
(C-support vector classification). A tenfold approach was used for 
training the decoder to classify evoked SWRs from CA3 and CA2 based 
in their position in the 4D UMAP space. The regularization parameter 
C was set to 1, and a stationary kernel radial basis function was used as 
suggested by the library. The accuracy classification score (fraction) 
was used to evaluate the performance of the trained decoders and 
tested against shuffling data.

Sleep scoring and state classification of SWRs. Brain state scoring 
was implemented semiautomatically. Information from lateral and 
ceiling cameras was used to validate movement indices calculated from 
the head-stage accelerometer. The theta/delta signal was estimated 
from the time frequency spectrum calculated using the ‘bz_WaveSpec’ 
function from the Buzcode (https://github.com/buzsakilab/). Periods 
of immobility were separated from periods of running (awake). Immo-
bility periods were subsequently reclassified as ‘rest’ (no movement 
awake) and ‘sleep’ based on spectral criteria (skewed distribution of 
spectral values across time epochs). The maximal power in the 1–35-Hz 
band was used to identify episodes of REM sleep, which helped to define 
flanked periods of slow-wave sleep. Sensory thresholds during sleep 
were tested with mild sound stimulation (clicks), which permitted 

benchmarking of separate periods of rest and sleep during immobility. 
All SWRs detected in the different periods were classified accordingly.

Standard statistical analysis. Statistical analysis was performed 
with Python and/or MATLAB. Normality and homoscedasticity were 
confirmed with the Kolmogorov–Smirnov and Levene’s tests, respec-
tively. The number of replications is specified in the text and figures.

Several-way ANOVAs and/or other non-parametric tests were 
applied for group analysis. Post hoc comparisons were evaluated 
with Tukey–Kramer two-tailed tests with appropriate adjustment for 
multiple comparisons. For two-sample comparisons, the one-tailed 
and two-tailed Student’s t-test or another equivalent test was used. 
Correlation between variables was evaluated with the Pearson 
product-moment correlation coefficient, which was tested against 0 
(that is, no correlation was the null hypothesis) at P < 0.05 (two-sided). 
In most cases, values were z-scored (subtract the mean from each value 
and divide the result by the s.d.) to make data comparable between 
experimental sessions and across layers.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data analyzed in this study are publicly available in Figshare at  
https://figshare.com/projects/Topological_SWR/125359.
This includes ripple waveforms in the 50-ms window (±20 ms) from 
head-fixed and freely moving experiments, as well as synthetic ripples.

Code availability
Code used in this study is available in the following interactive note-
book: https://colab.research.google.com/drive/1AHG4UQ15NobY2
tI7Kc3hQFEkocdRzIsa?usp=share_link#scrollTo=GI8nBd8hOuSv/.
Codes and notebook are also deposited in GitHub at https://github.
com/PridaLab/Topological_SWR/.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Topological analysis of SWR waveforms in the high-
dimensional space. a, Flow diagram of the method. LFP signals from the channel 
with the maximal ripple power are selected (note that this is not limited to silicon 
probe recordings). First, the timing of all detected and validated SWR are used 
to center analysis. Next, LFP signals are subsampled (for example 2500 Hz; see 
other sampling rates in g) and all validated events aligned around the ripple peak 
(for example ±25 ms; see other window lengths in f). For a given sampling rate 
and window length there is a fixed number of time points making the SWR (for 
example 127 points considering the first and latest samples). The third step is to 
project each SWR event into the high-dimensional space defined by temporal 
samples (for example 127D). All events will form a cloud, from which we estimate 
the topological structure using persistent homology (Betti numbers) and the 
intrinsic dimension (ID). Once the ID of the SWR is determined, dimensionality 
reduction techniques can be used to embed data into the ID-low dimensional 
space. b, Synthetic SWR were build using three parameters: amplitude, frequency 
and duration. c, Barcodes for the three homology dimensions as calculated for 
a 2D-torus and synthetic SWR in the 127D-space (2000 events). H0 indicates the 
number of connected components that persist after increasing R. H1 quantifies 
the number of loops. H2 identifies the number of cavities.  

