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Recognition of objects from sensory stimuli is essential for survival. To
that end, sensory networks in the brain must form object representations
invariant to stimulus changes, such as size, orientation and context.

Although Hebbian plasticity is known to shape sensory networks, it fails to
createinvariant object representations in computational models, raising
the question of how the brain achieves such processing. In the present
study, we show that combining Hebbian plasticity with a predictive form of
plasticity leads to invariant representations in deep neural network models.
We derive alocal learning rule that generalizes to spiking neural networks
and naturally accounts for several experimentally observed properties of
synaptic plasticity, including metaplasticity and spike-timing-dependent
plasticity. Finally, our model accurately captures neuronal selectivity
changes observed in the primate inferotemporal cortex in response to
altered visual experience. Thus, we provide a plausible normative theory
emphasizing the importance of predictive plasticity mechanisms for
successful representational learning.

Recognition of invariant objects and concepts from diverse sensory
inputsis crucial for perception. Watching a dog run evokes a series of
distinct retinal activity patterns that differ substantially depending
ontheanimal’s posture, lighting conditions or visual context (Fig. 1a).
If we looked at a cat instead, the resulting activity patterns would be
different still. That we can effortlessly distinguish dogs from cats is
remarkable. It requires mapping entangled input patterns, which lie
on manifolds that ‘hug’ each other like crumpled-up sheets of paper,
to disentangled neuronal activity patterns, which encode the under-
lying factors so downstream neurons can easily read them out'. Such
transformations require deep sensory networks with specific net-
work connectivity shaped through experience-dependent plasticity
(Fig.1b). However, current data-driven plasticity models fail to establish
the necessary connectivity in simulated deep sensory networks. At the
sametime, supervised machine-learning algorithms doyield suitable
connectivity’in deep neural networks (DNNs) that further reproduce
essential aspects of the representational geometry of biological neural

responses®*. This resemblance proffers DNNs as potential tools to
elucidate neural information processing in the brain®°.
Unfortunately, standard deep learning methods are difficult to rec-
oncile with biology. Onthe one hand, they rely on backpropagation, an
algorithm considered biologically implausible, although neurobiology
may implement effective alternatives®’'°. On the other hand, humans
and animals cannot learn through strong label-based supervision,
because this would require knowledge of alabel for every input pattern.
Inthe present study, we show that self-supervised learning (SSL),
a family of unsupervised machine-learning algorithms, may offer a
remedy. SSL does not need labeled data but instead relies on predic-
tion, anotionalso supported by neurobiology" . Prediction can hap-
penin the input space by, for instance, reconstructing one part of an
image from another, as for autoencoders”, or by predicting the next
wordinasentence, as done inlanguage models. Alternatively, predic-
tion can occur in latent space by requiring internal representations
of related inputs to predict each other'®”, Latent space prediction is
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Fig.1| Disentangling sensory stimuli with plastic neural networks.

a, Schematic of an evoked response in sensory input neurons. The neuronal
response patterns for distinct stimuli correspond to points in a high dimensional
space spanned by the neuronal activity levels. The response patterns from
different stimulus classes, for example, cats and dogs, form a low-dimensional
manifoldin the space of all possible response patterns. Generally, different

class manifolds are entangled, which means that the stimulus identity cannot
bereadily decoded from alinear combination of the neuronal activities.

b, Sketch of aDNN (left) that transforms inputs into disentangled internal
representations that are linearly separable (right). ¢, Schematic of how predictive
learning influences latent representations (left). Learning tries to ‘pull’ together
representations that frequently co-occur close in time (bottom). However,
without opposing forces, such learning dynamics lead to representational
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‘collapse’, whereby all inputs are mapped to the same output and thereby become
indistinguishable (right). d, SSL avoids collapse by adding a repelling force that
acts on temporally distant representations that are often semantically unrelated.
e, Plot of postsynaptic neuronal activity, z, over time (bottom) and a Hebbian
learning rule (top®**), which characterizes the sign and magnitude of synaptic
weight change, Aw, as a function of postsynaptic activity, z. Notably, the sign

of plasticity depends on whether the evoked responses are above or below

the plasticity threshold 8. Using the example of neuron1in b, the learning rule
potentiates synapses that are active when a ‘Cat’ stimulus is shown, whereas
‘Dog’ stimuliinduce LTD. This effectively pushes the evoked neuronal activity
levels corresponding to both stimuli away from each other, thereby preventing
representational collapse.

more compelling from aneuroscience perspective because it does not
require an explicit decoder network that computes predictionerrors at
theinput, thatis, the sensory periphery, for which thereislittle experi-
mental support. Instead, latent predictionerrors are computed locally
or at network outputs (compare Fig. 1) and drive learning by ‘pulling’
together related internal representations for stimuli that frequently
occur close in time (Fig. 1c), similar to slow feature analysis (SFA)***.

However, amajorissue with this strategy is that, without any forces
opposingthis representational pull, suchlearninginevitably leads to ‘rep-
resentational collapse’, whereby allinputs are mapped to the same inter-
nal activity patternthat precludes linear separability (Fig. 1c). One typical
solution to this issue is to add forces that ‘push’ representations corre-
sponding to different unrelated stimuli away from each other (Fig. 1d).
This is usually done by invoking so-called ‘negative samples’, which are
inputs that do not frequently occur together in time. This approach has
beenlinked tobiologically plausible, three-factor learning rules***, but it
requires constantly switching the sign of plasticity depending on whether
ornottwo successive inputs are related to each other. Yet, itis unknown
whether and how such arapid sign switchisimplemented in the brain.

Another possible solution for avoiding representational collapse
without negative samplesis to prevent neuronal activity from becom-
ing constant over time, for instance, by maximizing the variance of
the activity?. It is interesting that variance maximization is a known
signature of Hebbian plasticity****, which has been found ubiquitously
inthebrain*?, Although Hebbianlearning is usually thought of as the
primary plasticity mechanism rather than playing a supporting role,
Hebbian plasticity alone has had limited success at disentangling
representations in DNNs>***,

Thisarticleintroduces latent predictive learning (LPL), aconcep-
tuallearning framework that overcomes this limitation and reconciles

SSLwithHebbian plasticity. Specifically, thelocal learning rules derived
within our framework combine a plasticity threshold, as observed in
experiments (Fig. 1e)**'**, with a predictive component, inspired by
SSLand SFA, thatrenders neurons selective to temporally contiguous
featuresintheirinputs. When applied to the layers of deep hierarchical
networks, LPLyields disentangled representations of objects presentin
naturalimages without requiring labels or negative samples. Crucially,
LPL effectively disentangles representations as a local learning rule
without requiring explicit spatial credit assignment mechanisms. Still,
credit assignment capabilities can further improve its effectiveness.
We demonstrate that LPL captures central findings of unsupervised
visual learning experiments in monkeys and in spiking neural networks
(SNNs) and naturally yields a classic spike-timing-dependent plastic-
ity (STDP) window, including its experimentally observed firing-rate
dependence”. These findings suggest that LPL constitutes a plausible
normative plasticity mechanism that may underlie representational
learning in biological brains.

Results

To study the interplay of Hebbian and predictive plasticity in sensory
representational learning, we derived a plasticity model from an SSL
objective function that is reminiscent of and extends the classic Bien-
enstock-Cooper-Munro (BCM) learning rule** (Methods and Supple-
mentary Note1). According to our learning rule, the temporal dynamics
of asynaptic weight W,are given by:

daw; = , dz@t) A )
?(t) = nx(Of (a®)| - —ar T (D7 () - z(6) o))
predictive Hebbian
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Fig.2|LPLlearns predictive features. a, lllustration of the 2D synthetic data-
generating process. Consecutive data points predominantly stay within the
same cluster separated along the x direction and are drawn independently from
the corresponding normal distribution centered in that cluster (left). These
dataare fedinto alinear neuron thatlearns via LPL (right). b, Cluster selectivity
of the features learned by LPL with and without the predictive term (Pred. off)
and by Oja’s rule for different values of 0,. By varying o,, we obtain a family of
sequences with different amplitudes of within-cluster transitions (top). LPL
selects temporally contiguous features and therefore ensures that the neuron
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always becomes selective to cluster identity. Oja’s rule finds PC1, the direction of
highest variance, which switches to the noise direction at 6, =1. LPL without the
predictive component shows the same behavior. Selectivity values were averaged
over ten random seeds. The shaded area corresponds to1s.d. ¢, Mean output
activity of the neuron over training time for o, = 1under different versions of LPL.
LPL initially increases its response and saturates at some activity level, even when
the predictive term s disabled. However, without the Hebbian term (Hebb. off),
the activity collapses to zero.

where 7 is a small positive learning rate, x;(t) denotes the activity of
the presynaptic neurony, z(t) = f(a(t)) is the neuronal activity with the
activation function fand the net input current a(¢) = Y W,x,(t). We
call the first termin parentheses the predictive term because it pro-
motes learning of slow features®®* by effectively ‘pulling together’
postsynaptic responses to temporally consecutive input stimuli.
Importantly, it cancels when the neural activity does not change and,
therefore, accurately predicts future activity. In the absence of any
additional constraints, the predictive term leads to collapsing
neuronal activity levels®. In our model, collapse is prevented by the
Hebbiantermin which z(¢), the running average of the neuronal activ-
ity, appears, reminiscent of BCM theory***. Its strength further
depends on an online estimate of the postsynaptic variance of
neuronal activity o2(¢f). This modification posits an additional
metaplasticity mechanism controlling the balance between predictive
and Hebbian plasticity depending on the postsynaptic neuron’s
past activity.

