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The combination of Hebbian and 
predictive plasticity learns invariant object 
representations in deep sensory networks

Manu Srinath Halvagal    1,2 & Friedemann Zenke    1,2 

Recognition of objects from sensory stimuli is essential for survival. To 
that end, sensory networks in the brain must form object representations 
invariant to stimulus changes, such as size, orientation and context. 
Although Hebbian plasticity is known to shape sensory networks, it fails to 
create invariant object representations in computational models, raising 
the question of how the brain achieves such processing. In the present 
study, we show that combining Hebbian plasticity with a predictive form of 
plasticity leads to invariant representations in deep neural network models. 
We derive a local learning rule that generalizes to spiking neural networks 
and naturally accounts for several experimentally observed properties of 
synaptic plasticity, including metaplasticity and spike-timing-dependent 
plasticity. Finally, our model accurately captures neuronal selectivity 
changes observed in the primate inferotemporal cortex in response to 
altered visual experience. Thus, we provide a plausible normative theory 
emphasizing the importance of predictive plasticity mechanisms for 
successful representational learning.

Recognition of invariant objects and concepts from diverse sensory 
inputs is crucial for perception. Watching a dog run evokes a series of 
distinct retinal activity patterns that differ substantially depending 
on the animal’s posture, lighting conditions or visual context (Fig. 1a). 
If we looked at a cat instead, the resulting activity patterns would be 
different still. That we can effortlessly distinguish dogs from cats is 
remarkable. It requires mapping entangled input patterns, which lie 
on manifolds that ‘hug’ each other like crumpled-up sheets of paper, 
to disentangled neuronal activity patterns, which encode the under-
lying factors so downstream neurons can easily read them out1. Such 
transformations require deep sensory networks with specific net-
work connectivity shaped through experience-dependent plasticity  
(Fig. 1b). However, current data-driven plasticity models fail to establish 
the necessary connectivity in simulated deep sensory networks. At the 
same time, supervised machine-learning algorithms do yield suitable 
connectivity2 in deep neural networks (DNNs) that further reproduce 
essential aspects of the representational geometry of biological neural 

responses3,4. This resemblance proffers DNNs as potential tools to 
elucidate neural information processing in the brain5,6.

Unfortunately, standard deep learning methods are difficult to rec-
oncile with biology. On the one hand, they rely on backpropagation, an 
algorithm considered biologically implausible, although neurobiology 
may implement effective alternatives5,7–10. On the other hand, humans 
and animals cannot learn through strong label-based supervision, 
because this would require knowledge of a label for every input pattern.

In the present study, we show that self-supervised learning (SSL), 
a family of unsupervised machine-learning algorithms, may offer a 
remedy. SSL does not need labeled data but instead relies on predic-
tion, a notion also supported by neurobiology11–16. Prediction can hap-
pen in the input space by, for instance, reconstructing one part of an 
image from another, as for autoencoders17, or by predicting the next 
word in a sentence, as done in language models. Alternatively, predic-
tion can occur in latent space by requiring internal representations 
of related inputs to predict each other18,19. Latent space prediction is 
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SSL with Hebbian plasticity. Specifically, the local learning rules derived 
within our framework combine a plasticity threshold, as observed in 
experiments (Fig. 1e)27,31–34, with a predictive component, inspired by 
SSL and SFA, that renders neurons selective to temporally contiguous 
features in their inputs. When applied to the layers of deep hierarchical 
networks, LPL yields disentangled representations of objects present in 
natural images without requiring labels or negative samples. Crucially, 
LPL effectively disentangles representations as a local learning rule 
without requiring explicit spatial credit assignment mechanisms. Still, 
credit assignment capabilities can further improve its effectiveness. 
We demonstrate that LPL captures central findings of unsupervised 
visual learning experiments in monkeys and in spiking neural networks 
(SNNs) and naturally yields a classic spike-timing-dependent plastic-
ity (STDP) window, including its experimentally observed firing-rate 
dependence27. These findings suggest that LPL constitutes a plausible 
normative plasticity mechanism that may underlie representational 
learning in biological brains.

Results
To study the interplay of Hebbian and predictive plasticity in sensory 
representational learning, we derived a plasticity model from an SSL 
objective function that is reminiscent of and extends the classic Bien-
enstock–Cooper–Munro (BCM) learning rule33,35 (Methods and Supple-
mentary Note 1). According to our learning rule, the temporal dynamics 
of a synaptic weight Wj are given by:

dWj

dt
(t) = ηxj(t)f′(a(t))

⎛
⎜
⎜
⎝
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more compelling from a neuroscience perspective because it does not 
require an explicit decoder network that computes prediction errors at 
the input, that is, the sensory periphery, for which there is little experi-
mental support. Instead, latent prediction errors are computed locally 
or at network outputs (compare Fig. 1) and drive learning by ‘pulling’ 
together related internal representations for stimuli that frequently 
occur close in time (Fig. 1c), similar to slow feature analysis (SFA)20,21.

However, a major issue with this strategy is that, without any forces 
opposing this representational pull, such learning inevitably leads to ‘rep-
resentational collapse’, whereby all inputs are mapped to the same inter-
nal activity pattern that precludes linear separability (Fig. 1c). One typical 
solution to this issue is to add forces that ‘push’ representations corre-
sponding to different unrelated stimuli away from each other (Fig. 1d).  
This is usually done by invoking so-called ‘negative samples’, which are 
inputs that do not frequently occur together in time. This approach has 
been linked to biologically plausible, three-factor learning rules22,23, but it 
requires constantly switching the sign of plasticity depending on whether 
or not two successive inputs are related to each other. Yet, it is unknown 
whether and how such a rapid sign switch is implemented in the brain.

Another possible solution for avoiding representational collapse 
without negative samples is to prevent neuronal activity from becom-
ing constant over time, for instance, by maximizing the variance of 
the activity24. It is interesting that variance maximization is a known 
signature of Hebbian plasticity25,26, which has been found ubiquitously 
in the brain27,28. Although Hebbian learning is usually thought of as the 
primary plasticity mechanism rather than playing a supporting role, 
Hebbian plasticity alone has had limited success at disentangling 
representations in DNNs5,29,30.

This article introduces latent predictive learning (LPL), a concep-
tual learning framework that overcomes this limitation and reconciles 
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Fig. 1 | Disentangling sensory stimuli with plastic neural networks.  
a, Schematic of an evoked response in sensory input neurons. The neuronal 
response patterns for distinct stimuli correspond to points in a high dimensional 
space spanned by the neuronal activity levels. The response patterns from 
different stimulus classes, for example, cats and dogs, form a low-dimensional 
manifold in the space of all possible response patterns. Generally, different 
class manifolds are entangled, which means that the stimulus identity cannot 
be readily decoded from a linear combination of the neuronal activities. 
b, Sketch of a DNN (left) that transforms inputs into disentangled internal 
representations that are linearly separable (right). c, Schematic of how predictive 
learning influences latent representations (left). Learning tries to ‘pull’ together 
representations that frequently co-occur close in time (bottom). However, 
without opposing forces, such learning dynamics lead to representational 

‘collapse’, whereby all inputs are mapped to the same output and thereby become 
indistinguishable (right). d, SSL avoids collapse by adding a repelling force that 
acts on temporally distant representations that are often semantically unrelated. 
e, Plot of postsynaptic neuronal activity, z, over time (bottom) and a Hebbian 
learning rule (top33,35), which characterizes the sign and magnitude of synaptic 
weight change, Δw, as a function of postsynaptic activity, z. Notably, the sign 
of plasticity depends on whether the evoked responses are above or below 
the plasticity threshold θ. Using the example of neuron 1 in b, the learning rule 
potentiates synapses that are active when a ‘Cat’ stimulus is shown, whereas 
‘Dog’ stimuli induce LTD. This effectively pushes the evoked neuronal activity 
levels corresponding to both stimuli away from each other, thereby preventing 
representational collapse.
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where η is a small positive learning rate, xj(t) denotes the activity of 
the presynaptic neuron j, z(t) = f(a(t)) is the neuronal activity with the 
activation function f and the net input current a(t) = ∑kWkxk(t). We 
call the first term in parentheses the predictive term because it pro-
motes learning of slow features20,21 by effectively ‘pulling together’ 
postsynaptic responses to temporally consecutive input stimuli. 
Importantly, it cancels when the neural activity does not change and, 
therefore, accurately predicts future activity. In the absence of any 
additional constraints, the predictive term leads to collapsing  
neuronal activity levels20. In our model, collapse is prevented by the 
Hebbian term in which ̄z(t), the running average of the neuronal activ-
ity, appears, reminiscent of BCM theory33,35. Its strength further 
depends on an online estimate of the postsynaptic variance of  
neuronal activity σ2z (t) . This modification posits an additional  
metaplasticity mechanism controlling the balance between predictive 
and Hebbian plasticity depending on the postsynaptic neuron’s  
past activity.

To make the link to BCM explicit, we rearrange the terms in equa-
tion (1) to give:

dWj

dt
(t) = ηλ

xj(t)f′(a(t))
σz(t)2

⎛
⎜
⎜
⎝

z(t) − ( ̄z(t) + σz(t)2
λ

dz(t)
dt )

⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
Sliding thresholdϴ(t)

⎞
⎟
⎟
⎠

(2)

where Θ(t) corresponds to a time-dependent sliding plasticity thresh-
old (compare Fig. 1e). Although the precise shape of the learning rule 
depends on the choice of neuronal activation function, its qualitative 
behavior remains unchanged as long as the function is monotonic 
(Extended Data Fig. 1). Despite the commonalities, however, there 
are three essential differences to the BCM model. First, in our model, 
the threshold depends only linearly on ̄z(t) (Extended Data Fig. 1b), 
whereas, in BCM, the threshold is typically a supralinear function of 
the moving average ̄z(t). Second, the added dependence on the pre-
dictive term − dz

dt
 constitutes a separate mechanism that modulates 

the plasticity threshold depending on the rate of change of the post-
synaptic activity (Extended Data Fig. 1c,d). Third, our model adds a 
variance dependence that has diverse effects on the sliding threshold 
when the neuronal output does not accurately predict future activity 
and, thus, changes rapidly. We will see that these modifications are 
crucial to representational learning from the temporal structure in 
sensory inputs. As the predictive term encourages neurons to predict 
future activity at their output, and thus in latent space rather than 
the input space, we refer to equation (1) as the LPL rule.

