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Single-nucleus genomics in outbred rats with 
divergent cocaine addiction-like behaviors 
reveals changes in amygdala GABAergic 
inhibition

Jessica L. Zhou    1,2, Giordano de Guglielmo    3, Aaron J. Ho2, 
Marsida Kallupi    3, Narayan Pokhrel3, Hai-Ri Li4, Apurva S. Chitre3, 
Daniel Munro    3,5, Pejman Mohammadi5,6,7,8, Lieselot L. G. Carrette    3, 
Olivier George    3, Abraham A. Palmer    3,9, Graham McVicker    1,2   & 
Francesca Telese    3,4 

The amygdala processes positive and negative valence and contributes to 
addiction, but the cell-type-specific gene regulatory programs involved 
are unknown. We generated an atlas of single-nucleus gene expression 
and chromatin accessibility in the amygdala of outbred rats with high and 
low cocaine addiction-like behaviors following prolonged abstinence. 
Differentially expressed genes between the high and low groups were 
enriched for energy metabolism across cell types. Rats with high addiction 
index (AI) showed increased relapse-like behaviors and GABAergic 
transmission in the amygdala. Both phenotypes were reversed by pha
rmacological inhibition of the glyoxalase 1 enzyme, which metabolizes 
methylglyoxal—a GABAA receptor agonist produced by glycolysis. 
Differences in chromatin accessibility between high and low AI rats 
implicated pioneer transcription factors in the basic helix-loop-helix, FOX, 
SOX and activator protein 1 families. We observed opposite regulation of 
chromatin accessibility across many cell types. Most notably, excitatory 
neurons had greater accessibility in high AI rats and inhibitory neurons had 
greater accessibility in low AI rats.

The amygdala regulates numerous behaviors related to emotions, 
motivation and memory1 and is implicated in various neuropsychiatric 
disorders including addiction2,3. Repeated drug use engages the amyg-
dala to form drug-associated memories and reinforces drug-seeking 

behavior4. In addition, during withdrawal from addictive drugs, the 
amygdala mediates negative emotional states, such as anxiety, fear 
and irritability4. Avoidance of these aversive emotions enhances the 
incentive value of the drug, leading to sustained drug-seeking behaviors 
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linked to neurochemical changes in key brain regions, such as those 
observed in humans with cocaine use disorder27. HS rats were used 
because they have high levels of genetic variation and rich pheno-
typic diversity28–31.

Results
Outbred rats exhibit low or high cocaine addiction-like traits
To study the impact of cocaine on cellular states associated with 
addiction-like behaviors, we performed snRNA-seq and snATAC-seq 
on amygdala tissues from HS rats following 4 weeks of abstinence from 
cocaine IVSA24,32–35 (Fig. 1a). The animals were trained to self-administer 
cocaine in operant chambers via lever press (fixed ratio of 1 with 
0.5 mg kg–1 per infusion) for 10 short access (ShA, 2 h per day, 5 days 
per week) followed by 14 long access (LgA, 6 h per day, 5 days per week) 
sessions. We measured the number of cocaine rewards, or lever presses, 
during each session of the behavioral protocol. Escalation of intake was 
determined as the increase in the mean number of cocaine rewards dur-
ing LgA sessions compared with the first day of the LgA phase. Motiva-
tion for cocaine was assessed at the end of ShA and LgA phases, using 
a progressive ratio (PR) schedule of reinforcement, where the number 
of lever presses required to obtain a cocaine infusion increased pro-
gressively. Compulsive-like behavior was measured as drug taking 
despite adverse consequences by pairing 30% of lever presses with 
an electric footshock (Fig. 1b). For each rat (Fig. 1c), we calculated an 

and relapse5–7. The amygdala is composed of several interconnected 
subregions8 including the basolateral amygdala (BLA) and the central 
amygdala (CeA)9,10. While the behavioral function and connectivity 
of the amygdala have been established1, the role of distinct neuronal 
and non-neuronal cell subpopulations in addiction remains unclear.

Recently developed single-nucleus RNA-sequencing (snRNA-seq) 
and single-nucleus assays for transposase-accessible chromatin 
(snATAC-seq) have enabled the study of the cellular function and 
diversity of the human, mouse and nonhuman primate brains11–17. 
However, their application to study the neurobiology of addiction 
has been limited. snRNA-seq has been applied to characterize cel-
lular diversity in brain regions involved in the reward system18–21 
and has been used to analyze transcriptional changes induced by 
experimenter-administered cocaine and morphine in rodents22,23. 
However, these previous studies used inbred rodent strains, which 
limited examination of genetically mediated differences in susceptibil-
ity to addiction-like behaviors. Furthermore, these studies focused on 
acute drug treatments and therefore did not explore molecular changes 
that accompany long-lasting addictive-like behaviors.