Note different topological features for the torus (1 continuous component,  
2 loops and 1 hole), a continuous distribution (80–240 Hz) of synthetic SWR  
(1 continuous component, no loops, no holes) and a 3-cluster distribution  
(80–100 Hz; 130–150 Hz; 190–210 Hz) of synthetic SWR (3 continuous 
components, no loops, no cavities). d, Noisy objects (noise equivalent to 0.1 
of the object amplitude) were created in 127D to provide ground truth (GT) 
for ID estimation. Note GT dimension is consistently estimated only with the 
Angle-based Intrinsic Dimension (ABID) method, while ESS (Expected Simplex 
Skewness) and PCA (Principal Component Analysis) result in some biases. PCA 
Local, EES Local and Maximal Likelihood Local (MaxL) all assume that the data 
is local (that is the curvature and noise within the neighborhood is small) and 
so they fail to capture GT for challenging objects such as the torus and the Swiss 
Roll. Instead, ABID is based on angle estimation in the local neighborhood and 
so it better fits to curved topologies. Bars reflect single values. e, Effect of data 
density (number of SWR events) at the 127D input space in ID estimation for 
experimental and synthetic SWR, as well as for random LFP segments of similar 
length. f, Effect of the window length in ID estimation of experimental SWR 
as calculated from EES Local, PCA Local and ABID. Note consistency of ABID 
estimations. g, Effect of the LFP sampling rate in estimation of ID.
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Extended Data Fig. 2 | Quantification of SWR feature distribution in the 
high- and low-dimensional spaces. a, Sketch of the dimensionality reduction 
approach applied to synthetic SWR without noise (ID = 3). b, Feature distribution 
in the 3D embedding of synthetic SWR events without noise as reconstructed 
with UMAP (2000 events). c, Structure Index as a metric to evaluate data feature 
distribution. The range value of each feature is n-binned (n = 10) and bin-values 
mapped onto the cloud to identify bin-groups (points sharing similar bin-values). 
Feature values can be patterned or randomly distributed over the data in any 
arbitrary dimension. In the example they are distributed with some gradient 
overlap over a Swiss Roll in a 3D-space. Overlapping between bin-groups was 
evaluated using graph analysis (see Methods). The Structure Index (SI) takes 
values between 0 (random feature distribution, fully connected graph) and 1 
(maximally separated feature distribution, non-connected graph). Note that this 
metric can be applied to arbitrary cloud distributions in n-dimensional spaces. 
d, Single values of the SI characterizing the feature distribution of synthetic 
SWR in the original and 4D UMAP space, built with different methods (Isomap, 
UMAP and PCA). Bars at left reflect single values of the structure index of the 