To make the link to BCM explicit, we rearrange the termsin equa-
tion (1) to give:

where O(¢) corresponds to a time-dependent sliding plasticity thresh-
old (compareFig. 1e). Although the precise shape of the learning rule
depends on the choice of neuronal activation function, its qualitative
behavior remains unchanged as long as the function is monotonic
(Extended Data Fig. 1). Despite the commonalities, however, there
arethree essential differences to the BCM model. First, in our model,
the threshold depends only linearly on 2(t) (Extended Data Fig. 1b),
whereas, in BCM, the threshold is typically a supralinear function of
the moving average Z(t). Second, the added dependence on the pre-
dictive term — = constitutes a separate mechanism that modulates
S L e .

the plasticity threshold depending on the rate of change of the post-
synaptic activity (Extended Data Fig. 1c,d). Third, our model adds a
variance dependence that has diverse effects on the sliding threshold
when the neuronal output does not accurately predict future activity
and, thus, changes rapidly. We will see that these modifications are
crucial to representational learning from the temporal structure in
sensory inputs. As the predictive term encourages neurons to predict
future activity at their output, and thus in latent space rather than
theinput space, we refer to equation (1) as the LPL rule.

X;(0Of (a(®)
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LPL finds contiguous features in temporal data

To investigate the functional advantages of LPL over BCM and other
classic Hebbian learning rules (Supplementary Note 2), we designed
asynthetic two-dimensional (2D) learning task in which we paramet-
rically controlled the proportion of predictable changes between
subsequent observations (Fig. 2a and Methods). The data sequence
consisted of noisy inputs from two clusters separated along the x axis.
Consecutive inputs had a high probability of staying within the same
cluster, thus making cluster identity atemporally contiguous feature.
By varying the noise amplitude, 0, intheydirection, we controlled the
amount of unpredictable changes. We simulated a single rate neuron
with different datasets for varying 0,, whereas the two input connec-
tions were plasticand evolved according to the LPL rule (equation (1))
until convergence. We then measured neuronal selectivity to cluster
identity (Methods).

We found that LPL rendered the neuron selective to the cluster
identity for a large range of 0, values (Fig. 2b). However, without the
predictive term, the selectivity to cluster identity was lost for large o,
values. This behaviour was expected because omitting the predictive
termrendersthelearning rule purely Hebbian, which biases selectivity
toward directions of high variance. Toillustrate this point, we repeated
the same simulation with Oja’s rule, a classic Hebbian rule that finds the
principal component (PC) in the input and found similar qualitative
behaviour. Thus, LPL behaves fundamentally differently from purely
Hebbianrules, by selecting predictable features in the input.

To confirm that the Hebbian term is essential for LPL to prevent
representational collapse, we simulated learning without the Hebbian
term (compare equation (1)). We observed that the neuron’s activity
collapsestozerofiring rate as expected (Fig. 2c). Conversely, learning
withthe Hebbian term but without the predictive term did not resultin
collapse. Therefore, LPL’s Hebbian component is essential to prevent
activity collapse.

Moreover, Hebbian plasticity needs to be dynamically regulated
to prevent runaway activity®. In LPL this regulation is achieved by
inversely scalingthe Hebbian term by amoving estimate of the variance
of the postsynaptic activity g2(¢). Without this variance modulation,
neural activity either collapsed or succumbed to runaway activity
depending on which term was dominant (Supplementary Note 3).
Either case precluded the neuron from developing cluster selectivity.
We verified that these findings generalized to higher-dimensional tasks
with more complex covariance structure (Supplementary Note 4).
Hence, the combination of the predictive with variance-modulated
Hebbian metaplasticity in LPL is needed to learn invariant predictive
featuresindependent of the covariance structure in the data.
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Fig.3|LPL disentangles representationsin DNNs. a, Schematic of the DNN
trained using LPL. We distinguish two learning strategies: layer-local and
end-to-end learning. In layer-local LPL, each layer’s learning objective (£;) is to
predict representations within the same layer, whereas end-to-end training takes
into account the output layer representations only (£ ,.) and updates
hidden-layer weights using backpropagation. b, Linear readout accuracy of
object categories decoded from representations at the network output after
training n =4 networks independently on natural image data (STL-10; see
Methods for details) with different learning rules in layer-local (dark) as well as
end-to-end (light) configuration. Bars are averages + s.e.m. ‘Pred. off’
corresponds to LPL but without the predictive termin the learning rule (compare
equation (7)). ‘Hebb. off’ refers to the configuration without the BCM-like
Hebbian term. Finally, ‘Decorr. off” is the same as the single neuron learning rule
(equation (1)) without the decorrelation term. LPL yields features with high linear
readout accuracy. In contrast, when any component of LPL is disabled, linear
readout accuracy drops below the pixel-decoding accuracy of -32% (dashed line).
¢, Linear readout accuracy of the internal representations at different layers of
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the DNN after layer-local training. Data points are averages (n = 4) and error
bands indicates.e.m.LPL’s representations improve up to six layers and then
settleata highlevel. In contrast, readout accuracy is close to chance level without
the Hebbian component and similarly remains at low levels when the
decorrelating mechanism is switched off. It is interesting that, when the
predictive term s off, the readout accuracy initially increases in early layers, but
then ultimately decreases back below the pixel-level accuracy with further
increasing depth. Finally, the full LPL learning rule applied to inputs in which
temporal contingency is destroyed (LPL shuffled) behaves qualitatively like the
purely Hebbian rule. d, Dimensionality + s.e.m. of the internal representations
for the different learning rule configurations shownin b. When either the
Hebbian or the decorrelation termis disabled, the dimensionality of the
representations collapses to 1. e, Mean neuronal activity at different layers of the
DNN after training with the different learning rule variants shownin c. Data
averaged over networks as in . Error bands denote ts.e.m. Exclusion of the
Hebbian term (dotted line) leads to collapsed representationsinall layers.

LPL disentangles representationsin deep hierarchical
networks
As we move through the world, we see objects, animals and people
under different angles and contexts (Fig. 3a). Therefore, objects them-
selves constitute temporally contiguous featuresin normal vision. We
thus wondered whether training an artificial DNN with LPL on image
sequences with such object permanence resultsindisentangled repre-
sentations. To thatend, we built aconvolutional DNN model in which we
‘stacked’ layers with synaptic connections that evolved according to the
LPL rule.Inaddition, weincluded atermto decorrelate neurons within
eachlayer. Inhibitory plasticity presumably plays this role in biological
neural networks**°. LPL was implemented in a ‘layer-local’ manner,
meaning that there was no backpropagation through layers (Methods).
Tosimulate temporal sequences of related visual inputs, we gener-
ated pairs ofimages sampled from alarge dataset, by applying different
randomized transformations (Extended Data Fig. 2 and Methods).
Wetrained our network model on these visual data until learning con-
verged and evaluated the linear decodability of object categories from
thelearned representations using aseparately trained linear classifier.
We found that, in networks trained with LPL, object catego-
ries could be linearly decoded at the output with an accuracy of
(63.2+£0.3)% (Fig. 3b and Table 1), suggesting that the network has

formed partially disentangled representations (Extended Data
Fig.3). Toelucidate theroles of the differentlearning rule components,
we conducted several ablation experiments. First, we repeated the
same simulation but now excluding the predictive term. This modifi-
cationresultedinanaccuracy of (27.0 + 0.2)%, whichis lower than the
linear readout accuracy of a classifier trained directly on the pixels of
theinputimages (Table 1), indicating that the network did notlearn dis-
entangled representations, consistent with previous studies on purely
Hebbian plasticity*>*°. We measured asimilar drop inaccuracy when we
disabled either the Hebbian or the decorrelation component during
learning (Fig. 3b).

Convolutional DNNs trained through supervised learning use
depth to progressively separate representations’. To understand
whether networks trained with LPL similarly leverage depth, we meas-
ured the linear readout accuracy of the internal representations at
every layer in the network. Crucially, we found that, in the LPL-trained
networks, the readout accuracy increased with the number of layers
until it gradually saturated (Fig. 3c), whereas this was not the case
whenany component of LPL was disabled. Similarly, readout accuracy
decreased when the temporal contiguity in the input was broken by
shuffling, reminiscent of experiments in developing rats"”. Together,
theseresults suggest that LPL’s combination of Hebbian, predictive and
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Table 1] Linear classification accuracy in percentage on the
STL-10 and CIFAR-10 datasets for LPL and a linear decoder
trained on the raw pixel values (Methods)

STL-10 CIFAR-10
Layer-local End-to-end Layer-local End-to-end
DNN with LPL 63.2+0.3 72.5+0.1 59.4+0.4 70.4+£0.2
Raw pixel values 31.6 35.9

Error values correspond to s.e.m. over n=4 simulations with different random seeds.

decorrelating elementsis crucial for disentangling representationsin
hierarchical DNNs.