To address these limitations, we performed snRNA-seq and 
snATAC-seq using amygdala tissue from outbred heterogenous 
stock (HS) rats obtained from a large genetic study of cocaine 
addiction-related traits24. These rats were exposed to extended 
access drug intravenous self-administration (IVSA)24–26. IVSA is 
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Fig. 1 | Experimental design and rat IVSA cocaine model of addiction.  
a, Schematic of the study design. b, Timeline of the behavioral protocol.  
c, Individual differences in total number of cocaine rewards in self-
administration (SA), PR and shock-paired (Shock) sessions for each rat. d, Mean 
AI scores in high and low AI rats. e, Mean number of cocaine rewards across each 
ShA and LgA IVSA session in high (n = 21) and low (n = 25) AI rats. f, Breakpoint 

analysis of high (n = 21) and low (n = 25) AI rats under ShA versus LgA (unpaired 
two-sided Studentʼs t-test with Bonferroni adjusted P = 0.0001; ShA versus LgA 
for high AI rats, t41 = 4.525). g, Mean number of cocaine rewards when paired with 
electric footshock in high (n = 21) and low AI (n = 25) rats (P = 0.0003; unpaired 
two-sided Studentʼs t-test, t44 = 3.936). Error bars in d–g represent s.e.m.
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AI24 as the average of the normalized values (z-scores) of these three 
behavioral measures.

We classified rats into high and low AI groups (Fig. 1d). Both groups 
received fewer cocaine rewards in ShA compared with LgA sessions 
(two-way repeated-measures analysis of variance (ANOVA), AI × phase 
interaction P < 0.0001, F23,1012 = 8.523; Fig. 1e). The groups showed no 
difference in cocaine rewards during ShA sessions; however, a contrast-
ing pattern in escalation emerged during LgA sessions, where rats with 
high AI exhibited a progressive escalation of drug intake compared 
with rats with low AI (two-way repeated-measures ANOVA interac-
tion time × group F13,572 = 4.175, P < 0.0001; Fig. 1e). In contrast, low AI 
rats did not show escalation during the LgA sessions (Fig. 1e). During 
PR sessions, motivation for cocaine increased in high AI rats but not 
in low Al rats when comparing ShA versus LgA (mixed effect model, 
AI × phase interaction, P = 0.0049, F1,41 = 8.83; Bonferroni corrected 
P = 0.0001, post hoc comparisons; Fig. 1f). Finally, high AI rats received 
a higher number of cocaine infusions when the reward was paired with 
an electric footshock (P < 0.001, unpaired two-sided Student’s t-test, 
t44 = 3.936; Fig. 1g), indicating compulsive-like drug use. These results 
show that our model of extended access to cocaine IVSA in outbred rats 
captures several relevant aspects of cocaine use disorder.

snRNA-seq and snATAC-seq define cell types in the amygdala
To identify neuroadaptations that persist in the amygdala after chronic 
drug exposure during withdrawal, we measured the gene expression 
and chromatin accessibility profiles of individual nuclei by performing 
snRNA-seq and snATAC-seq after 4 weeks of abstinence (Fig. 1a). We 
performed snRNA-seq on 19 rats, including 6 with high AI, 6 with low 
AI and 7 naive rats never exposed to cocaine (Supplementary Data 1); 
and snATAC-seq on 12 rats, including 4 with high AI, 4 with low AI and 
4 naive rats (Supplementary Data 2).

We obtained a combined total of 163,003 and 81,912 high quality 
nuclei from the snRNA-seq and snATAC-seq samples, respectively 
(Supplementary Figs. 1–7 and Supplementary Data 3–4). Using the 
integrated snRNA-seq and snATAC-seq datasets, we identified 49 and 
41 cell-type clusters, respectively (Supplementary Fig. 8). Visualization 
of the integrated data indicated that the clustering is not influenced by 
batch effects such as sequencing library, percentage of mitochondrial 
DNA or individual rats36 (Supplementary Fig. 9).

Using established cell-type-specific marker genes11,37–40, we anno-
tated the snRNA-seq clusters (Fig. 2a,b) into main cell types, including 
excitatory neurons (Slc17a7), inhibitory GABAergic neurons (Gad1/
Gad2), astrocytes (Gja1), microglia (Ctss), mature oligodendrocytes 
(Cnp), oligodendrocyte precursor cells (OPC) (Pdgfra) and endothelial 
cells (Cldn5) (Fig. 2c). The annotation of the snATAC-seq clusters using 
the imputed gene expression of cell-type markers (Supplementary  
Fig. 10) clearly delineated the cell clusters into the same main cell 
types described above, demonstrating strong concordance between 
our snRNA-seq and snATAC-seq data (Fig. 2d). We also identified seven 
subtypes of inhibitory neurons based on the expression of known cell 
marker genes (Fig. 2e), and subclustered the excitatory neurons to 
identify 18 distinct clusters (Supplementary Fig. 11), with top marker 
genes including known subpopulation markers such as Cdh13, Nr4a2 
and Bdnf (ref. 41). Cell-type proportions seemed to be consistent across 
samples (Supplementary Figs. 12 and 13). The total number of nuclei 
we obtained for each cell type varied substantially (Fig. 2f and Sup-
plementary Table 1). For most downstream analyses, we focused on 
the six most common main cell types (Fig. 2a,b).