data cloud from all events. Results from synthetic SWR without (top) and with 
added noise (bottom) are shown separately for the intrinsic dimension of 3 
and 4, respectively. Bars at right represent the mean ± SD, with individual data 
points per feature projected in each space (n = 3 features). Note UMAP maximally 
retrieves the high-dimensional information from all features at the reduced 
embedding (SI Fraction recovered from the original space, shown at right).  
e, Two-dimensional projection of the 3D UMAP embedding of synthetic SWR at 
coordinates with maximal structure per feature (upper plots; that is UMAP1,2 
for frequency and duration; UMAP1,3 for amplitude). The Structure Index of 
each feature per UMAP projection is shown in the matrices below. f, Parametric 
dependence of the shape and orientation of the UMAP reduced embedding, and 
frequency mapping for a continuous distribution of synthetic SWR (80–240 Hz) 
without noise. Note that the UMAP embedding is invariant to rotation and 
translation, with the shape preserved. UMAP reconstruction parameters used by 
default were 0.1 minimal distance and 15 neighbors. g, Same as in f for a clustered 
distribution of synthetic SWR (80–100 Hz; 130–150 Hz and 190–210 Hz).  
Note consistent embedding in three separate clusters.
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Extended Data Fig. 3 | Experimental SWR feature analysis. a, Processing of 
experimental LFP signals for estimating different SWR features. Raw signals at SP 
(defined from the maximal ripple power) and SR (sharp-waves) were filtered in 
different bands to define amplitude (70–400 Hz envelope), slopes (1–10 Hz) and 
duration-env, from the 70–400 Hz envelope at the mean amplitude; duration-
AUC from the area under the curve of the amplitude normalized signal). Spectral 
features (frequency and entropy) were obtained from the individual SP spectra. 
The frequency was estimated from the bump spectral peak of each SWR event. 
The entropy was defined after normalizing the entire spectra (area = 1) binned at 
10 Hz. Slopes from the sharp-wave were calculated from the SR filtered signal. See 
Methods for details. b, Pearson R-values between features exhibiting significant 
correlation (p < 0.001; two-sided). Significant R-values above/below ±0.25 are 
shown in bold. c, Correlation between the two measurements of ripple duration 
(Duration-env and Duration-AUC) as compared against ground truth (SWR starts 
and ends were manually evaluated by an expert; see Methods). We found that 
defining the ripple duration from the AUC provided best correlation with the 
ground truth. Note the two measures correlated significantly between each other 
(R = 0.56; p < 0.00001 as shown in b). d, Single values of the SI characterizing 
the feature distribution of experimental SWR in the original and 4D space built 
with different methods (Isomap, UMAP and PCA). Bars reflect single values of the 
structure index of the data cloud from all events. At inset, bars reflect mean ± SD 
of the fraction of structure from the original space that is lost in the 4D space 

built with different methods using data from all features (n = 4 features per 
method). Note UMAP maximally retrieves the high-dimensional information at 
the reduced embedding. The UMAP1,2 projection per session is shown at right.  
e, Comparison with Self-Organizing Maps (SOM). SOM acts to fit a 2D-mesh to the 
data cloud in the original 127D-space. A 2D-UMAP was built similarly and  
the distribution of SWR was compared by using SOM-based colormaps. Note 
roughly similar organization of events in the 2D-mesh and the 2D-UMAP.  
f, Structure index fraction recovered from the original space while embedding 
experimental SWR with UMAP at progressively lower dimensions. Note that the 
feature structure is maximally retrieved with UMAP up to the estimated intrinsic 
dimension of 4, suggesting suboptimal representations with 2D-UMAP. g, UMAP 
embedding from SWR from two different mice (mouse1: 808 events; mouse2: 
1248 events). Note similar distribution invariant to rotation and translation in 
the UMAP coordinates. h, Definition of Region of Interests (ROIs) in the UMAP 
embedding using heuristic criteria. Contour lines are defined based on the 
density of points (SWR) sharing particular feature values. In the example, SWR 
of 120–150 Hz are identified and the contour density lines are defined from the 
probability density distribution. Same for SWR of > 4 z-scored amplitude and 
>3.75 entropy values. The ROI is defined from the overlapping region. i, UMAP 
projections of SWR detected in the 100–250 Hz band. j, UMAP projection of 
random LFP events. Note lack of structure for frequency.
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Extended Data Fig. 4 | Comparisons between datasets across species.  
a, Analysis of SWR events recorded in freely moving rats with high-density probes 
in an external dataset. The channel with the maximal ripple power was selected 
for topological data analysis. Note similar structure distribution per feature than 
in head-fixed mice, as quantified by the Structure Index (bottom) in the original 
and the reduced space (intrinsic dimension 4, as estimated by ABID). Bar reflect 
single values of the SI of the data cloud from all events. b, UMAP1,2 projections 
built from the SP channel with the maximal ripple power. The Structure 
Index matrices for each feature are shown at bottom. c, The 4D frequency 
representations of the two datasets (mouse head-fixed and rat freely moving) 