LPL finds contiguous features in temporal data
To investigate the functional advantages of LPL over BCM and other 
classic Hebbian learning rules (Supplementary Note 2), we designed 
a synthetic two-dimensional (2D) learning task in which we paramet-
rically controlled the proportion of predictable changes between 
subsequent observations (Fig. 2a and Methods). The data sequence 
consisted of noisy inputs from two clusters separated along the x axis. 
Consecutive inputs had a high probability of staying within the same 
cluster, thus making cluster identity a temporally contiguous feature. 
By varying the noise amplitude, σy, in the y direction, we controlled the 
amount of unpredictable changes. We simulated a single rate neuron 
with different datasets for varying σy, whereas the two input connec-
tions were plastic and evolved according to the LPL rule (equation (1)) 
until convergence. We then measured neuronal selectivity to cluster 
identity (Methods).

We found that LPL rendered the neuron selective to the cluster 
identity for a large range of σy values (Fig. 2b). However, without the 
predictive term, the selectivity to cluster identity was lost for large σy 
values. This behaviour was expected because omitting the predictive 
term renders the learning rule purely Hebbian, which biases selectivity 
toward directions of high variance. To illustrate this point, we repeated 
the same simulation with Oja’s rule, a classic Hebbian rule that finds the 
principal component (PC) in the input and found similar qualitative 
behaviour. Thus, LPL behaves fundamentally differently from purely 
Hebbian rules, by selecting predictable features in the input.

To confirm that the Hebbian term is essential for LPL to prevent 
representational collapse, we simulated learning without the Hebbian 
term (compare equation (1)). We observed that the neuron’s activity 
collapses to zero firing rate as expected (Fig. 2c). Conversely, learning 
with the Hebbian term but without the predictive term did not result in 
collapse. Therefore, LPL’s Hebbian component is essential to prevent 
activity collapse.

Moreover, Hebbian plasticity needs to be dynamically regulated 
to prevent runaway activity36. In LPL this regulation is achieved by 
inversely scaling the Hebbian term by a moving estimate of the variance 
of the postsynaptic activity σ2z (t). Without this variance modulation, 
neural activity either collapsed or succumbed to runaway activity 
depending on which term was dominant (Supplementary Note 3). 
Either case precluded the neuron from developing cluster selectivity. 
We verified that these findings generalized to higher-dimensional tasks 
with more complex covariance structure (Supplementary Note 4). 
Hence, the combination of the predictive with variance-modulated 
Hebbian metaplasticity in LPL is needed to learn invariant predictive 
features independent of the covariance structure in the data.
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Fig. 2 | LPL learns predictive features. a, Illustration of the 2D synthetic data-
generating process. Consecutive data points predominantly stay within the 
same cluster separated along the x direction and are drawn independently from 
the corresponding normal distribution centered in that cluster (left). These 
data are fed into a linear neuron that learns via LPL (right). b, Cluster selectivity 
of the features learned by LPL with and without the predictive term (Pred. off) 
and by Oja’s rule for different values of σy. By varying σy, we obtain a family of 
sequences with different amplitudes of within-cluster transitions (top). LPL 
selects temporally contiguous features and therefore ensures that the neuron 

always becomes selective to cluster identity. Oja’s rule finds PC1, the direction of 
highest variance, which switches to the noise direction at σy = 1. LPL without the 
predictive component shows the same behavior. Selectivity values were averaged 
over ten random seeds. The shaded area corresponds to 1 s.d. c, Mean output 
activity of the neuron over training time for σy = 1 under different versions of LPL. 
LPL initially increases its response and saturates at some activity level, even when 
the predictive term is disabled. However, without the Hebbian term (Hebb. off), 
the activity collapses to zero.
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LPL disentangles representations in deep hierarchical 
networks
As we move through the world, we see objects, animals and people 
under different angles and contexts (Fig. 3a). Therefore, objects them-
selves constitute temporally contiguous features in normal vision. We 
thus wondered whether training an artificial DNN with LPL on image 
sequences with such object permanence results in disentangled repre-
sentations. To that end, we built a convolutional DNN model in which we 
‘stacked’ layers with synaptic connections that evolved according to the 
LPL rule. In addition, we included a term to decorrelate neurons within 
each layer. Inhibitory plasticity presumably plays this role in biological 
neural networks37–40. LPL was implemented in a ‘layer-local’ manner, 
meaning that there was no backpropagation through layers (Methods).

To simulate temporal sequences of related visual inputs, we gener-
ated pairs of images sampled from a large dataset, by applying different 
randomized transformations (Extended Data Fig. 2 and Methods). 
We trained our network model on these visual data until learning con-
verged and evaluated the linear decodability of object categories from 
the learned representations using a separately trained linear classifier.

We found that, in networks trained with LPL, object catego-
ries could be linearly decoded at the output with an accuracy of 
(63.2 ± 0.3)% (Fig. 3b and Table 1), suggesting that the network has 

formed partially disentangled representations (Extended Data  
Fig. 3). To elucidate the roles of the different learning rule components, 
we conducted several ablation experiments. First, we repeated the 
same simulation but now excluding the predictive term. This modifi-
cation resulted in an accuracy of (27.0 ± 0.2)%, which is lower than the 
linear readout accuracy of a classifier trained directly on the pixels of 
the input images (Table 1), indicating that the network did not learn dis-
entangled representations, consistent with previous studies on purely 
Hebbian plasticity5,30. We measured a similar drop in accuracy when we 
disabled either the Hebbian or the decorrelation component during  
learning (Fig. 3b).

Convolutional DNNs trained through supervised learning use 
depth to progressively separate representations2. To understand 
whether networks trained with LPL similarly leverage depth, we meas-
ured the linear readout accuracy of the internal representations at 
every layer in the network. Crucially, we found that, in the LPL-trained 
networks, the readout accuracy increased with the number of layers 
until it gradually saturated (Fig. 3c), whereas this was not the case 
when any component of LPL was disabled. Similarly, readout accuracy 
decreased when the temporal contiguity in the input was broken by 
shuffling, reminiscent of experiments in developing rats15. Together, 
these results suggest that LPL’s combination of Hebbian, predictive and 
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Fig. 3 | LPL disentangles representations in DNNs. a, Schematic of the DNN 
trained using LPL. We distinguish two learning strategies: layer-local and 
end-to-end learning. In layer-local LPL, each layer’s learning objective (ℒi) is to 
predict representations within the same layer, whereas end-to-end training takes 
into account the output layer representations only (ℒout) and updates 
hidden-layer weights using backpropagation. b, Linear readout accuracy of 
object categories decoded from representations at the network output after 
training n = 4 networks independently on natural image data (STL-10; see 
Methods for details) with different learning rules in layer-local (dark) as well as 
end-to-end (light) configuration. Bars are averages ± s.e.m. ‘Pred. off’ 
corresponds to LPL but without the predictive term in the learning rule (compare 
equation (7)). ‘Hebb. off’ refers to the configuration without the BCM-like 
Hebbian term. Finally, ‘Decorr. off’ is the same as the single neuron learning rule 
(equation (1)) without the decorrelation term. LPL yields features with high linear 
readout accuracy. In contrast, when any component of LPL is disabled, linear 
readout accuracy drops below the pixel-decoding accuracy of ~32% (dashed line). 
c, Linear readout accuracy of the internal representations at different layers of 

the DNN after layer-local training. Data points are averages (n = 4) and error 
bands indicate s.e.m. LPL’s representations improve up to six layers and then 
settle at a high level. In contrast, readout accuracy is close to chance level without 
the Hebbian component and similarly remains at low levels when the 
decorrelating mechanism is switched off. It is interesting that, when the 
predictive term is off, the readout accuracy initially increases in early layers, but 
then ultimately decreases back below the pixel-level accuracy with further 
increasing depth. Finally, the full LPL learning rule applied to inputs in which 
temporal contingency is destroyed (LPL shuffled) behaves qualitatively like the 
purely Hebbian rule. d, Dimensionality ± s.e.m. of the internal representations 
for the different learning rule configurations shown in b. When either the 
Hebbian or the decorrelation term is disabled, the dimensionality of the 
representations collapses to 1. e, Mean neuronal activity at different layers of the 
DNN after training with the different learning rule variants shown in c. Data 
averaged over networks as in c. Error bands denote ±s.e.m. Exclusion of the 
Hebbian term (dotted line) leads to collapsed representations in all layers.
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decorrelating elements is crucial for disentangling representations in 
hierarchical DNNs.

In SSL, the two most common causes for failure to disentangle 
representations are representational and dimensional collapse (Sup-
plementary Fig. 1), owing to excessively high neuronal correlations41. 
To disambiguate between these two possibilities in our model, we 
computed the dimensionality of the representations and the mean 
neuronal activity at every layer (Methods). We found that disabling 
either the Hebbian or the decorrelation component led to a dimen-
sionality of approximately 1, whereas the LPL rule with and without the 
predictive term resulted in higher dimensionality: ≈15 or ≈50, respec-
tively (Fig. 3d). Disabling the Hebbian term silenced all layers (Fig. 3e), 
demonstrating representational collapse. In contrast, disabling the 
decorrelation term resulted in nonzero activity levels, indicating that 
dimensional collapse underlies its poor readout accuracy (Fig. 3e). 
Finally, we verified that excluding LPL’s predictive component caused 
neither representational nor dimensional collapse, suggesting that the 
decreasing linear readout accuracy with depth was due to the network’s 
inability to learn good internal representations. Taken together, these 
results show that the predictive term is crucial for disentangling object 
representations in DNNs (Fig. 3), whereas the other terms are essential 
to prevent different forms of collapse.

It is an ongoing debate whether neurobiology implements some 
form of credit assignment5,7–10. Above we showed that LPL, as a local 
learning rule, effectively disentangles representations without the 
need for credit assignment, provided that mechanisms exist to ensure 
neuronal decorrelation38. Naturally, our next question was whether 
a non-local LPL formulation could improve learning. To that end, we 
considered the fully non-local case using backpropagation. Specifi-
cally, we repeated our simulations with end-to-end training on the LPL 
objective defined at the network’s output (Methods). Although we do 
not know how the brain would implement such a non-local LPL algo-
rithm, it provides an upper performance estimate of what is possible. 
End-to-end learning reproduced all essential findings of layer-local 
learning while increasing overall performance (Fig. 3b and Table 1). 
Thus, LPL’s performance improves in the non-local setting, further 
underscoring that biological networks could benefit from credit assign-
ment circuit mechanisms.