In SSL, the two most common causes for failure to disentangle
representations are representational and dimensional collapse (Sup-
plementary Fig. 1), owing to excessively high neuronal correlations®.
To disambiguate between these two possibilities in our model, we
computed the dimensionality of the representations and the mean
neuronal activity at every layer (Methods). We found that disabling
either the Hebbian or the decorrelation component led to a dimen-
sionality of approximately 1, whereas the LPL rule with and without the
predictive term resulted in higher dimensionality: =15 or =50, respec-
tively (Fig. 3d). Disabling the Hebbian termssilenced all layers (Fig. 3e),
demonstrating representational collapse. In contrast, disabling the
decorrelation termresulted in nonzero activity levels, indicating that
dimensional collapse underlies its poor readout accuracy (Fig. 3e).
Finally, we verified that excluding LPL’s predictive component caused
neither representational nor dimensional collapse, suggesting that the
decreasinglinear readout accuracy with depth was due to the network’s
inability to learn good internal representations. Taken together, these
results show that the predictive termis crucial for disentangling object
representationsin DNNs (Fig. 3), whereas the other terms are essential
to prevent different forms of collapse.

Itis an ongoing debate whether neurobiology implements some
form of credit assignment>'°, Above we showed that LPL, as a local
learning rule, effectively disentangles representations without the
need for credit assignment, provided that mechanisms exist to ensure
neuronal decorrelation®®. Naturally, our next question was whether
anon-local LPL formulation could improve learning. To that end, we
considered the fully non-local case using backpropagation. Specifi-
cally, we repeated our simulations withend-to-end training on the LPL
objective defined at the network’s output (Methods). Althoughwe do
not know how the brain would implement such a non-local LPL algo-
rithm, it provides an upper performance estimate of what is possible.
End-to-end learning reproduced all essential findings of layer-local
learning while increasing overall performance (Fig. 3b and Table 1).
Thus, LPL’s performance improves in the non-local setting, further
underscoring that biological networks could benefit from credit assign-
ment circuit mechanisms.

The above simulations used pairs of augmented images. To check
whether the key findings generalized to more realistic input paradigms
and other measures of disentangling, we trained DNNs with LPL on
procedurally generated videos from the 3D Shapes dataset*’. The
videos consisted of objects shown under aslowly changing view angle,
scale or hue and occasional discontinuous scene changes, but without
additional image augmentation (Extended Data Fig. 4a,b and Meth-
ods). We found that LPL-trained networks reliably disentangle object
identity. In contrast, networks trained without predictive learning
failed to do so (Extended DataFig. 4c). Finally, the ground-truth latent
manifold structureinthe procedurally generated dataset isknown. This
knowledge allowed us to probe disentangling of the latent manifold
directly instead of using linear classification as a proxy. This analysis
revealed that LPL-trained networks faithfully disentangled the underly-
ingobjectsand factors. Atthe same time, they alsolearned the topology

of the data-generating manifold from the temporal sequence structure
(Extended Data Figs. 4d-g and 5). Thus LPL’s ability to disentangle
representations generalizes to video stimuli and other measures of
disentanglement.

LPL capturesinvariance learning in the primate
inferotemporal cortex

Changing the temporal contiguity structure of visual stimuliinduces
neuronal selectivity changes in primate inferotemporal cortex
(IT), an unsupervised learning effect described by Li and DiCarlo™.
In their experiment, a macaque freely viewed a blank screen, with
objects appearing in the peripheral visual field at one of two alter-
native locations relative to the (tracked) center of its gaze, prompt-
ing the macaque to perform a saccade to this location (Fig. 4a). The
experimenters differentiated between normal exposures in which
the object does not change during the saccade and ‘swap exposures’
inwhich the initially presented object was consistently swapped out
for a different one as the monkey saccaded to a specific target loca-
tion X,,.,- Hence, swap exposures created an ‘incorrect’ temporal
association between one object at position X,,,, and a different one
attheanimal’s center of gaze X... For any particular pair of swap objects,
the location either above or below the center of gaze was chosen as
Xswap and transitions from the opposite peripheral position X, snswap
to the center X, were kept consistent as a control. The authors found
systematic position- and object-specific changes of neuronal selec-
tivity due to swap exposures that they attributed to unsupervised
learning. Specifically, a neuron initially selective to an object P over
another object N reduced or even reversed its selectivity at the swap
positionX,,,,, while preservingits selectivity at the nonswap position
Xnonswap (Flg 4b)

We wanted to know whether LPL can account for these observa-
tions. To that end, we built a DNN model and generated input images
by placing visual stimuli on a larger gray canvas to mimic central and
peripheral vision as needed for the experiment (compare Fig. 4a and
Methods). Importantly, we ensured that the network’sinput dimension
and output feature map size were large enough to avoid full transla-
tioninvariance due to the network’s convolutional structure alone. To
simulate the animal’s prior visual experience, we trained our network
model with LPL on anaturalimage dataset. After training, the learned
representations were invariant to object location on the canvas (Sup-
plementary Fig.2), aknown property of neural representations in the
primateIT". Next, we simulated targeted input perturbations analogous
to the original experiment. For a given pair of images from different
classes, we switched object identities during transitions from aspecific
peripheral position, say X,, to the center X, while keeping transitions
from the other peripheral position X, to the center unmodified. We
used X, as the swap position for half of the image pairs and X, for the
other half. Throughout, we recorded neuronal responses in the net-
work’s output layer whereas the weightsin the network model evolved
according tothe LPLrule.

We observed that the neuronal selectivity between preferred
inputs P, as defined by their initial preference (Methods), in com-
parison to nonpreferred stimuli N in the model qualitatively repro-
duced the results of the experiment (Fig. 4b). Effectively, LPL
trained the network’s output neurons to reduce their selectivity to
their preferred inputs P at the swap position while preserving their
selectivity at the nonswap position. Furthermore, we observed that
object selectivity between pairs of control objects did not change,
consistent with the experiment (Fig. 4b). Further analysis revealed
that the origin of the selectivity changes between P and N stimuli
at the swap position was the result of both increases in responses
to N and decreases in responses to P, an effect also observed in the
experiments (Fig. 4c). Thus, LPL can account for neuronal selectivity
changes observed in monkey IT during in vivo, unsupervised, visual
learning experiments.
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function of number of swap exposures in the model (top row) and observed in
vivo (bottom row; data points extracted and replotted from ref. 12; see Methods

Swap exposures Swap exposures

for details). Data are presented as mean values + s.e.m. We differentiate between
pairs of swapped objects at the swap (left) and nonswap positions (center) as
well as control objects at the swap position (right). LPL qualitatively reproduces
the evolution of swap position-specific remapping of object selectivity as
observedinIT. Control objects at the swap position, that is, images not used
during the swap training protocol, show no selectivity changes in agreement
with the experiment. a.u., arbitrary units. ¢, Average response to objects P and

N as a function of number of swap exposures. The change in object selectivity
between preferred objects P and nonpreferred objects Nis due to both increased
responses to N and decreased responses to P in both our model (top) and the
experimental recordings (bottom). Data are mean values + s.e.m.

SNNs with LPL selectively encode predictive inputs

So far we have considered LPL in discrete-time, rate-based, neuron
models without an explicit separation of excitatory and inhibitory
neurons. In contrast, cortical circuits consist of spiking neurons that
obey Dale’slaw and learnin continuous time. To test whether our theory
would extend to such a more realistic setting, we simulated a plastic
recurrent SNN model consisting of 100 excitatory and 25 inhibitory
neurons (Fig. 5a and Methods). We simulated input from five Poisson
populations with temporally varying firing rates (Fig. 5b and Methods).
Input population PO had a constant firing rate, whereas P1's and P2’s
firingrates followed two independent, slowly varying signals. P1.,and
P2, withfiring rates that are temporally shuffled versions of P1and P2
served as control populations. Theinput connections to the excitatory
neurons evolved according to the spiking LPL rule (compare equation
(1)), afully local learning rule. Decorrelation was achieved through
inhibitory STDP (Methods)*®.

After approximately 28 h of simulated time, the network’s firing
dynamics had settled into anasynchronousirregular activity regimen
fromwhichthe slowly varying input signals could be decoded linearly
with high fidelity (Fig. 5b). In contrast, P1, and P2, did not have high
reconstructionaccuracy, consistent with theidea that the network pref-
erentially represents the slowly varyinginputs inits activity. This notion
was supported by the strong synaptic connectivity to P1/2 (Fig. 5c).

We further computed therelative difference between the average affer-
ent weight from each signal in comparison to its associated control
pathway. Asexpected, we found that neuronal weights were preferen-
tially tuned to the slow input channels (Fig. 5d). However, this selectiv-
ity was lost when we turned either the predictive or the Hebbian term
off. The absence of Hebbian plasticity was further accompanied by
activity collapse (Fig. 5e), asin the rate-based network.