To relate the cell types in the whole amygdala to those in spatially 
defined amygdalar subregions, we generated snRNA-seq data from 
the CeA and BLA (Supplementary Fig. 14). Cell clusters from the CeA 
and BLA were distinct from one another, but these regions collectively 
contained most cell types identified in the whole amygdala (Supple-
mentary Fig. 14a). Consistent with the known cell-type composition 
of the CeA and BLA42, cell clusters from the CeA coclustered primarily 

with inhibitory neurons whereas those from the BLA coclustered with 
excitatory neurons (Supplementary Fig. 14b). Glial cell types from 
the whole amygdala contained cells from both subregions, except for 
astrocytes, which coclustered mostly with cells from the CeA but not 
those from the BLA, suggesting that astrocytes might play a specific 
role in CeA-related function (Supplementary Fig. 14a,b).

The snRNA-seq and snATAC-seq datasets we generated are the first 
single-cell atlas of molecularly defined cell types in the rat amygdala 
under normal conditions and during cocaine addiction-like behaviors.

Gene expression differences between high and low AI rats
We used the negative binomial test to identify differentially expressed 
genes (DEGs) between high and low AI rats in each cell type (Fig. 3a,b 
and Supplementary Data 5). To control for violations in the differential 
expression model (for example, overdispersion) that can cause overly 
significant P values43,44, we performed the same statistical test after 
permuting the AI labels of the rats, which removes any association 
between AI and gene expression. These permutation tests indicated 
that the highly significant DEGs were not due to poor P value calibration 
(Supplementary Fig. 15 and Supplementary Data 6).

We grouped DEGs into small (absolute(log2fold change (FC)) < 0.1) 
or large (absolute(log2FC) ≥ 0.1) effect size groups and observed that 
most significant DEGs (false discovery rate (FDR) < 10%) had small 
effect sizes (Supplementary Fig. 16). In total, we identified 557 unique 
significant DEGs with large effects in at least one cell type and 8,775 
unique significant DEGs with small effects in at least one cell type. 
These DEG could reflect inherited differences in gene expression that 
predate exposure to cocaine, or they could be caused by differences in 
the amount of self-administered cocaine. Consistent with the former, 
we found that significant DEGs were enriched for gene expression quan-
titative trait loci (eQTLs)45, which are genetic variants associated with 
the expression of a gene, in almost every cell type tested (Chi-squared 
test with 1 d.f.; P < 0.05) (Supplementary Fig. 17 and Supplementary 
Table 2). Among the most significant DEGs with eQTLs (Supplementary 
Data 7) were genes with reported roles in substance use disorders. For 
example, Kcnq3 was differentially regulated across neuronal and glial 
cell types, and encodes a subunit of a potassium channel implicated in 
the regulation of reward behavior and susceptibility to drug addiction 
(Fig. 3c)46,47. Additionally, Fkbp5 and Sgk1, two transcriptional targets 
of the glucocorticoid receptor, were differentially regulated in glial 
cell types and are associated with reward behavior and drug addiction 
vulnerability (Fig. 3d,e)48–50.