The above simulations used pairs of augmented images. To check 
whether the key findings generalized to more realistic input paradigms 
and other measures of disentangling, we trained DNNs with LPL on 
procedurally generated videos from the 3D Shapes dataset42. The 
videos consisted of objects shown under a slowly changing view angle, 
scale or hue and occasional discontinuous scene changes, but without 
additional image augmentation (Extended Data Fig. 4a,b and Meth-
ods). We found that LPL-trained networks reliably disentangle object 
identity. In contrast, networks trained without predictive learning 
failed to do so (Extended Data Fig. 4c). Finally, the ground-truth latent 
manifold structure in the procedurally generated dataset is known. This 
knowledge allowed us to probe disentangling of the latent manifold 
directly instead of using linear classification as a proxy. This analysis 
revealed that LPL-trained networks faithfully disentangled the underly-
ing objects and factors. At the same time, they also learned the topology 

of the data-generating manifold from the temporal sequence structure 
(Extended Data Figs. 4d–g and 5). Thus LPL’s ability to disentangle 
representations generalizes to video stimuli and other measures of 
disentanglement.

LPL captures invariance learning in the primate 
inferotemporal cortex
Changing the temporal contiguity structure of visual stimuli induces 
neuronal selectivity changes in primate inferotemporal cortex 
(IT), an unsupervised learning effect described by Li and DiCarlo12. 
In their experiment, a macaque freely viewed a blank screen, with 
objects appearing in the peripheral visual field at one of two alter-
native locations relative to the (tracked) center of its gaze, prompt-
ing the macaque to perform a saccade to this location (Fig. 4a). The 
experimenters differentiated between normal exposures in which 
the object does not change during the saccade and ‘swap exposures’ 
in which the initially presented object was consistently swapped out 
for a different one as the monkey saccaded to a specific target loca-
tion Xswap. Hence, swap exposures created an ‘incorrect’ temporal 
association between one object at position Xswap and a different one 
at the animal’s center of gaze Xc. For any particular pair of swap objects, 
the location either above or below the center of gaze was chosen as 
Xswap and transitions from the opposite peripheral position Xnonswap 
to the center Xc were kept consistent as a control. The authors found 
systematic position- and object-specific changes of neuronal selec-
tivity due to swap exposures that they attributed to unsupervised 
learning. Specifically, a neuron initially selective to an object P over 
another object N reduced or even reversed its selectivity at the swap 
position Xswap, while preserving its selectivity at the nonswap position  
Xnonswap (Fig. 4b).

We wanted to know whether LPL can account for these observa-
tions. To that end, we built a DNN model and generated input images 
by placing visual stimuli on a larger gray canvas to mimic central and 
peripheral vision as needed for the experiment (compare Fig. 4a and 
Methods). Importantly, we ensured that the network’s input dimension 
and output feature map size were large enough to avoid full transla-
tion invariance due to the network’s convolutional structure alone. To 
simulate the animal’s prior visual experience, we trained our network 
model with LPL on a natural image dataset. After training, the learned 
representations were invariant to object location on the canvas (Sup-
plementary Fig. 2), a known property of neural representations in the 
primate IT1. Next, we simulated targeted input perturbations analogous 
to the original experiment. For a given pair of images from different 
classes, we switched object identities during transitions from a specific 
peripheral position, say X1, to the center Xc while keeping transitions 
from the other peripheral position X2 to the center unmodified. We 
used X1 as the swap position for half of the image pairs and X2 for the 
other half. Throughout, we recorded neuronal responses in the net-
work’s output layer whereas the weights in the network model evolved 
according to the LPL rule.

We observed that the neuronal selectivity between preferred 
inputs P, as defined by their initial preference (Methods), in com-
parison to nonpreferred stimuli N in the model qualitatively repro-
duced the results of the experiment (Fig. 4b). Effectively, LPL 
trained the network’s output neurons to reduce their selectivity to 
their preferred inputs P at the swap position while preserving their 
selectivity at the nonswap position. Furthermore, we observed that 
object selectivity between pairs of control objects did not change, 
consistent with the experiment (Fig. 4b). Further analysis revealed 
that the origin of the selectivity changes between P and N stimuli 
at the swap position was the result of both increases in responses 
to N and decreases in responses to P, an effect also observed in the 
experiments (Fig. 4c). Thus, LPL can account for neuronal selectivity 
changes observed in monkey IT during in vivo, unsupervised, visual 
learning experiments.

Table 1 | Linear classification accuracy in percentage on the 
STL-10 and CIFAR-10 datasets for LPL and a linear decoder 
trained on the raw pixel values (Methods)

STL-10 CIFAR-10

Layer-local End-to-end Layer-local End-to-end

DNN with LPL 63.2 ± 0.3 72.5 ± 0.1 59.4 ± 0.4 70.4 ± 0.2

Raw pixel values 31.6 35.9

Error values correspond to s.e.m. over n = 4 simulations with different random seeds.
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SNNs with LPL selectively encode predictive inputs
So far we have considered LPL in discrete-time, rate-based, neuron 
models without an explicit separation of excitatory and inhibitory 
neurons. In contrast, cortical circuits consist of spiking neurons that 
obey Dale’s law and learn in continuous time. To test whether our theory 
would extend to such a more realistic setting, we simulated a plastic 
recurrent SNN model consisting of 100 excitatory and 25 inhibitory 
neurons (Fig. 5a and Methods). We simulated input from five Poisson 
populations with temporally varying firing rates (Fig. 5b and Methods). 
Input population P0 had a constant firing rate, whereas P1’s and P2’s 
firing rates followed two independent, slowly varying signals. P1ctl and 
P2ctl with firing rates that are temporally shuffled versions of P1 and P2 
served as control populations. The input connections to the excitatory 
neurons evolved according to the spiking LPL rule (compare equation 
(1)), a fully local learning rule. Decorrelation was achieved through 
inhibitory STDP (Methods)38.

After approximately 28 h of simulated time, the network’s firing 
dynamics had settled into an asynchronous irregular activity regimen 
from which the slowly varying input signals could be decoded linearly 
with high fidelity (Fig. 5b). In contrast, P1ctl and P2ctl did not have high 
reconstruction accuracy, consistent with the idea that the network pref-
erentially represents the slowly varying inputs in its activity. This notion 
was supported by the strong synaptic connectivity to P1/2 (Fig. 5c).  

We further computed the relative difference between the average affer-
ent weight from each signal in comparison to its associated control 
pathway. As expected, we found that neuronal weights were preferen-
tially tuned to the slow input channels (Fig. 5d). However, this selectiv-
ity was lost when we turned either the predictive or the Hebbian term 
off. The absence of Hebbian plasticity was further accompanied by 
activity collapse (Fig. 5e), as in the rate-based network.

To investigate the role of inhibition, we next removed the inhibi-
tory population. This manipulation resulted in excessively high firing 
rates (Fig. 5e and Extended Data Fig. 6) and a notable reduction of the 
representational dimensionality (Fig. 5f and Methods). In the network 
with plastic inhibition, weights were more decorrelated and purely 
selective to either P1 or P2 (Fig. 5g). In contrast, removing inhibition 
resulted in fewer neurons preferentially tuned to either signal (Fig. 5h). 
Finally, a network with fixed inhibitory weights showed comparable 
dimensionality to the plastic inhibition case (Fig. 5f), but with a drop 
in selectivity (Fig. 5d). These results indicate that inhibition is needed 
to prevent correlated neuronal activity and the ensuing reduction in 
representational dimensionality. Furthermore, inhibitory plasticity is 
required to ensure that the slow signals are preferentially represented 
(Extended Data Fig. 6). Together, these findings illustrate that LPL 
learns predictive features in realistic spiking circuits with separate 
excitatory and inhibitory neuronal populations.
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Fig. 4 | LPL captures invariance learning in the primate IT. a, Schematic of 
the simulation set-up modeled after the experiment by Li and DiCarlo12. The 
inputs to the model consist of images of objects presented at three different 
positions X1, Xc and X2 on a blank canvas. Following the original experiment, we 
performed a targeted perturbation in the simulated visual experience to which 
the model network was exposed (left and center). Specifically, we switched 
object identities during transitions from a specific peripheral position, say X1, 
to the central position Xc, while keeping transitions from the other peripheral 
position to the center unmodified (right). b, Evolution of object selectivity as a 
function of number of swap exposures in the model (top row) and observed in 
vivo (bottom row; data points extracted and replotted from ref. 12; see Methods 

for details). Data are presented as mean values ± s.e.m. We differentiate between 
pairs of swapped objects at the swap (left) and nonswap positions (center) as 
well as control objects at the swap position (right). LPL qualitatively reproduces 
the evolution of swap position-specific remapping of object selectivity as 
observed in IT. Control objects at the swap position, that is, images not used 
during the swap training protocol, show no selectivity changes in agreement 
with the experiment. a.u., arbitrary units. c, Average response to objects P and 
N as a function of number of swap exposures. The change in object selectivity 
between preferred objects P and nonpreferred objects N is due to both increased 
responses to N and decreased responses to P in both our model (top) and the 
experimental recordings (bottom). Data are mean values ± s.e.m.
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LPL qualitatively reproduces experimentally observed rate 
and spike-timing dependence of synaptic plasticity
Next, we wanted to examine whether the spike-based LPL rule is 
consistent with experimental observations of plasticity induction. 
Experiments commonly report intertwined rate and spike-timing 
dependence presumably mediated through nonlinear voltage- and 
calcium-dependent cellular mechanisms28,43. Theoretical work has 
further established conceptual links across phenomenological STDP 
models, SFA and BCM theory21,44–48.

To compare LPL to experiments, we simulated a standard STDP 
induction protocol. Specifically, we paired 100 pre- and postsynaptic 
action potentials with varying relative timing, Δt, for a range of different 
repetition frequencies, ρ. During the entire plasticity induction pro-
tocol, the postsynaptic cell was kept depolarized close to its firing 
threshold and weights evolved according to spike-based LPL. We 
repeated the simulated induction protocol for different initial values 

of the slowly moving averages of the postsynaptic firing rate ̄Si(t) and 
variance σ2i (t) (Methods). This was done because these variables do 
not change much over the course of a single induction protocol owing 
to their slow dynamics. Their presence, however, makes LPL a form of 
metaplasticity, that is, plasticity depends on past neuronal activity.