To investigate the role of inhibition, we next removed the inhibi-
tory population. This manipulation resulted in excessively high firing
rates (Fig. 5e and Extended DataFig. 6) and anotable reduction of the
representational dimensionality (Fig. 5f and Methods). In the network
with plastic inhibition, weights were more decorrelated and purely
selective to either P1 or P2 (Fig. 5g). In contrast, removing inhibition
resulted in fewer neurons preferentially tuned to either signal (Fig. 5h).
Finally, a network with fixed inhibitory weights showed comparable
dimensionality to the plastic inhibition case (Fig. 5f), but with a drop
inselectivity (Fig. 5d). These resultsindicate thatinhibition is needed
to prevent correlated neuronal activity and the ensuing reduction in
representational dimensionality. Furthermore, inhibitory plasticity is
required to ensure that the slow signals are preferentially represented
(Extended Data Fig. 6). Together, these findings illustrate that LPL
learns predictive features in realistic spiking circuits with separate
excitatory and inhibitory neuronal populations.
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Fig.5|LPLinanSNN. a, Wiring diagram of the SNN with five distinct input
populations. b, Snapshot of spiking activity over 5s after LPL plasticity for the
inputs (top left) and the network (bottom left) separated into excitatory (black)
andinhibitory (blue) neurons. The input spikes are organized in five distinct
Poisson populations with firing rates that evolve according to five different
temporal inputsignals (top right). The population activity of two slowly varying
signals (P,) can be linearly reconstructed (Methods) with high R? values from
the network activity whereas temporally shuffled control signals (‘ctl’; Methods)
are heavily suppressed (bottom right). ¢, Distribution of mean afferent synaptic
strength per excitatory neuron (n =100) grouped by input population. Input
connections from slowly varying signals are larger than those from the shuffle
controls (left), but not when learning with the predictive term turned off (right).
Error bars show minimum (min)/maximum (max) ranges. d, Signal selectivity
asrelative difference between signal and control pathway for networks trained
with different learning rule variations (Methods; n =100 neurons). ‘LPL’ refers
tolearning with the spiking LPL rule combined with inhibitory plasticity on

the inhibitory-to-excitatory connections. ‘Pred. off’ corresponds to learning
without the predictive term and ‘Hebb. off’ to learning without the Hebbian

term. ‘Inhib. off’ refers to a setting without any inhibitory neurons, whereas
‘Inhib. fixed’ indicates a setting where the inhibitory-to-excitatory weights

are held fixed. The network with LPL and inhibitory plasticity acquires high
selectivity to both signals. Selectivity is lost if the predictive term, the Hebbian
termor inhibitory plasticity is switched off. e, Average firing rate of excitatory
neurons (n=100) in the network for the different configurations in d. When the
Hebbian (Hebb) term is off, spiking activity collapses to low activity (Act.) levels
in contrast to all other configurationsin whichit settles at intermediate activity
levels. f, Dimensionality (Dim.) of the neuronal representations (Methods) for
the different configurations in d. Inhibition prevents dimensional collapse,
evenin cases where inhibition is not plastic. g, Averaged weight vectors of all
excitatory neurons corresponding to input populations P1and P2 (left) and the
distribution of relative (Rel.) neuronal selectivities between these populations
(right). Most neurons become selective to either P1or P2, but few to both signals
simultaneously. Color indicates relative preference of their weight vectors to
either signal (Methods). h, Same as g, but without an inhibitory population. Most
neurons develop selectivity to P2 or mixed selectivity to both signals, and their
weight vectors are more correlated.

LPL qualitatively reproduces experimentally observed rate
and spike-timing dependence of synaptic plasticity

Next, we wanted to examine whether the spike-based LPL rule is
consistent with experimental observations of plasticity induction.
Experiments commonly report intertwined rate and spike-timing
dependence presumably mediated through nonlinear voltage- and
calcium-dependent cellular mechanisms®***, Theoretical work has
further established conceptual links across phenomenological STDP
models, SFA and BCM theory?#* %,

To compare LPL to experiments, we simulated a standard STDP
induction protocol. Specifically, we paired 100 pre- and postsynaptic
action potentials with varying relative timing, At, for arange of different
repetition frequencies, p. During the entire plasticity induction pro-
tocol, the postsynaptic cell was kept depolarized close to its firing
threshold and weights evolved according to spike-based LPL. We
repeated the simulated induction protocol for different initial values

of the slowly moving averages of the postsynaptic firing rate S;(t) and
variance ol?(t) (Methods). This was done because these variables do
not change much over the course of asingle induction protocol owing
to their slow dynamics. Their presence, however, makes LPL a form of
metaplasticity, that s, plasticity depends on past neuronal activity.
We found that for small initial values of a,?, the induced weight
changes followed an antisymmetrical temporal profile consistent with
STDP experiments (Fig. 6a). For larger initial values of a[?, the STDP
window changed to a more symmetrical and then ultimately an
anti-Hebbian profile whereas the plasticity amplitude was suppressed,
as expected owing to the variance-dependent suppression of the
Hebbian terminthelearning rule (Fig. 6b,c). Next we investigated the
effect of different initial values for S;(¢), which acts asa moving thresh-
old reminiscent of BCM. Specifically, we recorded plastic changes at
two fixed spike-timing intervals A¢ = +10 ms for ol.z(t =0)=0.1.For
intermediate threshold values S;(t = 0) = 20 Hz, causal spike-timing
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induced long-term potentiation (LTP) with a nonlinear frequency
dependence (Fig. 6d), whereas acausal pre-after-post timings showed
a characteristic crossover from long-term depression (LTD) to LTP,
similar to that observed in experiments?. In contrast, a low initial
threshold $;(t = 0) = 0, which would occur in circuits that have been
quiescent for extended periods of time, resulted in LTP induction for
both positive and negative spike timings, whereas a high initial value
(S;(t = 0) > 50 Hz), corresponding to circuits with excessively high
activity levels, led to LTD (Extended DataFig. 7). Importantly such slow
shiftsinactivity-dependent plasticity behavior are consistent with the
metaplasticity observed inmonocular deprivation experiments®>*>%,
Thus, LPL qualitatively captures key phenomena observed in experi-
mentssuchas STDP, therate dependence of plasticity and metaplastic-
ity, despite not being optimized to reproduce these phenomena. Rather
our model offers a simple normative explanation for the necessity of
different plasticity patterns that are also observed experimentally*®.

Discussion

We introduced LPL, alocal plasticity rule that combines Hebbian and
predictive elements. We demonstrated that LPL disentangles object
representations in DNNs through mere exposure to temporal datain
whichobjectidentity varies slowly. Crucially, we showed that predictive
and Hebbianlearning are bothrequired to achieve this effect. Moreover,
we demonstrated that LPL qualitatively captures the representational
changes observed in unsupervised learning experiments in monkey
IT Finally, we found that LPL in SNNs naturally reproduces STDP and
its experimentally observed rate dependence, while further predict-
ing a new form of metaplasticity with distinct variance dependence
of the STDP window.

Theideathat sensory networks use temporal predictionasalearn-
ing objective has been studied extensively in both machine learning
and neuroscience. The model in this article combines elements of
classic BCM theory with central ideas of SFA and more recent SSL
approaches from machine learning. Although SSL has shown great
promise in representational learning without labeled data, it is typi-
cally formulated as a contrastive learning problem requiring negative
samples'™" to prevent representational collapse. As negative sam-
ples break temporal contiguity, they are not biologically plausible.
LPL does not require negative samples. Instead, it relies on variance
regularization as proposed previously to prevent collapse?. Our model
uses virtually the same mechanism, albeit with alogarithmic variance
dependence (Supplementary Note 3), and builds a conceptual bridge
from variance regularization to Hebbian metaplasticity. Similar to most
SSL approaches, Bardes et al.>* used end-to-end learning whereby the
objective function is formulated on the embeddings at the network’s
output. In contrast, we studied the case of greedy learning in which
the objective is applied to each layer individually. Doing so allevi-
ates the need for backpropagation and permitted us to formulate the
weight updates as local learning rules, similar to work that combined

contrastive objectives with greedy training”. Furthermore, recent work
showed that greedy contrastive learningis directly linked to plasticity
rules that rapidly switch between Hebbian and anti-Hebbian learning
through a global third factor®>. However, both these models required
implausible negative samples, whereas LPL requires neither end-to-end
training nor negative samples.

LPL shares its basic shape with the BCM rule, which has been
qualitatively confirmed in numerous experimental studies both
invitro”****and invivo®*. Furthermore, BCM has been linked to STDP*
and informed numerous phenomenological plasticity models** =+,
However, unequivocal evidence for the predicted supralinear behavior
of the firing rate dependence of the BCM-sliding threshold remains
scarce® and the fast-sliding threshold required for network stability
seems at odds with experiments®**%. In contrast, LPL does not require
arapid nonlinear sliding threshold for stability. Instead, it posits a
fast-acting variance dependence of Hebbian plasticity that ensures
stability. This suppressive effect allows the sliding threshold, possibly
implemented through neuronal or circuit mechanisms®**°, to catch up
slowly, more consistent with experiments*. Hence, LPL offers a pos-
sible explanation for the current gap between theory and experiment.

The notion of slowness learning has been studied extensively in
the context of the trace rule”, optimal stability®> and SFA?**°, which
have conceptual ties to STDP?. However, the first enforces a hard con-
straint on the norm of the weight vector to prevent collapse, whereas
the latter two rely on hard variance constraints on the activity. In con-
trast, LPLimplements a soft variance constraint* to the same effect. A
similar soft constraint on the variance can be derived from statistical
independence arguments® within amutual information view of SSL*.
However, these studies used negative samples, assumed rapid global
sign switching of the learning rule and did not connect their work to
biological plasticity mechanisms.

Our study has several limitations that we aim to address in future
work. First, our study is limited to visual tasks of core object recogni-
tion, whereas other sensory modalities may use LPL asa mechanismto
form disentangled representations of the external world. For compu-
tational feasibility, we restricted ourselves to artificial data augmen-
tation techniques borrowed from SSL and procedurally generated
videos with a simple structure, which are only crude proxies of rich
real-world stimuli. Finally, there remains a performance gap in classifi-
cation performance compared with less plausible, fully supervised and
contrastive approaches (Supplementary Table 1), showing that there
remains room forimprovement, possibly by incorporating biological
circuit mechanisms and top-down feedback connections into the
model. Itisleft as future work to show how LPL can be extended to the
circuit level and to more ethologically realistic sensory modalities®*
and video input while further combining them with plausible models
of saccadic eye movement.