are aligned using feature values at UMAP coordinates. To this purpose the center 
of mass of points (SWR) with similar feature values (20 bins) were estimated and 
used for alignment in the 4D reduced space. Once aligned by a given feature, the 
spatial correlation between features in the two datasets were estimated (UMAP 
voxels of 1 corresponding to 200 SWRs). d, Spatial correlation coefficient (all 
significant at p > 0.001, two-sided) between features per alignment supporting 
quantitatively similar distributions in mice and rats. The best alignment 
strategy of the two embeddings is by frequency. Aligning by entropy yielded no 
significant correlation and it is not shown.
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Extended Data Fig. 5 | Input pathway generators. a, Independent component 
analysis (ICA) of SWR-associated current generators were estimated by spatial 
discrimination of LFP signals in a subset of experiments meeting methodological 
criteria for CSD and ICA reconstruction. Each generator was identified according 
to existing knowledge on pathway-specific sinks and sources (see b). The CA2 
generator was heuristically identified from ICA components exhibiting a SWR-
associated sink at SO and a source at SP/SR border (406 SWR from 5 sessions). 
The CA3 SWR generator was associated with sinks at SO and SR, which are shown 
separately (625 SWR from 7 sessions). Similarly, we identified two entorhinal 
cortex (EC) generators, associated to the layer 3 direct glutamatergic input 
pathway (EC3-SLM; 173 SWR from 4 sessions) and the indirect inhibitory EC2 
inputs (EC2-SLM; 585 SWR from 7 sessions), via CCK interneurons. The location of 
the active sinks and sources from each generator is indicated in the embedding. 
b, Summary of knowledge base used to inform identification of ICA generators. 
Note the two different EC input pathways associated with active sinks (EC3) and 
sources (EC2 via feedforward inhibition), which are located at two different 
depths into SLM. c, Distribution of CSD values per layer in the 127D original space, 
the 4D-UMAP space and the 4D-Feature space was evaluated using the structure 

index. Bars at left reflect single values per layer. Note similar distribution in the 
original and the UMAP space, and lower structure index values for all layers in the 
4D-feature space. Box plots at right show the median structure index (horizontal 
bars) per space for all layers as data points (n = 4), with the first and third quartiles 
as box limits. Whiskers indicate the data point further from quartile values that 
is within 1.5 times the interquartile range. Significant differences between the 
feature space and each of the topological spaces are indicated (****p < 0.0001; 
two-sided Student t-test). d, Structure index of the distribution of CSD values per 
ICA generator in the 127D original space, the 4D-UMAP space and the 4D-Feature 
space. Bars at left reflect single values per generator. The EC3-SLM generator is 
not shown due to poor sampling. Box plots at right show the median structure 
index per space (horizontal lines) for all generators as data points (n = 4), with 
the first and third quartiles as box limits. Whiskers indicate the data point further 
from quartile values that is within 1.5 times the interquartile range. Significant 
differences between the feature space and each of the topological spaces are 
indicated are indicated (***p < 0.001; two-sided Student t-test). e, CSD maps 
of SWR events in region a, b and c, defined according to exploratory heuristic 
criteria.
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Extended Data Fig. 6 | Input dissection with optogenetics. a, Immunostaining 
validation of channelrhodopsin (ChR2) expression specificity (mCherry) in the 
Amigo2-cre line used to target CA2 pyramidal cells (PCP4+). Scale bar correspond 
to 130 µm. b, Quantification of ChR2 expressing cells (mCherry+) among PCP4+ 
CA2 pyramidal cells (mean ± SD data from 4 sections from 4 mice). At right, 
quantification of CA3 specificity of channelrhodopsin expression obtained with 
the AAV PHP.eB CaMKII-ChRger2-EYFP strategy (expressed as percentage of 
EYFP+ pyramidal cell layer along the CA3 region defined from CA3c to CA3a at 
the border with CA2) (mean ± SD data from 2 histological sections from 2 mice). 
c, Dependence of the frequency of SWR evoked optogenetically from CA2 and 
CA3 terminals. Note relatively constant ripple frequency, independent of light 
stimulation intensity for CA2 but not for CA3 evoked SWR, consistent with results 
from spatial correlation. Plots show the mean ± SD frequency of evoked SWR per 