We found that for small initial values of σ2i , the induced weight 
changes followed an antisymmetrical temporal profile consistent with 
STDP experiments (Fig. 6a). For larger initial values of σ2i , the STDP 
window changed to a more symmetrical and then ultimately an 
anti-Hebbian profile whereas the plasticity amplitude was suppressed, 
as expected owing to the variance-dependent suppression of the  
Hebbian term in the learning rule (Fig. 6b,c). Next we investigated the 
effect of different initial values for ̄Si(t), which acts as a moving thresh-
old reminiscent of BCM. Specifically, we recorded plastic changes at 
two fixed spike-timing intervals Δt = ±10 ms for σ2i (t = 0) = 0.1 . For 
intermediate threshold values ̄Si(t = 0) = 20Hz, causal spike-timing 
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Fig. 5 | LPL in an SNN. a, Wiring diagram of the SNN with five distinct input 
populations. b, Snapshot of spiking activity over 5s after LPL plasticity for the 
inputs (top left) and the network (bottom left) separated into excitatory (black) 
and inhibitory (blue) neurons. The input spikes are organized in five distinct 
Poisson populations with firing rates that evolve according to five different 
temporal input signals (top right). The population activity of two slowly varying 
signals (P1/2) can be linearly reconstructed (Methods) with high R2 values from 
the network activity whereas temporally shuffled control signals (‘ctl’; Methods) 
are heavily suppressed (bottom right). c, Distribution of mean afferent synaptic 
strength per excitatory neuron (n = 100) grouped by input population. Input 
connections from slowly varying signals are larger than those from the shuffle 
controls (left), but not when learning with the predictive term turned off (right). 
Error bars show minimum (min)/maximum (max) ranges. d, Signal selectivity 
as relative difference between signal and control pathway for networks trained 
with different learning rule variations (Methods; n = 100 neurons). ‘LPL’ refers 
to learning with the spiking LPL rule combined with inhibitory plasticity on 
the inhibitory-to-excitatory connections. ‘Pred. off’ corresponds to learning 
without the predictive term and ‘Hebb. off’ to learning without the Hebbian 

term. ‘Inhib. off’ refers to a setting without any inhibitory neurons, whereas 
‘Inhib. fixed’ indicates a setting where the inhibitory-to-excitatory weights 
are held fixed. The network with LPL and inhibitory plasticity acquires high 
selectivity to both signals. Selectivity is lost if the predictive term, the Hebbian 
term or inhibitory plasticity is switched off. e, Average firing rate of excitatory 
neurons (n = 100) in the network for the different configurations in d. When the 
Hebbian (Hebb) term is off, spiking activity collapses to low activity (Act.) levels 
in contrast to all other configurations in which it settles at intermediate activity 
levels. f, Dimensionality (Dim.) of the neuronal representations (Methods) for 
the different configurations in d. Inhibition prevents dimensional collapse, 
even in cases where inhibition is not plastic. g, Averaged weight vectors of all 
excitatory neurons corresponding to input populations P1 and P2 (left) and the 
distribution of relative (Rel.) neuronal selectivities between these populations 
(right). Most neurons become selective to either P1 or P2, but few to both signals 
simultaneously. Color indicates relative preference of their weight vectors to 
either signal (Methods). h, Same as g, but without an inhibitory population. Most 
neurons develop selectivity to P2 or mixed selectivity to both signals, and their 
weight vectors are more correlated.
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induced long-term potentiation (LTP) with a nonlinear frequency 
dependence (Fig. 6d), whereas acausal pre-after-post timings showed 
a characteristic crossover from long-term depression (LTD) to LTP, 
similar to that observed in experiments27. In contrast, a low initial 
threshold ̄Si(t = 0) = 0, which would occur in circuits that have been 
quiescent for extended periods of time, resulted in LTP induction for 
both positive and negative spike timings, whereas a high initial value 
( ̄Si(t = 0) ≥ 50Hz), corresponding to circuits with excessively high 
activity levels, led to LTD (Extended Data Fig. 7). Importantly such slow 
shifts in activity-dependent plasticity behavior are consistent with the 
metaplasticity observed in monocular deprivation experiments32,33,48. 
Thus, LPL qualitatively captures key phenomena observed in experi-
ments such as STDP, the rate dependence of plasticity and metaplastic-
ity, despite not being optimized to reproduce these phenomena. Rather 
our model offers a simple normative explanation for the necessity of 
different plasticity patterns that are also observed experimentally43.

Discussion
We introduced LPL, a local plasticity rule that combines Hebbian and 
predictive elements. We demonstrated that LPL disentangles object 
representations in DNNs through mere exposure to temporal data in 
which object identity varies slowly. Crucially, we showed that predictive 
and Hebbian learning are both required to achieve this effect. Moreover, 
we demonstrated that LPL qualitatively captures the representational 
changes observed in unsupervised learning experiments in monkey 
IT12. Finally, we found that LPL in SNNs naturally reproduces STDP and 
its experimentally observed rate dependence, while further predict-
ing a new form of metaplasticity with distinct variance dependence 
of the STDP window.

The idea that sensory networks use temporal prediction as a learn-
ing objective has been studied extensively in both machine learning 
and neuroscience. The model in this article combines elements of 
classic BCM theory with central ideas of SFA and more recent SSL 
approaches from machine learning. Although SSL has shown great 
promise in representational learning without labeled data, it is typi-
cally formulated as a contrastive learning problem requiring negative 
samples18,19 to prevent representational collapse. As negative sam-
ples break temporal contiguity, they are not biologically plausible. 
LPL does not require negative samples. Instead, it relies on variance 
regularization as proposed previously to prevent collapse24. Our model 
uses virtually the same mechanism, albeit with a logarithmic variance 
dependence (Supplementary Note 3), and builds a conceptual bridge 
from variance regularization to Hebbian metaplasticity. Similar to most 
SSL approaches, Bardes et al.24 used end-to-end learning whereby the 
objective function is formulated on the embeddings at the network’s 
output. In contrast, we studied the case of greedy learning in which 
the objective is applied to each layer individually. Doing so allevi-
ates the need for backpropagation and permitted us to formulate the 
weight updates as local learning rules, similar to work that combined 

contrastive objectives with greedy training29. Furthermore, recent work 
showed that greedy contrastive learning is directly linked to plasticity 
rules that rapidly switch between Hebbian and anti-Hebbian learning 
through a global third factor22. However, both these models required 
implausible negative samples, whereas LPL requires neither end-to-end 
training nor negative samples.

LPL shares its basic shape with the BCM rule, which has been 
qualitatively confirmed in numerous experimental studies both 
in vitro27,32,33 and in vivo34. Furthermore, BCM has been linked to STDP28 
and informed numerous phenomenological plasticity models44–47,49. 
However, unequivocal evidence for the predicted supralinear behavior 
of the firing rate dependence of the BCM-sliding threshold remains 
scarce32 and the fast-sliding threshold required for network stability 
seems at odds with experiments36,48. In contrast, LPL does not require 
a rapid nonlinear sliding threshold for stability. Instead, it posits a 
fast-acting variance dependence of Hebbian plasticity that ensures 
stability. This suppressive effect allows the sliding threshold, possibly 
implemented through neuronal or circuit mechanisms32,50, to catch up 
slowly, more consistent with experiments48. Hence, LPL offers a pos-
sible explanation for the current gap between theory and experiment.

The notion of slowness learning has been studied extensively in 
the context of the trace rule51, optimal stability52 and SFA20,40, which 
have conceptual ties to STDP21. However, the first enforces a hard con-
straint on the norm of the weight vector to prevent collapse, whereas 
the latter two rely on hard variance constraints on the activity. In con-
trast, LPL implements a soft variance constraint24 to the same effect. A 
similar soft constraint on the variance can be derived from statistical 
independence arguments53 within a mutual information view of SSL18. 
However, these studies used negative samples, assumed rapid global 
sign switching of the learning rule and did not connect their work to 
biological plasticity mechanisms.

Our study has several limitations that we aim to address in future 
work. First, our study is limited to visual tasks of core object recogni-
tion, whereas other sensory modalities may use LPL as a mechanism to 
form disentangled representations of the external world. For compu-
tational feasibility, we restricted ourselves to artificial data augmen-
tation techniques borrowed from SSL and procedurally generated 
videos with a simple structure, which are only crude proxies of rich 
real-world stimuli. Finally, there remains a performance gap in classifi-
cation performance compared with less plausible, fully supervised and 
contrastive approaches (Supplementary Table 1), showing that there 
remains room for improvement, possibly by incorporating biological 
circuit mechanisms and top-down feedback connections into the 
model. It is left as future work to show how LPL can be extended to the 
circuit level and to more ethologically realistic sensory modalities54 
and video input while further combining them with plausible models 
of saccadic eye movement.

Despite the limitations, our model makes several concrete pre-
dictions. First, modulation of the strength of Hebbian plasticity as a 
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function of the postsynaptic variance is essential to LPL. Therefore, 
the predictive contribution to plasticity should be best observable 
for highly variable neuronal activity. Although our model does not 
make quantitative predictions about the time scale of variance esti-
mation, we expect that a quiescent neuron shows stronger Hebbian 
plasticity than neurons with highly irregular activity. Moreover, LPL 
should manifest in metaplasticity experiments as a transition from 
an asymmetrical Hebbian STDP window, via a symmetrical window 
to, ultimately, an anti-Hebbian window (compare Fig. 6) when prim-
ing the postsynaptic neuron with increasing output variance. Spe-
cifically, we expect a neuron that has remained quiescent for a long 
period of time to display a classic STDP window, whereas a neuron 
with activity that has undergone substantial fluctuations in the recent 
past should show an inverted STDP window. Such metaplasticity may 
account for the diversity of different shapes of STDP windows observed  
in experiments43.

To fathom how established data-driven plasticity models are 
related to theoretically motivated learning paradigms such as SFA 
and SSL is essential to understanding the brain. A central open ques-
tion in neuroscience remains: how do the different components of 
such learning rules interact with the rich local microcircuitry to yield 
useful representations at the network level? In this article, we have only 
scratched the surface by proposing a local plasticity rule and illustrat-
ing its aptitude for disentangling internal representations. However, 
a performance gap remains compared with learning algorithms that 
can leverage top-down feedback. We expect that extending predic-
tive learning to the circuit and network level will narrow this gap and 
generate deep mechanistic insights into the underlying principles of 
neural plasticity.
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Methods
Plasticity model
The LPL rule is derived from an objective function approach. It consists 
of three distinct parts, each stemming from a different additive term 
in the following combined objective function:

ℒLPL = ℒpred + ℒHebb + ℒdecorr (3)

First, the predictive component ℒpred minimizes neuronal output  
fluctuations for inputs that occur close in time. Second, a Hebbian 
component, ℒHebb, maximizes variance and thereby prevents repre-
sentational collapse. Finally, ℒdecorr is a decorrelation term that we use 
in all nonspiking network simulations to prevent excessive correlations 
between neurons within the same layer in a network. In SNNs decorrela-
tion is achieved without this term through lateral inhibition and inhibi-
tory plasticity.