Despite the limitations, our model makes several concrete pre-
dictions. First, modulation of the strength of Hebbian plasticity as a
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function of the postsynaptic variance is essential to LPL. Therefore,
the predictive contribution to plasticity should be best observable
for highly variable neuronal activity. Although our model does not
make quantitative predictions about the time scale of variance esti-
mation, we expect that a quiescent neuron shows stronger Hebbian
plasticity than neurons with highly irregular activity. Moreover, LPL
should manifest in metaplasticity experiments as a transition from
an asymmetrical Hebbian STDP window, via a symmetrical window
to, ultimately, an anti-Hebbian window (compare Fig. 6) when prim-
ing the postsynaptic neuron with increasing output variance. Spe-
cifically, we expect a neuron that has remained quiescent for a long
period of time to display a classic STDP window, whereas a neuron
with activity that has undergone substantial fluctuationsin the recent
past should show aninverted STDP window. Such metaplasticity may
accountfor the diversity of different shapes of STDP windows observed
inexperiments®.

To fathom how established data-driven plasticity models are
related to theoretically motivated learning paradigms such as SFA
and SSL is essential to understanding the brain. A central open ques-
tion in neuroscience remains: how do the different components of
such learning rules interact with the rich local microcircuitry to yield
useful representations at the network level? In this article, we have only
scratched the surface by proposingalocal plasticity rule andillustrat-
ing its aptitude for disentangling internal representations. However,
a performance gap remains compared with learning algorithms that
can leverage top-down feedback. We expect that extending predic-
tive learning to the circuit and network level will narrow this gap and
generate deep mechanistic insights into the underlying principles of
neural plasticity.
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Methods

Plasticity model

TheLPLruleis derived from an objective function approach. It consists
of three distinct parts, each stemming from a different additive term
inthe following combined objective function:

LipL = Lpred + Lhebb + Ldecorr (3)

First, the predictive component £,..q minimizes neuronal output
fluctuations for inputs that occur close in time. Second, a Hebbian
component, £y, Maximizes variance and thereby prevents repre-
sentational collapse. Finally, £ ..o isadecorrelation term that we use
inallnonspiking network simulations to prevent excessive correlations
between neuronswithin the samelayerinanetwork.In SNNs decorrela-
tionisachieved without this term through lateral inhibition and inhibi-
tory plasticity.

In the following, we consider a network layer with Ninput units
and Moutput units trained on batches of Bpairs of consecutive stimuli.
In all simulations we approximate the temporal derivative %/, that
appearsin equation (1) by finite differences z(t) — z(t — At) assuming a
discrete time step, At, while absorbing all constants into the learning
rate. In this formulation, the LPL rule has a time horizon of two time
steps, in the sense that only one temporal transition enters into the
learning rule directly. We used this insight to efficiently train our mod-
els using mini-batches of paired consecutive input stimuli that approxi-
mate learning on extended temporal sequences consisting of many
time steps. Let x?(¢) € RVbe theinputtothe network at time ¢, W € RM*N
the weight matrix to belearned, a®(¢) = Wx(¢t) e RMthe pre-activations
and 22(¢) = fla’(0)), the activity of the ith output neuron at time t. Finally,
bindexes the training example within a mini-batch of size B.

Predictive component. We define the predictive objective £,qasthe
mean squared difference between neuronal activity in consecutive
time steps:

B
Cora® = 5y 3511220 =G~ 80|

@)

1 B M )
ST DINCAGEECAGI)

b=l1i=1

where SG denotesthe Stopgrad function, which signifies that the gradi-
entis not evaluated with respect to quantities in the past.

Hebbian component. To avoid representational collapse, we rely on
the Hebbian plasticity rule that results from minimizing the negative
logarithm of the variance of neuronal activity:

M
Luenn(®) = 23 ~10g (07(0) )
i=1

where z(0) =56 (L 30 () and 20 = L 30 (2 ~z(0) arethe
current estimates of the mean and variance of the activity of the ith
output neuron. Note that we do not compute gradients with respect
to the mean estimate, which would require backpropagation through
time. Assuming that the mean is fixed allows formulation of LPL as a
temporally locallearning rule (compare equation (3)). To minimize the
computational burdenin DNN simulations, we performed all necessary
computations on mini-batches, which includes estimating the mean
and variance. However, these quantities could also be estimated using
stale estimates from previous inputs, arequirement forimplementing
LPLasanonlinelearningrule. Using stale mean and variance estimates
from previous mini-batches in our DNN simulations did cause a drop
in readout performance (Supplementary Table 2). Still, such a drop
could possibly be avoided using larger mini-batch sizes, by further

reducing the learning rate or by computing the estimates as running
averages over past inputs. All of the above manipulations result in
essentially the same learning rule (Supplementary Note 1).

Decorrelation component. Finally, we use a decorrelation objective
to prevent excessive correlation between different neuronsinthe same
layer, as suggested previously**”*. The decorrelation loss functionis
the sum of the squared off-diagonal terms of the covariance matrix
between units within the same layer, which is given as:

1 B M o, o
GRS ) ;; kz;ez @O -Z0) @O -z©) (6

Ldecorr(t) =
with a scaling factor that keeps the objective invariant to the number
of unitsin the population.

The full learning rule. We obtain the LPL rule as the negative gradient
of the total objective, £, plus an added weight decay. For a single
network layer, this yields the layer-local LPL rule in which we omitted
the time argument ¢ from all present quantities for brevity:

0L, 0L Lecor
AWy = —ﬂ(Led +h = +}l2d—")—’7’7szj
i

ow; aw;
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where A, and A, are parameters that control the relative strengths of
eachobjective, aand S are the appropriate normalizing constants for
batch size and number of units and n,, is a parameter controlling the
strength of the weight decay.

Numerical optimization methods. We implemented all network model
learning with LPL using gradient descent on the equivalent objective
function in PyTorch (v.1.11.0) with the Lightning framework (v.1.6.1).
DNN simulations were run on five Linux workstations equipped with
Nvidia Quadro RTX 5000 graphics processing units (GPUs) and acom-
pute cluster with NvidiaV100 and A100 GPUs. Inthe case of the DNNs,
we used the Adam optimizer to accelerate learning. Parameter values
used in all simulations are summarized in Supplementary Table 3. All
simulations were run using Python (v.3.8). We used Jupyter notebooks
(v.1.0.0) for all data analysis and plotting. The simulation and analysis
codes are available online*®.

Learningin the single neuronset-up

We considered asimple linear rate-based neuron model with an output
firing rate, z, given by the weighted sum of the firing rates, x;, of the
input neurons, that is, 2=} ;Wx;, where W, corresponds to the synap-
tic weight of inputj. We trained the neuron using stochastic gradient
descent (SGD) on the corresponding objective function:

£ = 50 - SGt— M) ~log(@2O +©) 1, D W2 ®)
J

Here, and inall following simulations, we fixed the Hebbian coef-
ficient A, = 1. We also added a small constant € =107 to the estimate
of the variance o, for numerical stability. In the case of a single rate
neuron, the LPL rule (equation (7)) simplifies to equation (1) without
the decorrelation term.

Synthetic 2D dataset generation. The 2D synthetic data sequence
(Fig. 2a) consists of two clusters of inputs, one centered at x=-1and
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the other at x = +1. Pairs of consecutive data points were drawn inde-
pendently from normal distributions centered at their corresponding
cluster. To generate a family of different datasets, we kept the s.d. in
the x direction fixed at o,= 0.1and varied o,. In addition, to account
for occasional transitions between clusters with probability P, we
included a corresponding fraction of such ‘crossover pairs’in the train-
ingbatch. For each value of g, we simulated the evolution of the input
connections of a single linear model neuron that received the xand y
as its two inputs, and updated its input weights according to LPL. In
the simulations in Fig. 2 we assumed P - O; however, the qualitative
behavior remained unchanged for noise levels below P= 0.5, that is,
as long as the ‘noisy’ pairs of points from different clusters were rare
in eachtraining batch (Extended Data Fig. 8).

Neuronal selectivity measure. After training weights to convergence,
we measured the neuron’s selectivity to the xinput as the normalized
difference between mean responses to stimuli coming from the two
respective input clusters. Concretely, let (z;) be the average output
caused by inputs from the x =1 cluster and (z,) from the x = -1 cluster,
then the selectivity y is defined as:

y= [(z1) — (z2) | ©)

Zmax ~ Zmin

with z,,, the maximum and z,,;, the minimum response across all
inputs.

Learningin deep CNNs

For all network simulations, we used a convolutional DNN based on
the VGG-11 architecture™ (see Supplementary Note 5 for details). We
trained this network on STL-10 and CIFAR-10 (Extended DataFig.9), two
natural image datasets (see Supplementary Table 3 for hyperparam-
eters). Tosimulate related consecutive inputs, we used two differently
augmented versions of the same underlyingimage, a typical approach
in vision-based SSL methods. Specifically, we first standardized the
pixel valuesto zero meanand unit s.d. within each dataset before using
the set of augmentations originally suggested inref.19, whichincludes
random crops, blurring, color jitter and random horizontal flips (see
Extended Data Fig. 2 for examples).