light intensity for CA2 (n = 3 sessions, 3 mice) and CA3 terminals (n = 3 sessions,  
2 mice), separately. d, Same as in d for the ripple power. e, Topological analysis of 
optogenetically evoked SWR. The centroid of each experimental group is shown 
in different UMAP projections. f, Feature value statistics of optogenetically-
evoked SWR. Box plots show the median feature value for CA2 (n = 1220 events 
from 5 sessions, 3 mice) and CA3 evoked SWR (n = 1715 events from 3 sessions,  
2 mice) as horizontal bars, with the first and third quartiles as box limits. Whiskers 
indicate the data point further from quartile values that is within 1.5 times 
the interquartile range. Given the evoked nature of the events, duration is not 
reported. Two-sided Student t-test, ***, p < 0.001; ****, p < 0.0001. g, Distribution 
of feature values of optogenetically-evoked SWR over the UMAP1,2 projection. 
Note consistent feature distribution over the embedding as compared with 
spontaneous SWR and differences between CA2- and CA3-triggered events.
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Extended Data Fig. 7 | Topological decoding. a, Schematic representation 
of the decoding strategy to predict CSD values from the SWR space. In any 
arbitrary space, SWR occupies different positions along the cloud. Each position 
is associated with specific CSD values. Any decoder seeks to map the real values 
of CSD into the representational space, so that they can be unambiguously 
predicted. A Support Vector Decoder (SVD; right) is a regression algorithm that 
looks to minimize the error tube, instead of seeking the best curve for a decision 
boundary. SVD find the closest match between data points and the mapping 
function. b, Schematic representation of the 10-fold cross-validation strategy. 
The SWR data cloud is divided in 10 samples. Nine of these samples are used for 
training and the remaining for testing; an error is computed. The procedure 
is repeated 10 times, providing mean results. c, CSD explained variance as 
predicted from the Wiener Filter, Wiener Cascade and XGBoost models of SWR 
mapped into the D-dimensional space (127D original and 4D reduced). Results 

from the Support Vector Decoder (SVD) are shown in the main figure. Box plots 
show the median explained variance (horizontal line) at all layers per space for 
the 10-fold prediction (n = 10 tests), with the first and third quartiles as box limits. 
Whiskers indicate the data point further from quartile values that is within 1.5 
times the interquartile range. d, Comparison between decoders in the original 
and the reduced space. Data per layer was aggregated to estimate the mean 
explained variance per decoder and tested with two-way ANOVA. Box plots show 
the median explained variance (horizontal line) per decoder resulting from 
aggregating data from all layers (n = 4), with the first and third quartiles as box 
limits. Whiskers indicate the data point further from quartile values that is within 
1.5 times the interquartile range. Effects for decoders (F(3,1) = 13.9, p < 0.00001) 
and input space (F(3,1) = 20.5, p < 0.00001). Posthoc Tukey-Kramer two-tailed 
tests *, p < 0.05. The SVD was chosen for all simulations, given maximal mean 
values.
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Extended Data Fig. 8 | Analysis of SWR recorded from freely moving mice. 
a, Histological validation of silicon probe tracks implanted chronically in freely 
moving mice. PCP4 immunostaining was used to delineate the border with 
CA2. Probe and electrode tracks were validated in all mice. b, Images from the 
lateral cameras used to validate the identification of Rest and Sleep states in 
the home cage. c, State scoring approach. Information from the lateral and 
ceiling cameras were used to validate movement indices calculated from the 
head-stage accelerometer. The theta/delta signal was estimated from the time 
frequency spectrum. First, periods of immobility were separated from periods 
of running (Awake). Immobility periods were classified as Rest (no movement 
awake) and Sleep based on spectral criteria. The maximal power in the 1–35 Hz 
band was used to identify REM sleep. Sensory threshold along sleep were tested 
with mild sound stimulation (clicks; arrowheads), which provided ground truth 
to separate periods of Rest and Sleep during immobility. SWR detected in the 
different periods were classified accordingly. d, Quantification of the rate of SWR 
recorded in Awake, Rest and Sleep conditions, both Pre- (left) and Post-training 
(right). The mean SWR waveform from each state is also shown at the top. Only 
mice recorded with wires and tested in all tasks were included in the analysis 