In the following, we consider a network layer with N input units 
and M output units trained on batches of B pairs of consecutive stimuli. 
In all simulations we approximate the temporal derivative dz/dt that 
appears in equation (1) by finite differences z(t) − z(t − Δt) assuming a 
discrete time step, Δt, while absorbing all constants into the learning 
rate. In this formulation, the LPL rule has a time horizon of two time 
steps, in the sense that only one temporal transition enters into the 
learning rule directly. We used this insight to efficiently train our mod-
els using mini-batches of paired consecutive input stimuli that approxi-
mate learning on extended temporal sequences consisting of many 
time steps. Let xb(t) ∈ ℝN be the input to the network at time t,W ∈ ℝM×N 
the weight matrix to be learned, ab(t) = Wxb(t) ∈ ℝM the pre-activations 
and zbi (t) = f(ab

i (t)), the activity of the ith output neuron at time t. Finally, 
b indexes the training example within a mini-batch of size B.

Predictive component. We define the predictive objective ℒpred as the 
mean squared difference between neuronal activity in consecutive 
time steps:

ℒpred(t) =
1

2MB

B
∑
b=1

∥ zb(t) − SG(zb(t − Δt))∥2

= 1
2MB

B
∑
b=1

M
∑
i=1

(zbi (t) − SG(z
b
i (t − Δt)))

2
(4)

where SG denotes the Stopgrad function, which signifies that the gradi-
ent is not evaluated with respect to quantities in the past.

Hebbian component. To avoid representational collapse, we rely on 
the Hebbian plasticity rule that results from minimizing the negative 
logarithm of the variance of neuronal activity:

ℒHebb(t) =
1
M

M
∑
i=1

− log (σ2i (t)) (5)

where ̄zi(t) = SG (
1
B
∑B

b=1 z
b
i (t)) and σ2i (t) =

1
B−1

∑B
b=1 (z

b
i (t) − ̄zi(t))

2
 are the 

current estimates of the mean and variance of the activity of the ith 
output neuron. Note that we do not compute gradients with respect 
to the mean estimate, which would require backpropagation through 
time. Assuming that the mean is fixed allows formulation of LPL as a 
temporally local learning rule (compare equation (3)). To minimize the 
computational burden in DNN simulations, we performed all necessary 
computations on mini-batches, which includes estimating the mean 
and variance. However, these quantities could also be estimated using 
stale estimates from previous inputs, a requirement for implementing 
LPL as an online learning rule. Using stale mean and variance estimates 
from previous mini-batches in our DNN simulations did cause a drop 
in readout performance (Supplementary Table 2). Still, such a drop 
could possibly be avoided using larger mini-batch sizes, by further 

reducing the learning rate or by computing the estimates as running 
averages over past inputs. All of the above manipulations result in 
essentially the same learning rule (Supplementary Note 1).

Decorrelation component. Finally, we use a decorrelation objective 
to prevent excessive correlation between different neurons in the same 
layer, as suggested previously24,37,55. The decorrelation loss function is 
the sum of the squared off-diagonal terms of the covariance matrix 
between units within the same layer, which is given as:

ℒdecorr(t) =
1

(B − 1)(M2 −M)

B
∑
b=1

M
∑
i=1

∑
k≠i

(zbi (t) − ̄zi(t))
2
(zbk(t) − ̄zk(t))

2
(6)

with a scaling factor that keeps the objective invariant to the number 
of units in the population.

The full learning rule. We obtain the LPL rule as the negative gradient 
of the total objective, ℒLPL, plus an added weight decay. For a single 
network layer, this yields the layer-local LPL rule in which we omitted 
the time argument t from all present quantities for brevity:

ΔWij = −η ( ∂ℒpred
∂Wij

+ λ1
∂ℒHebb
∂Wij

+ λ2
∂ℒdecorr
∂Wij

) − ηηwWij

= η 1
MB

B
∑
b=1

( − (zbi − zbi (t − Δt))

+ λ1
α
σ2i
(zbi − ̄zi) − λ2β (zbi − ̄zi)∑

k≠i
(zbk − ̄zk)

2
) f ′ (ab

i ) x
b
j

−ηηwWij

(7)

where λ1 and λ2 are parameters that control the relative strengths of 
each objective, α and β are the appropriate normalizing constants for 
batch size and number of units and ηw is a parameter controlling the 
strength of the weight decay.

Numerical optimization methods. We implemented all network model 
learning with LPL using gradient descent on the equivalent objective 
function in PyTorch (v.1.11.0) with the Lightning framework (v.1.6.1). 
DNN simulations were run on five Linux workstations equipped with 
Nvidia Quadro RTX 5000 graphics processing units (GPUs) and a com-
pute cluster with Nvidia V100 and A100 GPUs. In the case of the DNNs, 
we used the Adam optimizer to accelerate learning. Parameter values 
used in all simulations are summarized in Supplementary Table 3. All 
simulations were run using Python (v.3.8). We used Jupyter notebooks 
(v.1.0.0) for all data analysis and plotting. The simulation and analysis 
codes are available online56.

Learning in the single neuron set-up
We considered a simple linear rate-based neuron model with an output 
firing rate, z, given by the weighted sum of the firing rates, xj, of the 
input neurons, that is, z = ∑jWjxj, where Wj corresponds to the synap-
tic weight of input j. We trained the neuron using stochastic gradient 
descent (SGD) on the corresponding objective function:

ℒ = 1
B (z(t) − SG(z(t − Δt)))2 − log(σ2z (t) + ϵ) − ηw∑

j
W2

j . (8)

Here, and in all following simulations, we fixed the Hebbian coef-
ficient λ1 = 1. We also added a small constant ϵ = 10−6 to the estimate 
of the variance σz for numerical stability. In the case of a single rate 
neuron, the LPL rule (equation (7)) simplifies to equation (1) without 
the decorrelation term.

Synthetic 2D dataset generation. The 2D synthetic data sequence 
(Fig. 2a) consists of two clusters of inputs, one centered at x = −1 and 
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the other at x = +1. Pairs of consecutive data points were drawn inde-
pendently from normal distributions centered at their corresponding 
cluster. To generate a family of different datasets, we kept the s.d. in 
the x direction fixed at σx = 0.1 and varied σy. In addition, to account 
for occasional transitions between clusters with probability P, we 
included a corresponding fraction of such ‘crossover pairs’ in the train-
ing batch. For each value of σy, we simulated the evolution of the input 
connections of a single linear model neuron that received the x and y 
as its two inputs, and updated its input weights according to LPL. In 
the simulations in Fig. 2 we assumed P → 0; however, the qualitative 
behavior remained unchanged for noise levels below P = 0.5, that is, 
as long as the ‘noisy’ pairs of points from different clusters were rare 
in each training batch (Extended Data Fig. 8).

Neuronal selectivity measure. After training weights to convergence, 
we measured the neuron’s selectivity to the x input as the normalized 
difference between mean responses to stimuli coming from the two 
respective input clusters. Concretely, let ⟨z1⟩ be the average output 
caused by inputs from the x = 1 cluster and ⟨z2⟩ from the x = −1 cluster, 
then the selectivity χ is defined as:

χ = | ⟨z1⟩ − ⟨z2⟩ |
zmax − zmin

(9)

with zmax  the maximum and zmin the minimum response across all 
inputs.

Learning in deep CNNs
For all network simulations, we used a convolutional DNN based on 
the VGG-11 architecture57 (see Supplementary Note 5 for details). We 
trained this network on STL-10 and CIFAR-10 (Extended Data Fig. 9), two 
natural image datasets (see Supplementary Table 3 for hyperparam-
eters). To simulate related consecutive inputs, we used two differently 
augmented versions of the same underlying image, a typical approach 
in vision-based SSL methods. Specifically, we first standardized the 
pixel values to zero mean and unit s.d. within each dataset before using 
the set of augmentations originally suggested in ref. 19, which includes 
random crops, blurring, color jitter and random horizontal flips (see 
Extended Data Fig. 2 for examples).

Synthetic video generation. To study LPL in settings with more natu-
ralistic transitions between consecutive images and without relying on 
image augmentation, we procedurally generated videos using images 
from the 3D Shapes dataset42. The dataset has a known latent manifold 
structure spanned by view angle, object scale, hue and object type, and 
is commonly used to measure disentangling in variational autoencod-
ers. Using the knowledge of the ground-truth factors, we generated a 
continuous video composed of 17-frame clips during which the object 
shape remained fixed and a randomly chosen factor changed gradu-
ally. Specifically, we proceeded as follows: we randomly chose one 
factor and changed it frame by frame such that transitions between 
adjacent factor values were more likely. For instance, one such clip 
shows a cube under a smoothly varying camera angle (Extended Data 
Fig. 4a). Furthermore, we randomly permuted the order of all three 
hue factors. This was done to break the orderly ring topology of the 
hue mappings in the original dataset, which allowed us to test that the 
structure is restored through LPL, but not other methods (Extended 
Data Fig. 4g). After 17 frames we randomly chose another shape and 
factor and repeated the above procedure. This sequence generation 
resulted in a video with many consecutive latent manifold traversals as 
captured by the empirical transition matrices (Extended Data Fig. 5a). 
Importantly, due to the nature of the video, which switches between 
objects periodically, the resulting input sequence also included occa-
sional transitions between different objects that the LPL rule interprets 
as positive samples. Such transitions also appear in real-world stimuli 

when objects leave or enter the scene. Despite these ‘false positives’, 
LPL learned disentangled representations of shapes and the underly-
ing factors.

Network training. We trained our network models on natural image 
data by minimizing the equivalent LPL objective function. For both 
datasets, we trained the DNN using the Adam optimizer with default 
parameters and a cosine learning rate schedule that drove the learning 
rate to zero after 800 epochs. We distinguished between two cases: 
layer-local and end-to-end learning. End-to-end learning corresponds 
to training the network by optimizing ℒ(out)

LPL  at the network’s output 
while using backpropagation to train the hidden layer weights. This is 
the standard approach used in deep learning. In contrast, in layer-local 
learning, we minimized the LPL objective, ℒLPL, at each layer in the 
network independently without backpropagating loss gradients 
between layers similar to previous work22,29. In this case, every layer 
greedily learns predictive features of its own inputs, that is, its previous 
layer’s representations. To achieve this behavior, we prevented PyTorch 
from backpropagating gradients between layers by detaching the 
output of every layer in the forward pass and optimizing the sum of 
per-layer losses ∑lℒ

(l)
LPL.