Synthetic video generation. To study LPL in settings with more natu-
ralistic transitions between consecutiveimages and without relying on
image augmentation, we procedurally generated videos using images
from the 3D Shapes dataset*”. The dataset has a known latent manifold
structure spanned by view angle, object scale, hue and object type, and
iscommonly used to measure disentangling in variational autoencod-
ers. Using the knowledge of the ground-truth factors, we generated a
continuous video composed of 17-frame clips during which the object
shape remained fixed and a randomly chosen factor changed gradu-
ally. Specifically, we proceeded as follows: we randomly chose one
factor and changed it frame by frame such that transitions between
adjacent factor values were more likely. For instance, one such clip
shows a cube under asmoothly varying camera angle (Extended Data
Fig. 4a). Furthermore, we randomly permuted the order of all three
hue factors. This was done to break the orderly ring topology of the
hue mappingsin the original dataset, which allowed us to test that the
structure is restored through LPL, but not other methods (Extended
Data Fig. 4g). After 17 frames we randomly chose another shape and
factor and repeated the above procedure. This sequence generation
resulted inavideo withmany consecutive latent manifold traversals as
captured by theempirical transition matrices (Extended Data Fig. 5a).
Importantly, due to the nature of the video, which switches between
objects periodically, the resulting input sequence also included occa-
sional transitions between different objects that the LPL rule interprets
as positive samples. Such transitions also appear in real-world stimuli

when objects leave or enter the scene. Despite these ‘false positives’,
LPL learned disentangled representations of shapes and the underly-
ing factors.

Network training. We trained our network models on natural image
data by minimizing the equivalent LPL objective function. For both
datasets, we trained the DNN using the Adam optimizer with default
parameters and a cosine learning rate schedule that drove the learning
rate to zero after 800 epochs. We distinguished between two cases:
layer-localand end-to-end learning. End-to-end learning corresponds
to training the network by optimizing £ at the network’s output
while using backpropagation to train the hidden layer weights. Thisis
the standard approachusedin deep learning. In contrast, inlayer-local
learning, we minimized the LPL objective, £, , at each layer in the
network independently without backpropagating loss gradients
between layers similar to previous work?”. In this case, every layer
greedily learns predictive features of its own inputs, that s, its previous
layer’s representations. To achieve this behavior, we prevented PyTorch
from backpropagating gradients between layers by detaching the
output of every layer in the forward pass and optimizing the sum of
per-layerlosses ¥,

Unless mentioned otherwise, we used global average pooling
(GAP) to reduce feature maps to a single vector before applying the
learning objective at the output of every convolutional layer for
layer-local training, or just at the final outputin the case of end-to-end
training. Although pooling was not strictly necessary and LPL could
be directly applied on the feature maps (Extended Data Fig. 10), it
substantially sped up learning and led to an overall improved linear
readout accuracy on CIFAR-10 (Supplementary Table 2). However,
we observed that GAP was essential on the STL-10 dataset for achiev-
ing readout accuracy levels above the pixel-level baseline (compare
Table1). Thisdiscrepancy was presumably the result of the larger pixel
dimensions of this dataset and the resulting smaller relative receptive
field sizeinearly convolutionallayers. Concretely, feature pixelsin the
first convolutional layer of VGG-11 have areceptive field of 3 x 3 pixels
coveringalarger portion ofthe 32 x 32 CIFAR-10 images, compared with
the 96 x 96 STL-10 inputs. This hypothesis was corroborated by the fact
that, when we subsampled STL-10 images to a 32 x 32 resolution, the
dependence on GAP was removed and LPL was effective directly on the
feature maps (Supplementary Table 2).

Baseline models. As baseline models for comparison (Supplementary
Table1), we trained the same CNN architecture either with a standard
crossentropy supervised objective, which requires labels, or with a
contrastive objective, whichrelies on negative samples. Toimplement
contrastive learning, the network outputs z(t) were passed through two
additional dense projection layers, v(t) =f,,,;(z(t)), whichis considered
crucialin contrastive learning to avoid dimensional collapse*. Finally,
the following contrastive loss function was applied to these projected
outputs:

B B
Leontrast() = ) (—sim(v”(t), SG(Vo(t— AD)) + Y sim(Vo(), v”’(t))) (10)
b=1 b'#b

T
Vivy

where sim(vy, v;) = AN is the cosine similarity between two repre-
sentations, V;and V,. The second termin theloss functionisasumover
all pairwise similarities between inputs in a given mini-batch. These
pairs correspond to different underlying base images and therefore
constitute negative samples. During training the network is therefore
optimized to reduce the representational similarity between them.
For training the layer-local versions of the supervised and contras-
tive models, we followed the same procedure as with LPL of optimizing
therespective loss function at the output of every convolutional layer,
[, of the DNN without backpropagation between the layers. As projec-
tion networks are necessary for avoiding dimensional collapse in case
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of contrastive learning, we included two additional dense layers to
obtainthe projected representations, vi(¢) = f ;mj (Z!(0)), at every level of
the DNN before calculating the layer-wise contrastive l0ss, £l nerast- ThiS
meant that gradients were backpropagated through each of these
denselayers for training the corresponding convolutional layers of the
DNN, but consecutive convolutional layers were still trained independ-
ent of each other.

Population activity analysis. We adopted two different metrics to
analyze the representations learned by the DNN after unsupervised
training with LPL on the natural image datasets.

Linear readout accuracy. To evaluate how well the LPL rule trained
the DNNto disentangle and identify underlying latent factorsinagiven
image, we measured linear decodability by training alinear classifier on
the network outputsin response to a set of trainingimages. Crucially,
duringthis step we trained only the readout weights while keeping the
weights of the LPL-pretrained DNN frozen. We then evaluated the linear
readoutaccuracy (Fig.3b) onaheld-out test set of images. We used the
same procedure to evaluate the representations atintermediate layers
(Fig.3c) and for the baseline models.

Representational similarity analysis. To visualize the latent manifold
structureinlearned network embeddings, we computed average rep-
resentational similarity matrices (RSMs). To obtain the RSM for one
factor, say object hue, we first fixed the values of all the other factors
and calculated the cosine similarity between the network outputs as
the object hue was changed. We repeated this procedure for many
different values for the other factors to get the final averaged RSM for
object hue (Extended Data Fig. 4f).

Metric for disentanglement. To quantitatively measure disentangle-
ment, we used the metric proposed by Kim and Mnih*2. This measure
requires full knowledge of the underlying latent factors, as was the
case for our procedurally generated videos. In brief, to compute the
measure one first identifies the most insensitive neuron to all except
onefactor. Next, using theindices of these neurons, one trainsasimple
majority-vote classifier that predicts which factor is being coded for.
Theaccuracy of this classifier on held-out datais the disentanglement
score.

Dimensionality and activity measures. To characterize mean activity
levelsinthe network models, we averaged neuronal responses over all
inputs in the validation set. To quantify the dimensionality of the
learned representations, we computed the participation ratio®®. Con-
cretely,if Z e RB*¥are N-dimensional representations of Binput images,
and A, 1<i< Nis the set of eigenvalues of Z'Z, then the participation
ratiois given by:

N 2
Dim. = % (11
Ziz1 /li

Model of unsupervised learninginIT

Network model and pre-training dataset. To simulate the experimen-
tal set-up of Li and DiCarlo", we modeled the animal’s ventral visual
pathway with a convolutional DNN. To that end, we used the same
network architecture as before, except that we removed all biases in
the convolutional layersto prevent boundary effects. This modification
resultedinadropinlinearreadoutaccuracy (Supplementary Table 2).
Pre-training of the network model proceeded in two steps as follows.
First, we performed unsupervised pre-training for 800 epochs on STL-
10 using augmented image views exactly as before. Next, we added a
fully connected dense layer at the network’s output and trained it for

ten epochs with the LPL objective while keeping the weights of the
convolutional layers frozen. During this second pre-training phase,
we used augmented STL-10 inputs that were spatially extended to
account for the added spatial dimension of different canvas positions
in the experiment®. The expanded inputs consisted of images placed
on alarge black canvas at either the center position, X, or one of two
peripheral positions, X,,,, at the upper or lower end of the canvas. Con-
cretely, these images had dimensions (13 x 96) x 96 which resulted in
an expanded feature map at the output of the convolutional DNN with
spatial dimensions 13 x 1 (see Supplementary Note 5 for details). Note
that we expanded the canvas only in the vertical dimension instead of
using a set-up with a 13 x 13 feature map because it resulted in a sub-
stantial reductionin computational and memory complexity. During
this second stage of pre-training, the network was exposed only to ‘true’
temporal transitions wherein the image was not altered between time
steps apart from changing position on the canvas.

Data generation for simulated swap exposures. To simulate the
experiment by Li and DiCarlo™, we exposed the network to normal
and swap temporal transitions. In the latter case the image was consist-
ently switched to one belonging to a different object category at the
specific swap position. The swap position for a given pair of images
wasrandomly pre-selected to be either X, or X,, whereas the other non-
swap position was used as a control. Specifically, we switched object
identities during transitions from one peripheral swap position, say
Xy, tothe central position X,, while keeping transitions from the other
peripheral position X, to the center unmodified. Asin the experiment,
we chose several pairs of images as swap pairs and fixed X; as the swap
position for half the pairs of images and X, as the swap position for
the other half. To simulate ongoing learning during exposure to these
swap and nonswap input sequences, we continued fine-tuning the
convolutional layers. To that end, we used the Adam optimizer used
during pre-training with its internal state restored to the state at the
end of pre-training. Moreover, we used a learning rate of 107 during
fine-tuning, which was approximately 100x larger than the learning
rate reached by the cosine learning rate schedule during pre-training
(4 x107°, after 800 epochs). Finally, we trained the newly added dense
layers with vanilla SGD with alearning rate of 0.02.