(4 sessions, 6 mice). ALT1: Room A Linear Track 1, BTC: Room B Two-chamber; 
ACT: Room A Circular Track; ALT2: Room A Linear rack 2. Box plots at left 
show the median SWR rate at Pre-training per state and task as horizontal bars 
(n = 510/1824/496 events from Awake/Rest/Sleep in ALT1; n = 821/1972/1141 events 
from Awake/Rest/Sleep in BTC; n = 417/555/1133 events from Awake/Rest/Sleep 
in ACT; and n = 425/1774/361 events from Awake/Rest/Sleep in ALT2). Box plots at 
right show the same for Post-training (n = 1834/2700/2482 events from Awake/
Rest/Sleep in ALT1; n = 1692/8706/1154 events from Awake/Rest/Sleep in BTC; 
n = 1007/5227/1299 events from Awake/Rest/Sleep in ACT; and n = 834/4599/1070 
events from Awake/Rest/Sleep in ALT2).The first and third quartiles as box limits. 
Whiskers indicate the data point further from quartile values that is within 1.5 
times the interquartile range. Significant effect of state in a two-way ANOVA 
for Pre (F(3,2) = 22.9, p < 0.0001) and Post events (F(3,2) = 60.3, p < 0.0001). 
Asterisks indicate significant differences of post-hoc Tukey-Kramer two-tailed 
tests: *, p < 0.05; **, p < 0.01. e, Structure index per feature after normalizing by 
same number of SWR events (15144) before and after training (bootstrapped, 10 
samples). Bars show the mean ± SD structure index per feature for each sample 
(n = 10 bootstrapped samples).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Analysis of SWR across states and conditions.  
a, UMAP1,2 and structure index matrices per feature in the different projections 
before and after training. b, Median features values from all SWR recorded Pre 
(n = 2706 Awake and n = 9259 Sleep) and Post-training (n = 6458 Awake and 
n = 29890 Sleep), shown as horizontal bars in the box plots, with the first and 
third quartiles as box limits. Whiskers indicate the data point further from 
quartile values that is within 1.5 times the interquartile range. Statistics analysis 
with a two-way ANOVA for Frequency: Awake/Sleep F(1,1) = 433, p < 0.00001; 
Pre/Post F(1,1) = 1862, p < 0.00001 and interaction p < 0.0001. Entropy: Pre/
Post F(1,1) = 3071, p < 0.00001; interaction p = 0.0023; Duration: Awake/Sleep 
F(1,1) = 893, p < 0.0001; Pre/Post F(1,1) = 567, p < 0.00001 and interaction 
p < 0.0001. Post-hoc tests with Tukey-Kramer two-tailed tests ***, p < 0.001;  