Unless mentioned otherwise, we used global average pooling 
(GAP) to reduce feature maps to a single vector before applying the 
learning objective at the output of every convolutional layer for 
layer-local training, or just at the final output in the case of end-to-end 
training. Although pooling was not strictly necessary and LPL could 
be directly applied on the feature maps (Extended Data Fig. 10), it 
substantially sped up learning and led to an overall improved linear 
readout accuracy on CIFAR-10 (Supplementary Table 2). However, 
we observed that GAP was essential on the STL-10 dataset for achiev-
ing readout accuracy levels above the pixel-level baseline (compare 
Table 1). This discrepancy was presumably the result of the larger pixel 
dimensions of this dataset and the resulting smaller relative receptive 
field size in early convolutional layers. Concretely, feature pixels in the 
first convolutional layer of VGG-11 have a receptive field of 3 × 3 pixels 
covering a larger portion of the 32 × 32 CIFAR-10 images, compared with 
the 96 × 96 STL-10 inputs. This hypothesis was corroborated by the fact 
that, when we subsampled STL-10 images to a 32 × 32 resolution, the 
dependence on GAP was removed and LPL was effective directly on the 
feature maps (Supplementary Table 2).

Baseline models. As baseline models for comparison (Supplementary 
Table 1), we trained the same CNN architecture either with a standard 
crossentropy supervised objective, which requires labels, or with a 
contrastive objective, which relies on negative samples. To implement 
contrastive learning, the network outputs z(t) were passed through two 
additional dense projection layers, v(t) = fproj(z(t)), which is considered 
crucial in contrastive learning to avoid dimensional collapse41. Finally, 
the following contrastive loss function was applied to these projected 
outputs:

ℒcontrast(t) =
B
∑
b=1

(−sim(vb(t), SG(vb(t − Δt))) +
B
∑
b′≠b

sim(vb(t),vb′ (t))) (10)

where sim(v1,v2) =
vT1 v2

∥v1∥∥v2∥
 is the cosine similarity between two repre-

sentations, V1 and V2. The second term in the loss function is a sum over 
all pairwise similarities between inputs in a given mini-batch. These 
pairs correspond to different underlying base images and therefore 
constitute negative samples. During training the network is therefore 
optimized to reduce the representational similarity between them.

For training the layer-local versions of the supervised and contras-
tive models, we followed the same procedure as with LPL of optimizing 
the respective loss function at the output of every convolutional layer, 
l, of the DNN without backpropagation between the layers. As projec-
tion networks are necessary for avoiding dimensional collapse in case 
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of contrastive learning, we included two additional dense layers to 
obtain the projected representations, vl(t) = f lproj(z

l(t)), at every level of 
the DNN before calculating the layer-wise contrastive loss, ℒl

contrast. This 
meant that gradients were backpropagated through each of these 
dense layers for training the corresponding convolutional layers of the 
DNN, but consecutive convolutional layers were still trained independ-
ent of each other.

Population activity analysis. We adopted two different metrics to 
analyze the representations learned by the DNN after unsupervised 
training with LPL on the natural image datasets.

Linear readout accuracy. To evaluate how well the LPL rule trained 
the DNN to disentangle and identify underlying latent factors in a given 
image, we measured linear decodability by training a linear classifier on 
the network outputs in response to a set of training images. Crucially, 
during this step we trained only the readout weights while keeping the 
weights of the LPL-pretrained DNN frozen. We then evaluated the linear 
readout accuracy (Fig. 3b) on a held-out test set of images. We used the 
same procedure to evaluate the representations at intermediate layers 
(Fig. 3c) and for the baseline models.

Representational similarity analysis. To visualize the latent manifold 
structure in learned network embeddings, we computed average rep-
resentational similarity matrices (RSMs). To obtain the RSM for one 
factor, say object hue, we first fixed the values of all the other factors 
and calculated the cosine similarity between the network outputs as 
the object hue was changed. We repeated this procedure for many 
different values for the other factors to get the final averaged RSM for 
object hue (Extended Data Fig. 4f).

Metric for disentanglement. To quantitatively measure disentangle-
ment, we used the metric proposed by Kim and Mnih42. This measure 
requires full knowledge of the underlying latent factors, as was the 
case for our procedurally generated videos. In brief, to compute the 
measure one first identifies the most insensitive neuron to all except 
one factor. Next, using the indices of these neurons, one trains a simple 
majority-vote classifier that predicts which factor is being coded for. 
The accuracy of this classifier on held-out data is the disentanglement 
score.

Dimensionality and activity measures. To characterize mean activity 
levels in the network models, we averaged neuronal responses over all 
inputs in the validation set. To quantify the dimensionality of the 
learned representations, we computed the participation ratio58. Con-
cretely, if Z ∈ ℝB×N are N-dimensional representations of B input images, 
and λi, 1 ≤ i ≤ N is the set of eigenvalues of ZTZ, then the participation 
ratio is given by:

Dim. =
(∑N

i=1 λi)
2

∑N
i=1 λ

2
i

(11)

Model of unsupervised learning in IT
Network model and pre-training dataset. To simulate the experimen-
tal set-up of Li and DiCarlo12, we modeled the animal’s ventral visual 
pathway with a convolutional DNN. To that end, we used the same 
network architecture as before, except that we removed all biases in 
the convolutional layers to prevent boundary effects. This modification 
resulted in a drop in linear readout accuracy (Supplementary Table 2). 
Pre-training of the network model proceeded in two steps as follows. 
First, we performed unsupervised pre-training for 800 epochs on STL-
10 using augmented image views exactly as before. Next, we added a 
fully connected dense layer at the network’s output and trained it for 

ten epochs with the LPL objective while keeping the weights of the 
convolutional layers frozen. During this second pre-training phase, 
we used augmented STL-10 inputs that were spatially extended to 
account for the added spatial dimension of different canvas positions 
in the experiment12. The expanded inputs consisted of images placed 
on a large black canvas at either the center position, Xc, or one of two 
peripheral positions, X1/2, at the upper or lower end of the canvas. Con-
cretely, these images had dimensions (13 × 96) × 96 which resulted in 
an expanded feature map at the output of the convolutional DNN with 
spatial dimensions 13 × 1 (see Supplementary Note 5 for details). Note 
that we expanded the canvas only in the vertical dimension instead of 
using a set-up with a 13 × 13 feature map because it resulted in a sub-
stantial reduction in computational and memory complexity. During 
this second stage of pre-training, the network was exposed only to ‘true’ 
temporal transitions wherein the image was not altered between time 
steps apart from changing position on the canvas.

Data generation for simulated swap exposures. To simulate the 
experiment by Li and DiCarlo12, we exposed the network to normal 
and swap temporal transitions. In the latter case the image was consist-
ently switched to one belonging to a different object category at the 
specific swap position. The swap position for a given pair of images 
was randomly pre-selected to be either X1 or X2, whereas the other non-
swap position was used as a control. Specifically, we switched object 
identities during transitions from one peripheral swap position, say 
X1, to the central position Xc, while keeping transitions from the other 
peripheral position X2 to the center unmodified. As in the experiment, 
we chose several pairs of images as swap pairs and fixed X1 as the swap 
position for half the pairs of images and X2 as the swap position for 
the other half. To simulate ongoing learning during exposure to these 
swap and nonswap input sequences, we continued fine-tuning the 
convolutional layers. To that end, we used the Adam optimizer used 
during pre-training with its internal state restored to the state at the 
end of pre-training. Moreover, we used a learning rate of 10−7 during 
fine-tuning, which was approximately 100× larger than the learning 
rate reached by the cosine learning rate schedule during pre-training 
(4 × 10−9, after 800 epochs). Finally, we trained the newly added dense 
layers with vanilla SGD with a learning rate of 0.02.

Neuronal selectivity analysis. Before training on the swap exposures, 
for each output neuron in the dense layer, we identified the preferred 
and nonpreferred members of each swap image pair, based on which 
image drove higher activity in that neuron. This allowed us to quantify 
object selectivity on a per-neuron basis as P − N, where P is the neuron’s 
response to its initially preferred image and N to its nonpreferred image 
at the same position on the canvas. Note that, by definition, the initial 
object selectivity for every neuron is positive. Finally, we measured the 
changes in object selectivity P − N during the swap training regimen, at 
the swap and nonswap positions, averaging over all output neurons for 
all image pairs. As a control, we included measurements of the selectiv-
ity between pairs of control images that were not part of the swap set.

Comparison to experimental data. To compare our model with experi-
ments, we extracted the data from Li and DiCarlo12 using the Engauge 
Digitizer software (v.12.1) and replotted it in Fig. 4b.

Spiking neural network simulations
We tested a spiking version of LPL in networks of conductance-based, 
leaky, integrate-and-fire neurons. Specifically, we simulated a recurrent 
network of 125 spiking neurons (100 excitatory and 25 inhibitory neu-
rons) receiving afferent connections from 500 input neurons. In all sim-
ulations the input connections evolved according to the spike-based 
LPL rule described below. In our model, neurons actively decorrelated 
each other through locally connected inhibitory interneurons with 
connectivity shaped by inhibitory plasticity.
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Neuron model. The neuron model was based on previous work26,59 in 
which the membrane potential Ui of neuron i evolves according to the 
ordinary differential equation:

τmem dUi
dt

= (Uleak − Ui) + gexci (t) (Uexc − Ui) + ginhi (t) (Uinh − Ui) (12)

where τmem denotes the membrane time constant, Ux is the synaptic 
reversal potential (Supplementary Table 4) and gxi (t) the corresponding 
synaptic conductances expressed in units of the neuronal leak  
conductance. The excitatory conductance is the sum of NMDA 
(N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4- 
isoxazolepropionic acid) conductances: gexci (t) = 0.5(gampai (t) + gnmdai (t)). 
Their dynamics are described by the following differential 
equations:

dgampai
dt

(t) = −
gexci (t)
τampa + ∑

j∈ exc
wijSj(t) (13)

τnmda
dgnmdai
dt

(t) = gampai (t) − gnmdai (t) (14)

whereas the inhibitory γ-aminobutyric acid (GABA) conductance, 
ginhi = ggabai , evolves as:

τgaba
dggabai
dt

= −ggabai + ∑
j∈ inh

wijSj(t). (15)

In the above expressions, Sj(t) = ∑kδ(t
k
j − t) refers to the afferent spike 

train emitted by neuron j, in which tkj  is the corresponding firing times 
and τx denotes the individual neuronal and synaptic time constants 
(Supplementary Table 4). Neuron i fires an output spike whenever its 
membrane potential reaches the dynamic firing threshold, ϑi(t), which 
evolves according to:

d𝜗𝜗i
dt

(t) = 𝜗𝜗rest − 𝜗𝜗i(t)
τthr

+ Δ𝜗𝜗Si(t) (16)

to implement an absolute and relative refractory period. Specifically, 
ϑi jumps by Δϑ = 100 mV every time an output spike is triggered, after 
which it exponentially decays back to its rest value of ϑrest = −50 mV. All 
neuronal spikes are delayed by 0.8 ms to simulate axonal delay and to 
allow efficient parallel simulation before they trigger postsynaptic 
potential in other neurons.