Neuronal selectivity analysis. Before training on the swap exposures,
for each output neuroninthe dense layer, we identified the preferred
and nonpreferred members of each swap image pair, based on which
image drove higher activity in that neuron. This allowed us to quantify
objectselectivity onaper-neuronbasisas P — N,wherePis the neuron’s
response toitsinitially preferredimage and Ntoits nonpreferred image
atthe same position on the canvas. Note that, by definition, the initial
objectselectivity for every neuronis positive. Finally, we measured the
changesinobjectselectivity P — Nduring the swap training regimen, at
the swap and nonswap positions, averaging over all output neurons for
allimage pairs. As a control, we included measurements of the selectiv-
ity between pairs of controlimages that were not part of the swap set.

Comparison to experimental data. To compare our model with experi-
ments, we extracted the data from Li and DiCarlo™ using the Engauge
Digitizer software (v.12.1) and replotted itin Fig. 4b.

Spiking neural network simulations

Wetested a spiking version of LPL in networks of conductance-based,
leaky, integrate-and-fire neurons. Specifically, we simulated arecurrent
network of 125 spiking neurons (100 excitatory and 25inhibitory neu-
rons) receiving afferent connections from 500 input neurons. Inall sim-
ulations the input connections evolved according to the spike-based
LPL rule described below. In our model, neurons actively decorrelated
each other through locally connected inhibitory interneurons with
connectivity shaped by inhibitory plasticity.
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Neuron model. The neuron model was based on previous work*** in
which the membrane potential U;of neuronievolves according to the
ordinary differential equation:

Tmem% — (Uleak _ Ui) +giexca) (Uexe — Uy) +g}“h(t) (Uinh _ Ui) (12)

where ™™ denotes the membrane time constant, U~ is the synaptic
reversal potential (Supplementary Table 4) and g} (¢)the corresponding
synaptic conductances expressed in units of the neuronal leak
conductance. The excitatory conductance is the sum of NMDA
(N-methyl-p-aspartate) and AMPA (a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionicacid) conductances: g®(¢) = 0.5(¢7 ™" (¢) + g™ (¢))
Their dynamics are described by the following differential
equations:

d impa gf:XC(t)
0=~ +jezexc wySi(t) 13)
dgima mpa
TnmdaT([) =g () — g™ () (14)

whereas the inhibitory y-aminobutyric acid (GABA) conductance,
g™ = g=™, evolvesas:

aba
78 % =g+ Y wysio). (15)
jeinh

Inthe above expressions, S;(t) = 3, k6(tf — tyrefers to the afferent spike
trainemitted by neuronj, inwhich ¢ is the corresponding firing times
and * denotes the individual neuronal and synaptic time constants
(Supplementary Table 4). Neuron i fires an output spike whenever its
membrane potential reaches the dynamicfiring threshold, 9,(¢), which
evolves according to:

rest
9 —

9;(8)

T 8sSiD)

dS,— _
E(t) = 16)

toimplement an absolute and relative refractory period. Specifically,
9;jumps by 4,=100 mV every time an output spike is triggered, after
whichitexponentially decays back toits rest value of 9" = =50 mV. All
neuronal spikes are delayed by 0.8 ms to simulate axonal delay and to
allow efficient parallel simulation before they trigger postsynaptic
potential in other neurons.

Time-varying spiking input model. Inputs were generated from 500
input neuronsdividedinto 5 populations of 100-Poisson neurons each.
Allinputs, where implemented as independent Poisson processes
with the same average firing rate of 5 Hz and neurons within the same
group, shared the sameinstantaneous firing rate. Concretely, neurons
inPO had afixed firing rate of 5 Hz, whereas the firing ratesin groups P1
and P2 changed slowly over time. Specifically, we generated periodic
template signals x(¢) from a Fourier basis:

x(t):Zk:ﬂsin<2m+¢k)

ak T a7

with random uniformly drawn coefficients O < 8,, ¢ < 1. The spectral
decay constant a =1.1biased the signals toward slow frequencies and
thusslowly varying temporal structure. We chose the period 7=3 s for
Pland (3 +/;;) sfor P2, respectively. The different periods were chosen
toavoid phase-locking between the two signals. Both signals were then
sampled at10-msintervals, centered on 5 Hz, variance normalized and
clippedbelow at 0.1 Hzbefore using themas periodic time-varying firing

rates for P1and P2.In addition, we simulated control inputs P1/2, of the
two input signals by destroying their slowly varying temporal structure.
To that end, we repeated the original firing rate profile for 13 periods
before shuffling it on a time grid with 10-ms temporal resolution.

Spike-based LPL. To extend LPL to the spiking domain, we build on
SuperSpike®, a previously published online learning rule, which had
beenused onlyinthe context of supervised learningin SNNs thus far.In
thisarticle, wereplaced the supervised loss with the LPL loss (equation
(3)) without the decorrelation term. The resulting spiking LPL online
rule for the weight w; is given by:

dw,

d_tij =na (C ES Sj(t)f/(ui(t)))

x [a . (—(s,-(t) - Sit=A0)) + (50 S,-(t)))] as)

+ 85,(0)

—
transmitter-triggered

with the learning rate n =102 and a small positive constant =107 to
avoid division by zero. Furthermore, the * denotes a temporal con-
volution and a is a double exponential, causal filter kernel applied to
the neuronal spike train S,(¢). Similarly, € is a causal filter kernel that
captures the temporal shape of how a presynaptic spike influences
the postsynaptic membrane potential. For simplicity, we assumed a
fixed kernel and ignored any conductance-based effects and NMDA
dependence. Furthermore, we added the transmitter-triggered plas-
ticity term with 6 =107 to ensure that weights of quiescent neurons
slowly potentiate in the absence of activity to ultimately render them
active”. Finally, A=1is a constant that modulates the strength of the
Hebbian term. We set it to zero to switch offthe predictive term where
this is mentioned explicitly. 5

Furthermore, f'(U;) = B(1+ B|U; — 9"*|) ~is the surrogate deriva-
tivewith 8=1mV~, whichrenders thelearningrule voltage dependent.
Finally, $,(t) and o?(¢) are slowly varying quantities obtained online as
exponential moving averages with the following dynamics:

gmean @ =S-S50 (19)

t

2o 8020 = ~02(0 + (510 - 5.0

(20)
with 77" =600 s and 7'*" = 20 s. These quantities confer the spiking
LPL rule with elements of metaplasticity®.

In our simulations, we computed the convolutions with a and
€ by double exponential filtering of all quantities. Generally, for the
time-varying quantity c(t) we computed:

rise d_C — _F
T a () = —c(t) + c(t) (21

fall j—f(t) = —(t) + ¢(0) (22)

whichyields the convolved quantity &.Specifically, we used 77%¢ = 2 ms,
Tl = 10 ms, 7% = Typp, = Smsand 7' = 7,0, = 20 ms.

Overall, one can appreciate the resemblance of equation (18) to
the nonspiking equivalent (compare equation (1)). As in the nonspik-
ing case, the learning rule is local in that it depends only on pre- and
postsynaptic quantities. The predictive term in the learning rule can
be seen as an instantaneous error signal, which is minimized when
the present output spike train S(¢) is identical to a delayed version of
the same spike train Syt — At) with At = 20 ms. In other words, the past
outputserves as atarget spike train (compareref. 60).
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Microcircuit connectivity. Connections from the input population to
the network neurons and recurrent connections were initialized with
unstructured random sparse connectivity and different initial weight
values (Supplementary Table 5). One exception to this rule was the
excitatory-to-inhibitory connectivity which was set up with a Gaussian
connection probability profile:
(Jj - @)’
con _

PSo" = exp (— = ) (23)
with c(i) = 0.25iand ¢® = 20 to mimic the dense local connectivity on to
inhibitory neurons as aresult of which inhibitory neuronsinherit some
of the tuning of their surrounding excitatory cells.

Inhibitory plasticity. Inhibitory-to-excitatory synapses were plastic
unless mentioned otherwise. We modeled inhibitory plasticity accord-
ing to a previously published inhibitory STDP model®s:

dw™
dz = {(0c(®) + 26TTOP)S(6) + (x;(D)S,(1))) (24)
using pre- and postsynaptic traces:
d x;(t)
o =~ o Sk 25)

with time constant °™°" = 20 ms, learning rate {=1x 107 and target
firingrate k=10 Hz.

Reconstruction of input signals from network activity. To recon-
struct the input signals, we first computed input firing rates of the 5
input populations by binning their spikes emitted during the last100 s
ofthe simulationin25-msbins. We further averaged the binned spikes
over input neurons to provide the regression targets. Similarly, we
computed the binned firing rates of the network neurons but without
averaging over neurons. We then performed Lasso regression using
SciKit-learnwith default parametersto predict eachtarget input signal
from the network firing rates. Specifically, we trained on the first 95 s
of the activity data and computed R? scores on the Lasso predictions
over thelast 5 s of held-out data (Fig. 5b).