****, p < 0.0001. c, UMAP embedding pre- and post-training showing distribution 
of Rest SWR as compared to Awake and Sleep events. d, Mean distance between 
centroids for the embedding distribution of Awake versus Rest (left) and Sleep 
versus Rest (right) SWR recorded Pre- and Post-training across tasks. Plots reflect 
the mean ± SD centroid distance for all possible combinations of sessions and the 
three UMAP1 projections. Awake vs Rest (Pre: n = 12 combinations for ALT1, n = 3 
for BTC, n = 6 for ACT and n = 3 for ALT2; Post: n = 24 for ALT1, n = 12 for BTC, n = 9 
for ACT and n = 9 for ALT2). Sleep vs Rest (Pre: n = 9 combinations for ALT1, n = 3 
for BTC, n = 6 for ACT and n = 6 for ALT2; Post: n = 21 for ALT1, n = 12 for BTC, n = 9 
for ACT and n = 9 for ALT2). Data was bootstrapped (black), and tested against 
the shuffled distribution (100 shuffles, gray). No effect of tasks (one-way ANOVA, 
p > 0.05).
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Extended Data Fig. 10 | Topological analysis of Pre/Post SWR. a, Median 
frequency and rate of Pre/Post SWR recorded during Awake (left) and Sleep 
conditions. Only mice recorded with wires and tested in all tasks were included in 
the analysis (6 mice). Box plots at left show the median Pre/Post SWR frequency 
and rate during Awake condition per task, as horizontal lines (n = 510/1834 events 
from Pre/Post in ALT1; n = 821/1692 events from Pre/Post in BTC; n = 417/1007 
events from Pre/Post in ACT; and n = 425/834 events from Pre/Post in ALT2). Box 
plots at right show the median Pre/Post SWR frequency and rate during Sleep 
condition per task, as horizontal lines (n = 1824/2700 events from Pre/Post in 
ALT1; n = 1972/8706 events from Pre/Post in BTC; n = 555/5227 events from  
Pre/Post in ACT; and n = 1774/4599 events from Pre/Post in ALT2). Significant 
effects in a two-way ANOVA for Awake SWR frequency (state: F(3,1) = 132.3, 
p < 0.0001; task: F(3,1) = 48.7, p < 0.001) and rate (state only F(3,1) = 27.0, 
p < 0.0001). Asterisks indicate significant differences of post-hoc Tukey-Kramer 
two-tailed tests: **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. No significant effects 
for Sleep SWR. b, CSD values recorded at SR and SLM using linear array silicon 
probes. Data shown for Awake and Sleep SWR as projected in the pre- and post-
training UMAP1,2 projection. c, Comparison between Pre/Post and Awake/Sleep 

CSD signals of SWR recorded with the linear arrays versus those predicted from 
wire recordings in Room A LT1. Box plots show the median CSD value (horizontal 
lines) from all recorded SWR (SR: n = 559 Pre-Awake, n = 1630 Pre-Sleep, n = 1011 
Post-Awake and n = 7870 Post-Sleep; SLM: n = 474 Pre-Awake, n = 1168 Pre-Sleep, 
n = 829 Post-Awake and n = 7137 Post-Sleep) and predicted SWR in the reduced 
space (n = 491 Pre-Awake, n = 1602 Pre-Sleep, n = 1693 Post-Awake and n = 2405 
Post-Sleep; same for SR and SLM). Box limits indicate the first and third quartiles. 
Whiskers indicate the data point further from quartile values that is within 1.5 
times the interquartile range. d, Pre/Post CSD’ values predicted at SR and SLM 
from wire recordings using the SVD trained in the original space using data from 
linear arrays. Box plots show the median CSD’ value (horizontal lines) from all 
predicted SWR per task (n = 491/1693 Pre/Post for ALT1, n = 764/1531 Pre/Post 
for BTC, n = 398/918 Pre/Post for ACT, n = 395/781 Pre/Post for ALT2). Box limits 
indicate the first and third quartiles. Whiskers indicate the data point further 
from quartile values that is within 1.5 times the interquartile range. Significant 
differences across tasks in Awake SWR (ANOVA F(1,7) = 45, p < 0.0001 at SR; 
ANOVA F(1,7) = 54, p < 0.0001 at SLM). Post-hoc tests with Tukey-Kramer  
two-tailed tests **, p < 0.01, ***, p < 0.001; ****, p < 0.0001.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data acquired with Open Ephys GUI 0.4.6; Axoscope (v11).