Time-varying spiking input model. Inputs were generated from 500 
input neurons divided into 5 populations of 100-Poisson neurons each. 
All inputs, where implemented as independent Poisson processes 
with the same average firing rate of 5 Hz and neurons within the same 
group, shared the same instantaneous firing rate. Concretely, neurons 
in P0 had a fixed firing rate of 5 Hz, whereas the firing rates in groups P1 
and P2 changed slowly over time. Specifically, we generated periodic 
template signals x(t) from a Fourier basis:

x(t) = ∑
k

θk
αk
sin (2πt + ϕk

T ) (17)

with random uniformly drawn coefficients 0 ≤ θk, ϕk < 1. The spectral 
decay constant α = 1.1 biased the signals toward slow frequencies and 
thus slowly varying temporal structure. We chose the period T = 3 s for 
P1 and (3 + 1/13) s for P2, respectively. The different periods were chosen 
to avoid phase-locking between the two signals. Both signals were then 
sampled at 10-ms intervals, centered on 5 Hz, variance normalized and 
clipped below at 0.1 Hz before using them as periodic time-varying firing 

rates for P1 and P2. In addition, we simulated control inputs P1/2ctl of the 
two input signals by destroying their slowly varying temporal structure. 
To that end, we repeated the original firing rate profile for 13 periods 
before shuffling it on a time grid with 10-ms temporal resolution.

Spike-based LPL. To extend LPL to the spiking domain, we build on 
SuperSpike60, a previously published online learning rule, which had 
been used only in the context of supervised learning in SNNs thus far. In 
this article, we replaced the supervised loss with the LPL loss (equation 
(3)) without the decorrelation term. The resulting spiking LPL online 
rule for the weight wij is given by:

dwij

dt
= ηα ∗ (ϵ ∗ Sj(t)f′(Ui(t)))

× [α ∗ (−(Si(t) − Si(t − Δt)) ) +
λ

σ2i +ξ
(Si(t) − ̄Si(t)))]

+η δSj(t)⏟
transmitter-triggered

(18)

with the learning rate η = 10−2 and a small positive constant ξ = 10−3 to 
avoid division by zero. Furthermore, the * denotes a temporal con-
volution and α is a double exponential, causal filter kernel applied to 
the neuronal spike train Si(t). Similarly, ϵ is a causal filter kernel that 
captures the temporal shape of how a presynaptic spike influences 
the postsynaptic membrane potential. For simplicity, we assumed a 
fixed kernel and ignored any conductance-based effects and NMDA 
dependence. Furthermore, we added the transmitter-triggered plas-
ticity term with δ = 10−5 to ensure that weights of quiescent neurons 
slowly potentiate in the absence of activity to ultimately render them 
active59. Finally, λ = 1 is a constant that modulates the strength of the 
Hebbian term. We set it to zero to switch off the predictive term where 
this is mentioned explicitly.

Furthermore, f ′(Ui) = β(1 + β ||Ui − 𝜗𝜗rest||)
−2

 is the surrogate deriva-
tive with β = 1 mV−1, which renders the learning rule voltage dependent. 
Finally, ̄Si(t) and σ2i (t) are slowly varying quantities obtained online as 
exponential moving averages with the following dynamics:

τmean d
̄Si(t)
dt

= Si(t) − ̄Si(t) (19)

τvar d
dt

σ2i (t) = −σ2i (t) + (Si(t) − ̄Si(t))
2 (20)

with τmean = 600 s and τvar = 20 s. These quantities confer the spiking 
LPL rule with elements of metaplasticity32.

In our simulations, we computed the convolutions with α and 
ϵ by double exponential filtering of all quantities. Generally, for the 
time-varying quantity c(t) we computed:

τrise d ̄c
dt
(t) = − ̄c(t) + c(t) (21)

τfall d
̄c̄

dt
(t) = − ̄c̄(t) + ̄c(t) (22)

which yields the convolved quantity ̄c̄. Specifically, we used τriseα = 2ms, 
τfallα = 10ms, τriseϵ = τampa = 5ms and τfallϵ = τmem = 20ms.

Overall, one can appreciate the resemblance of equation (18) to 
the nonspiking equivalent (compare equation (1)). As in the nonspik-
ing case, the learning rule is local in that it depends only on pre- and 
postsynaptic quantities. The predictive term in the learning rule can 
be seen as an instantaneous error signal, which is minimized when 
the present output spike train Si(t) is identical to a delayed version of 
the same spike train Si(t − Δt) with Δt = 20 ms. In other words, the past 
output serves as a target spike train (compare ref. 60).
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Microcircuit connectivity. Connections from the input population to 
the network neurons and recurrent connections were initialized with 
unstructured random sparse connectivity and different initial weight 
values (Supplementary Table 5). One exception to this rule was the 
excitatory-to-inhibitory connectivity which was set up with a Gaussian 
connection probability profile:

P con
ij = exp (− ( j − c(i))2

σ2 ) (23)

with c(i) = 0.25i and σ2 = 20 to mimic the dense local connectivity on to 
inhibitory neurons as a result of which inhibitory neurons inherit some 
of the tuning of their surrounding excitatory cells.

Inhibitory plasticity. Inhibitory-to-excitatory synapses were plastic 
unless mentioned otherwise. We modeled inhibitory plasticity accord-
ing to a previously published inhibitory STDP model38:

dwinh
ij

dt
= ζ ((xi(t) + 2κτSTDP)Sj(t) + (xj(t)Si(t))) (24)

using pre- and postsynaptic traces:

dxk
dt

= −
xj(t)
τSTDP + Sk(t) (25)

with time constant τSTDP = 20 ms, learning rate ζ = 1 × 10−3 and target 
firing rate κ = 10 Hz.

Reconstruction of input signals from network activity. To recon-
struct the input signals, we first computed input firing rates of the 5 
input populations by binning their spikes emitted during the last 100 s 
of the simulation in 25-ms bins. We further averaged the binned spikes 
over input neurons to provide the regression targets. Similarly, we 
computed the binned firing rates of the network neurons but without 
averaging over neurons. We then performed Lasso regression using 
SciKit-learn with default parameters to predict each target input signal 
from the network firing rates. Specifically, we trained on the first 95 s 
of the activity data and computed R2 scores on the Lasso predictions 
over the last 5 s of held-out data (Fig. 5b).

Signal selectivity measures. We measured signal selectivity of each 
neuron to the two slow signals relative to their associated shuffled 
controls (Fig. 5d), using the following relative measure defined on 
the weights:

χi =
wi
P −wi

Pctl

wi
P +wi

Pctl

(26)

where wi
P is the average synaptic connection strength from the signal 

pathways P1/2 on to excitatory neuron i and wi
Pctl

 is the same but from 
the control pathways P1/2ctl.

Representational dimension. To quantify the dimensionality of the 
learned neuronal representations (Fig. 5f), we binned network spikes 
in 25-ms bins and computed the participation ratio (equation (11)) of 
the binned data.

Neuronal tuning analysis of the learned weight profiles. To char-
acterize the receptive fields of each neuron (Fig. 5g,h), we plotted wP1 
against wP2 for every neuron in the excitatory population (Fig. 5g,h, 
left), and colored the resulting weight vectors by mapping the cosine of 
the vectors with the x axis (wP2) to a diverging color map. Furthermore, 
we calculated the relative tuning index as follows:

χ i
rel =

wi
P2 −wi

P1

wi
P2 +wi

P1
. (27)

STDP induction protocols. To measure STDP curves, we simulated a 
single neuron using the spiking LPL rule (equation (18)) with a learn-
ing rate of η = 5 × 10−3. In all cases, we measured plasticity outcomes 
from 100 pairings of pre- and postsynaptic spikes at varying repeti-
tion frequencies, ρ. The postsynaptic neuron’s membrane voltage 
was held fixed between spikes at −51 mV for the entire duration of the 
protocol. To measure STDP curves, we set the initial synaptic weight 
at 0.5 and simulated 100 different pre–post time delays, Δt, chosen 
uniformly from the interval [−50, 50] ms with ρ = 10 Hz. To measure the 
rate dependence of plasticity, we repeated the simulations for fixed 
Δt = ±10 ms while varying the repetition frequency ρ.

Numerical simulations. All SNN simulations were implemented in 
customized C++ code56 using the Auryn SNN simulator (v.0.8.2-dev, 
commit 36b3c197). Throughout we used a 0.1-ms simulation time 
step. Simulations were run on seven Dell Precision workstations with 
eight-core Intel Xeon central processing units.

Statistics and reproducibility
This article is a simulation study. No statistical method was used to 
predetermine sample size. No data were excluded from the analyses. 
The experiments were not randomized. The Investigators were not 
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The deep learning tasks used the STL-10 and CIFAR-10 datasets, 
typically available through all major machine-learning libraries. The 
original releases for these datasets can be found at http://ai.stanford.
edu/%7Eacoates/stl10 and https://www.cs.toronto.edu/~kriz/cifar.
html, respectively. For the Extended Data figures and Supplementary 
figures, we further used the 3D Shapes dataset42 available at https://
github.com/deepmind/3d-shapes and the MNIST dataset available at 
http://yann.lecun.com/exdb/mnist.