Signal selectivity measures. We measured signal selectivity of each
neuron to the two slow signals relative to their associated shuffled
controls (Fig. 5d), using the following relative measure defined on
the weights:
l !
e A (26)
wp, +w,

ctl

where wi is the average synaptic connection strength from the signal
pathways P1/2 on to excitatory neuron i and w/, . isthe same but from
the control pathways P1/2,.

Representational dimension. To quantify the dimensionality of the
learned neuronal representations (Fig. 5f), we binned network spikes
in 25-ms bins and computed the participation ratio (equation (11)) of
thebinned data.

Neuronal tuning analysis of the learned weight profiles. To char-
acterize thereceptive fields of each neuron (Fig. 5g,h), we plotted wp,
against wp, for every neuron in the excitatory population (Fig. 5g,h,
left), and colored the resulting weight vectors by mapping the cosine of
the vectors with the x axis (wp,) toadiverging color map. Furthermore,
we calculated the relative tuning index as follows:

i i
i wPZ wPl

X =— (27)
7w, ul,

STDP induction protocols. To measure STDP curves, we simulated a
single neuron using the spiking LPL rule (equation (18)) with alearn-
ing rate of n=5x107. In all cases, we measured plasticity outcomes
from 100 pairings of pre- and postsynaptic spikes at varying repeti-
tion frequencies, p. The postsynaptic neuron’s membrane voltage
was held fixed between spikes at =51 mV for the entire duration of the
protocol. To measure STDP curves, we set the initial synaptic weight
at 0.5 and simulated 100 different pre—post time delays, At, chosen
uniformly fromtheinterval[-50,50] mswith p =10 Hz. To measure the
rate dependence of plasticity, we repeated the simulations for fixed
At=+10 ms while varying the repetition frequency p.

Numerical simulations. All SNN simulations were implemented in
customized C++ code® using the Auryn SNN simulator (v.0.8.2-dev,
commit 36b3c197). Throughout we used a 0.1-ms simulation time
step. Simulations were run on seven Dell Precision workstations with
eight-core Intel Xeon central processing units.

Statistics and reproducibility

This article is a simulation study. No statistical method was used to
predetermine sample size. No data were excluded from the analyses.
The experiments were not randomized. The Investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The deep learning tasks used the STL-10 and CIFAR-10 datasets,
typically available through all major machine-learning libraries. The
original releases for these datasets can be found at http://ai.stanford.
edu/%7Eacoates/stl10 and https://www.cs.toronto.edu/~kriz/cifar.
html, respectively. For the Extended Data figures and Supplementary
figures, we further used the 3D Shapes dataset* available at https:/
github.com/deepmind/3d-shapes and the MNIST dataset available at
http://yann.lecun.com/exdb/mnist.

Code availability

The simulation code to reproduce the key results is publicly available
at https://github.com/fmi-basel/latent-predictive-learning. PyTorch
and the Lightning framework are freely available at https://pytorch.
org and https://www.pytorchlightning.ai, respectively. The Auryn
spiking network simulator is available at https://github.com/fzenke/
auryn. The Engauge Digitizer is available at http://markummitchell.
github.io/engauge-digitizer.
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Extended Data Fig.1| LPL extends BCM theory by adding a variance- and
rate-of-change dependence. (a) Example of a typical neuronal input-output
function with postsynaptic activity z. (b) Weight change induced by the LPL rule
for co-varying input and the postsynaptic activity z for different values of the
plasticity threshold ©, with 02 = 1and dz/dt = 0. The functional shift of the
threshold is reminiscent of the BCM rule. (c) Same as (b) but for different values

of the variance of the postsynaptic activity with zero prediction error dz/dt =0
and fixed mean activity z = 30. (d) Same as (c) but with a positive prediction
error dz/dt=+10. (e) Same as (a), but for arectified linear unit (ReLU) activation
function with positive threshold. (f) Same as (b) but for ReLU. (g) Same as (c) but
for ReLU. (h) Same as in (d) but for ReLU and a negative prediction error
dz/dt=-10.
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Extended DataFig. 2 | Image augmentation model. lllustration of the image transformations used to generate natural image sequences as suggested by Chen et al.”.
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Extended DataFig. 3 | Disentangling of object representationsin the DNN. representations in Layer 3 of the DNN after learning with LPL. Object classes are
(a) Datadistribution of the STL-10 validation set along the first two principal somewhat disentangled. (c) Same as (a) but along the principal components of
components in pixel-space. Data corresponding to different object classes representations in Layer 8 of the DNN. Object classes are highly disentangled.
are highly entangled. (b) Same as (a) but along the principal components of
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Extended Data Fig. 4 | LPL finds latent manifold structure of simulated video the small number of classes in the dataset. Importantly, the metric is insensitive
data. (a) Input frames from the procedurally generated video using the 3D to the manifold topology (see below). Different data points correspond
Shapes dataset*. (b) The empirically measured transition matrix of object hue to averages over n =10 independent evaluations of the metric, with error
with latent structure (see Extended Data Fig. 5 for the complete set of transition bars + SEM. (e) Projections of the representations onto the first two principal
matrices). (c) Object classification accuracy of alinear classifier trained on components before (Random) and after training (LPL). Each point corresponds
network outputs of anetwork with LPL, without the predictive term (Pred. off), tooneinputimage, and the color represents the object type. The object class
and the randomly initialized network (Random). Values represent averages from is entangled atinitialization and disentangled after learning. (f) Averaged RSM
cross validation (n =10 folds). Error bars indicate + SEM. The accuracy is close to computed from representations of different object colors in (d). LPL's RSM
100% for LPL, but lower at initialization or when trained without the predictive closely resembles the transition structure shownin (b). Without the predictive
term. (d) Disentanglement scores computed according to the metric proposed term, the RSM becomes diagonal, while the random network’s RSM does not
by Kim and Mnih* for the final-layer representations of the three networks in have this structure and roughly follows the input pixel similarity structure. (g)
(c) compared to the input pixels (Pixels). LPL yields close to maximum scores Network output projected onto the first two principal components for changing
(95.0% + 0.8%), higher than arandomly initialized network or after training hue sequentially while keeping all other factors fixed. The two lines correspond

without the predictive term. However, evaluating the metric on the pixels directly ~ totwo different object sizes. The trajectories are disentangled for LPL and
alsoyields high scores (93.0% + 0.0%), albeit still slightly lower than LPL. The high preserve the topology of the data manifold (cf. b), whereas this is not the case
scores in pixel space can partially be explained by the high input dimension and when the predictive termis off, at initialization (random), or at the input (pixels).
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Extended Data Fig. 5| Transition matrices and RSMs for all latent factors of change for any factor is fixed within a given clip, but may reverse for orientation
the 3D shapes dataset. (a) Transition probabilities estimated from thegenerated ~ and scale at the extreme values (cf. Fig. 4a). (b) Same as Fig. 4f, but for all factors
video. The high values on the diagonal reflect the fact that within a17-frame atthe pixel level. RSM values represent average cosine similarity between the
clip, only one factor changes while the others remain fixed. The off-diagonal pixels of images differing only in one factor with all other factors fixed. Some
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Forinstance, within a clip cycling through all the object hues, the color may as (b) but for the final-layer representations learned by LPL. The RSM closely
only change to the next or previous assignments in the color map with asmaller resembles the transition probability structure that characterizes the temporal
probability for a two-step transition. The hue mapping was randomly chosen properties of the video sequence. (d) Same as (c) but for learning without the
withrespect to the original dataset to ensure an entangled topology at the input predictive term. The RSMis diagonal, which shows that the network represents
(cf. Fig. 4g). The orientation and scale factors are not allowed to transition from different factors in almost orthogonal directions. (e) Same as (b), but at random
the smallest to the largest values, and vice versa. Furthermore, the direction of initialization before training. The RSM for all factorsis reflective of the pixel RSM.
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Extended Data Fig. 6| Same as Fig. 5 but with detailed controls. (a) Snapshot with inhibition, even when the predictive termis disabled or the inhibition is not
of spiking activity (left) and underlying firing rate signals or their reconstructions  plastic. Activity collapses without the Hebbian term, whereas firing rates diverge
(right) over 100 ms for the input and network populations. (b) Same as Fig. 5d withoutinhibition. (e) Averaged weight vectors from populations P1and P2 onto
showing signal selectivity learned with the different variations of spiking each excitatory neuron (left) and distribution of the excitatory neurons’ relative
LPL givenin (a). (c) Average synaptic connection strength grouped by input selectivity between the two populations (right). Different neurons are exclusively
population for the different configurations in (a). LPL with plastic inhibition selective to either P1or P2 under spiking LPL with inhibitory plasticity. Without
results in higher weights on the slowly varying signals relative to the shuffled the predictive term, or the Hebbian term, few if any neurons are selective to one
controls, but not when the predictive or Hebbian term are disabled. Without population over the other. Moreover, weights collapse to small values without
inhibition or without inhibitory plasticity, connections from all populations the Hebbian term. When inhibition is removed altogether, afew neurons become
are strong with a small preference for P2. (d) Average firing rates over 100 s bins exclusively selective to P2, but the weight vectors are not well-decorrelated.
throughout training for the configurationsin (a). Firing rates saturate with the Without inhibitory plasticity, a few weight vectors are well-decorrelated, but
inhibitory neurons settling at a higher firing rate when learning with spiking LPL most neurons are not preferentially selective to either signal.
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cross-cluster transitions in the data sequence with ,=1. LPL drives selectivity to
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slow feature. Values are averages xy5SEM (n =10 random seeds).
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