Data analysis External software: Python (3.8.10 Anaconda) with libraries Numpy (1.18.5), SciPy (1.5.4), Matplotlib (3.3.3); R library 'intrinsic 
dimension' (1.2.0); Isomap library sklearn.manifold (0.24.2); UMAP library (0.5.1);  Matlab (v2020a & 2021b). Fiji software (NIH Image; 
v.2.13.0); Simulations and parameter search was implemented in Artemisa supercomputer infrastructure (https://artemisa.ific.uv.es/web/
content/nvidia-tesla-volta-v100-sxm2).  
 
Codes in this study are available in the following interactive notebook: https://colab.research.google.com/
drive/1AHG4UQ15NobY2tI7Kc3hQFEkocdRzIsa?usp=share_link#scrollTo=GI8nBd8hOuSv 
Codes and notebook are also deposited at Github: https://github.com/PridaLab/Topological_SWR 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data analyzed in this study is available at the public repository: https://figshare.com/projects/Topological_SWR/125359  
This includes ripple waveforms in the 50 ms window (±20 ms) from head-fixed and freely moving experiments, as well as synthetic ripples. 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Humans were not studied

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Humans were not studied

Population characteristics Humans were not studied

Recruitment Humans were not studied

Ethics oversight Humans were not studied

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample sizes. All ripples examined in this paper were obtained from multiple recording 
sessions in a number of mice following the principle of reduction. The total number of ripple events were 10741 events, 58 independent 
sessions, 27 mice recorded head-fixed; and 59907 events, 36 sessions, 9 mice recorded freely moving. Whenever critical for the scientific 
question at hand, data is reported by animals. This sample size is similar to those reported before for similar studies (e.g., Valero et al., 
Neuron 94, 2017 and Grosmark and Buzsaki Sc ience 351, 2016) 

Data exclusions All events and sessions were used. Exclusion criteria were applied to subsets of analysis and indicated in every case.

Replication The exact number of replications for each experiment is detailed in text and figures (as events, sessions, mice, etc..)

Randomization Mice from different lines were randomly assigned to head-fixed and freely-moving experiments. Randomization strategies were applied to 
test distribution against shuffling data (see details for each type of analysis in the Methods)

Blinding Data collection was not performed blind to the conditions of the experiments (i.e., head-fixed, freely-moving, optogenetic stimulation, sleep, 
awake, tasks) due to execution requirement. For data analysis, detection of SWR was blind to the topological analysis. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Primary: rabbit anti-PCP4 (1:100, Sigma HPA005792)  

Secondary: donkey anti-rabbit Alexa Fluor647 (1:200, Invitrogen, A-32795)

Validation The PCP4 antibody was validated by the literature and previous testing (Fernandez-Lamo et al Cell reports 2019). The secondary 
donkey anti-rabbit Alexa Fluor647 antibody was verified by the manufacturer, as declared in their website.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Mus musculus from both sexes and 2-12 months of age. To complain with 3R, in this work we used different mouse lines aimed to 
target different cell-type specific populations for optogenetic and imaging experiments. This include the following lines: Mouse 
Amigo2-Cre now avilable as (Amigo2-cre1Sieg/J) Jackson Labs Stock #030215 ;  B6.Cg-Tg(Thy1-CO P4/EYFP)18Gfng/J (Jaxmice Stock 
#007612 and (C57BL/6, in-house (all adult of 2-12months, both sexes) 
Mice were all housed either alone or together with others to secure their wellbeing (e.g., when implants were compromised and/or 
there was a dominant mouse in the cage requiring separation). They were maintained in a 12 h light–dark cycle (7 a.m. to 7 p.m.) at 
21-23ºC and 50-65 % humidity with access to food and drink ad libitum.

Wild animals No wild type animals are used

Reporting on sex Animals from both sex were used

Field-collected samples NO field collected samples are used

Ethics oversight All protocols and procedures were performed according to the Spanish legislation (R.D. 1201/2005 and L.32/2007) and the European 
Communities Council Directive 2003 (2003/65/CE). Experiments were approved by the Ethics Committee of the Instituto Cajal, the 
Spanish Research Council (CSIC) and Comunidad de Madrid (protocol number PROEX 162/19).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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