Code availability
The simulation code to reproduce the key results is publicly available 
at https://github.com/fmi-basel/latent-predictive-learning. PyTorch 
and the Lightning framework are freely available at https://pytorch.
org and https://www.pytorchlightning.ai, respectively. The Auryn 
spiking network simulator is available at https://github.com/fzenke/
auryn. The Engauge Digitizer is available at http://markummitchell.
github.io/engauge-digitizer.
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Extended Data Fig. 1 | LPL extends BCM theory by adding a variance- and 
rate-of-change dependence. (a) Example of a typical neuronal input-output 
function with postsynaptic activity z. (b) Weight change induced by the LPL rule 
for co-varying input and the postsynaptic activity z for different values of the 
plasticity threshold Θ, with σ2z = 1 and dz/dt = 0. The functional shift of the 
threshold is reminiscent of the BCM rule. (c) Same as (b) but for different values 

of the variance of the postsynaptic activity with zero prediction error dz/dt = 0 
and fixed mean activity ̄z = 30. (d) Same as (c) but with a positive prediction 
error dz/dt = + 10. (e) Same as (a), but for a rectified linear unit (ReLU) activation 
function with positive threshold. (f) Same as (b) but for ReLU. (g) Same as (c) but 
for ReLU. (h) Same as in (d) but for ReLU and a negative prediction error 
dz/dt = − 10.
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Extended Data Fig. 2 | Image augmentation model. Illustration of the image transformations used to generate natural image sequences as suggested by Chen et al.19.
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Extended Data Fig. 3 | Disentangling of object representations in the DNN. 
(a) Data distribution of the STL-10 validation set along the first two principal 
components in pixel-space. Data corresponding to different object classes 
are highly entangled. (b) Same as (a) but along the principal components of 

representations in Layer 3 of the DNN after learning with LPL. Object classes are 
somewhat disentangled. (c) Same as (a) but along the principal components of 
representations in Layer 8 of the DNN. Object classes are highly disentangled.
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Extended Data Fig. 4 | LPL finds latent manifold structure of simulated video 
data. (a) Input frames from the procedurally generated video using the 3D 
Shapes dataset42. (b) The empirically measured transition matrix of object hue 
with latent structure (see Extended Data Fig. 5 for the complete set of transition 
matrices). (c) Object classification accuracy of a linear classifier trained on 
network outputs of a network with LPL, without the predictive term (Pred. off), 
and the randomly initialized network (Random). Values represent averages from 
cross validation (n = 10 folds). Error bars indicate ± SEM. The accuracy is close to 
100% for LPL, but lower at initialization or when trained without the predictive 
term. (d) Disentanglement scores computed according to the metric proposed 
by Kim and Mnih42 for the final-layer representations of the three networks in 
(c) compared to the input pixels (Pixels). LPL yields close to maximum scores 
(95.0% ± 0.8%), higher than a randomly initialized network or after training 
without the predictive term. However, evaluating the metric on the pixels directly 
also yields high scores (93.0% ± 0.0%), albeit still slightly lower than LPL. The high 
scores in pixel space can partially be explained by the high input dimension and 

the small number of classes in the dataset. Importantly, the metric is insensitive 
to the manifold topology (see below). Different data points correspond 
to averages over n = 10 independent evaluations of the metric, with error 
bars ± SEM. (e) Projections of the representations onto the first two principal 
components before (Random) and after training (LPL). Each point corresponds 
to one input image, and the color represents the object type. The object class 
is entangled at initialization and disentangled after learning. (f) Averaged RSM 
computed from representations of different object colors in (d). LPL’s RSM 
closely resembles the transition structure shown in (b). Without the predictive 
term, the RSM becomes diagonal, while the random network’s RSM does not 
have this structure and roughly follows the input pixel similarity structure. (g) 
Network output projected onto the first two principal components for changing 
hue sequentially while keeping all other factors fixed. The two lines correspond 
to two different object sizes. The trajectories are disentangled for LPL and 
preserve the topology of the data manifold (cf. b), whereas this is not the case 
when the predictive term is off, at initialization (random), or at the input (pixels).
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Extended Data Fig. 5 | Transition matrices and RSMs for all latent factors of 
the 3D shapes dataset. (a) Transition probabilities estimated from the generated 
video. The high values on the diagonal reflect the fact that within a 17-frame 
clip, only one factor changes while the others remain fixed. The off-diagonal 
values reflect the transition probabilities when a specific factor is changing. 
For instance, within a clip cycling through all the object hues, the color may 
only change to the next or previous assignments in the color map with a smaller 
probability for a two-step transition. The hue mapping was randomly chosen 
with respect to the original dataset to ensure an entangled topology at the input 
(cf. Fig. 4g). The orientation and scale factors are not allowed to transition from 
the smallest to the largest values, and vice versa. Furthermore, the direction of 

change for any factor is fixed within a given clip, but may reverse for orientation 
and scale at the extreme values (cf. Fig. 4a). (b) Same as Fig. 4f, but for all factors 
at the pixel level. RSM values represent average cosine similarity between the 
pixels of images differing only in one factor with all other factors fixed. Some 
similarity structure exists along the scale and orientation factors only. (c) Same 
as (b) but for the final-layer representations learned by LPL. The RSM closely 
resembles the transition probability structure that characterizes the temporal 
properties of the video sequence. (d) Same as (c) but for learning without the 
predictive term. The RSM is diagonal, which shows that the network represents 
different factors in almost orthogonal directions. (e) Same as (b), but at random 
initialization before training. The RSM for all factors is reflective of the pixel RSM.
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Extended Data Fig. 6 | Same as Fig. 5 but with detailed controls. (a) Snapshot 
of spiking activity (left) and underlying firing rate signals or their reconstructions 
(right) over 100 ms for the input and network populations. (b) Same as Fig. 5d  
showing signal selectivity learned with the different variations of spiking 
LPL given in (a). (c) Average synaptic connection strength grouped by input 
population for the different configurations in (a). LPL with plastic inhibition 
results in higher weights on the slowly varying signals relative to the shuffled 
controls, but not when the predictive or Hebbian term are disabled. Without 
inhibition or without inhibitory plasticity, connections from all populations 
are strong with a small preference for P2. (d) Average firing rates over 100 s bins 
throughout training for the configurations in (a). Firing rates saturate with the 
inhibitory neurons settling at a higher firing rate when learning with spiking LPL 

with inhibition, even when the predictive term is disabled or the inhibition is not 
plastic. Activity collapses without the Hebbian term, whereas firing rates diverge 
without inhibition. (e) Averaged weight vectors from populations P1 and P2 onto 
each excitatory neuron (left) and distribution of the excitatory neurons’ relative 
selectivity between the two populations (right). Different neurons are exclusively 
selective to either P1 or P2 under spiking LPL with inhibitory plasticity. Without 
the predictive term, or the Hebbian term, few if any neurons are selective to one 
population over the other. Moreover, weights collapse to small values without 
the Hebbian term. When inhibition is removed altogether, a few neurons become 
exclusively selective to P2, but the weight vectors are not well-decorrelated. 
Without inhibitory plasticity, a few weight vectors are well-decorrelated, but 
most neurons are not preferentially selective to either signal.
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Extended Data Fig. 7 | Learning threshold determines the sign of plasticity. (a) Weight changes as a function of repetition frequency ρ for positive and negative 
relative spike timings (Δt = ± 10 ms) with σ2 (t = 0) = 0 and ̄Si(t = 0) = 0. (b) Same as (a) but for ̄Si(t = 0) = 50.
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Extended Data Fig. 8 | LPL is robust to noise. (a) Same as Fig. 1b but for high 
rates of noisy transitions between clusters in the training data sequence with 
ρ = 0.2 (Methods). A neuron learning with LPL still consistently becomes selective 
to cluster identity even with noisy transitions. Data are averages ± SEM (n = 10 

random seeds). (b) Cluster selectivity as a function of the probability of noisy 
cross-cluster transitions in the data sequence with σy = 1. LPL drives selectivity to 
cluster identity only below ρ = 0.5, i.e, only as long as cluster identity remains the 
slow feature. Values are averages xy5SEM (n = 10 random seeds).
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Extended Data Fig. 9 | Same as Fig. 3 but for the CIFAR-10 dataset. (a) Linear 
readout accuracy of object categories decoded from representations at the 
network output after training it on natural image data for different learning rules 
in layer-local (dark) as well as the end-to-end configuration (light). (b) Linear 
readout accuracy of the internal representations at different layers of the DNN 

after layer-local training. (c) Dimensionality of the internal representations 
for the different learning rule configurations shown in (b). (d) Mean neuronal 
activity at different layers of the DNN after training for the different learning rule 
variants shown in (b).
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Extended Data Fig. 10 | Evaluating readout accuracy without pooling. 
(a) Same as Extended Data Fig. 9b above, but with linear readout accuracies 
evaluated from the full feature map at each layer instead of after pooling. Results 
are qualitatively the same as before, but the starting accuracy at early layers is 

substantially higher. (b) Effective representation size that would be the input to 
the linear classifier at each layer with or without pooling. Without pooling, the 
number of features at early layers is very large, and may explain the higher  
early-layer accuracies in (b).
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The deep learning tasks used the MNIST, STL-10, 3D Shapes, and CIFAR-10 datasets, typically available through all major machine learning libraries. The original 

releases for these datasets can be found at http://yann.lecun.com/exdb/mnist/, http://ai.stanford.edu/%7Eacoates/stl10/, https://github.com/deepmind/3d-

shapes/, and https://www.cs.toronto.edu/~kriz/cifar.html respectively.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used no statistical tests in this study, nor did we use statistical methods to predetermine sample sizes. This article is a computational 

study; sample sizes were selected to make the effects unambiguous. For the deep neural network simulations in Figs. 3 and 4, the sample size 

was n=4, and we displayed standard errors of the mean. We performed spiking simulations with stochastic Poisson input and random sparse 

connectivity using the same random seed for each setting in Fig. 5. We computed the summary statistics in Fig. 5c-e from the resulting sparse 

input connectivity matrix comprising 5082 synaptic connections.

Data exclusions No data were excluded from the analysis.

Replication We used n=4 random initializations of the deep neural network model. We also used random augmentations and ordering to present the 

training examples and ensured the robustness of the results when selectively varying simulation parameters. However, all reported results 

were consistent across many simulations. All replication attempts were successful, and our publicly available code can be tested and 

scrutinized for replicability by others.

Randomization Randomization was irrelevant to our study because it did not involve group allocation. We had no experimental samples/organisms/

participants in our study.

Blinding Blinding was not relevant because our study did not involve group allocation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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