To further examine the contribution of genetics to observed differ-
ences in gene expression, we leveraged genotypes and gene expression 
data from a reference population of drug-naive HS rats45. This allowed 
us to predict gene expression based on cis-genetic variation in the 
absence of cocaine exposure. Specifically, we trained models to predict 
gene expression from single nucleotide polymorphism genotypes51 
using whole-brain bulk RNA-seq from 339 naive HS rats, and estimated 
the fraction of variance in expression that was explained by cis-genetic 
variation (r2). We used the trained models to predict the expression of 
genes with at least one cis-acting eQTL (8,997 genes) for each of the 
rats in our snRNA-seq dataset and compared the differences in mean 
predicted expression in high versus low AI rats with the observed dif-
ferences in expression for each cell type after filtering out genes with 
low r2 (Supplementary Table 3). The observed and predicted expression 
differences were significantly correlated (Spearman’s ρ, P < 0.05) for 
microglia, oligodendrocytes and inhibitory neurons, and increasing 
the stringency of the r2 cutoff increased the strength of these cor-
relations (Supplementary Fig. 18 and Supplementary Table 3). These 
observations indicate that genetic differences in high versus low AI rats 
contribute to some of the observed differences in expression. Cocaine 
exposure probably also plays a role; however, quantifying the relative 
contributions of cocaine and genetics is challenging due to limitations 
in the genetic predictions of gene expression.
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Fig. 2 | Summary of single-nucleus RNA-seq and ATAC-seq data from rat 
amygdala. a, UMAP plot of snRNA-seq data from rat amygdala. Data are 
combined across 19 samples, with high, low and naive AI labels. Cells are colored 
by cluster assignments performed with KNN analysis. We assigned cell-type 
labels to clusters based on the expression of known marker genes. b, UMAP 
plot of snATAC-seq data from 12 rat amygdala samples. snATAC-seq data were 
integrated with snRNA-seq data, and cluster labels were transferred to snATAC-
seq cells. c, Feature plot showing expression of marker genes used to label main 
subsets of cells: Gja1 (astrocytes), Ctss (microglia), Cnp (oligodendrocytes), 

Pdgfra (OPCs), Slc17a7 (excitatory neurons), Gad1/Gad2 (inhibitory neurons) 
and Cldn5 (endothelial cells). d, Feature plot showing imputed gene expression 
of cell-type-specific marker genes in snATAC-seq dataset. e, Expression of marker 
genes in cell clusters corresponding to highly specific subsets of inhibitory 
neurons. The shading and diameter of each circle indicate the estimated mean 
expression and the percentage of cells in the cluster in which the marker gene 
was detected. f, The number of nuclei assigned to each cell-type cluster for the 
snATAC-seq and snRNA-seq datasets.
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To identify pathways with altered regulation between high and low 
AI rats, we performed gene set enrichment analysis (GSEA)52 of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways. We identified 
significant enrichment of several pathways related to addiction, includ-
ing neurotransmission and energy metabolism (Fig. 3f and Supplemen-
tary Data 8). Most cell types showed enrichment of genes belonging to 
the oxidative phosphorylation pathway, which, together with glucose 
metabolism, is the main energy source for synaptic activity and action 

potentials53,54. These observations suggest that addiction-like behav-
iors are associated with alterations in the metabolic state of amygdalar 
cell populations, which can directly impact neural network activity in 
the amygdala.

AI is linked to GABAergic transmission
To test the hypothesis that altered cellular metabolic state impacts 
neural activity in the amygdala, we focused on GABAergic transmission, 
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Fig. 3 | Differential gene expression between high and low AI rats. a, Volcano 
plot summarizing differential gene expression between high and low AI rats 
based on a two-sided negative binomial test. Points are colored by cell type, and 
the five most significant (FDR < 10%) up- and downregulated genes in each cell 
type are indicated with labels. In each cell type, we normalized the logFC values 
reported by Seurat to convert to z-scores and plotted the cell-type-specific 
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(Q values) are plotted on the y axis. b, Volcano plot summarizing differential 
gene expression based on a two-sided negative binomial test between high and 
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test performed in 1,000 bootstrap iterations. Fractions indicate the number 
of bootstrap iterations in which the log2FC estimate was significantly different 
from 0. Boxplot hinges are the 25th and 75th percentiles; whiskers extend to the 
minimum and maximum; center line is the median and dotted line is the mean. 
Bootstrap distributions were obtained for cell types in which the following genes 
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mitogen-activated protein kinase; TNF, tumor necrosis factor; TRP, transient 
receptor potential.
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which has been implicated previously in addiction2. Specifically, we 
measured GABAergic transmission by recording spontaneous inhibi-
tory postsynaptic currents (sIPSCs) in the CeA. CeA slices were collected 
after 4 weeks of abstinence from a separate cohort of five low AI and 
five high AI HS rats exposed to the same behavioral protocol described 
for the snRNA-seq and snATAC-seq experiments (Fig. 4a). We recorded 
baseline GABAergic transmission using CeA slices prepared from five 
age-matched naive HS rats. There were differences in mean sIPSC fre-
quencies among the groups (one-way ANOVA F2,22 = 6.77, P = 0.0051), 
reflecting a progressive increase in GABAergic transmission from naive 

to low AI to high AI groups (Fig. 4b and Supplementary Fig. 19a), without 
detectable changes in amplitude (Supplementary Fig. 19b,c). These 
results support the hypothesis that the cocaine addiction-like behaviors 
in high AI rats reflect increased GABAergic transmission.

To further investigate the link between GABAergic transmission 
and energy metabolism in the amygdala with cocaine addiction-like 
behaviors, we measured the frequency and amplitude of sIPSCs 
before and after application of S-bromobenzylglutathione cyclopen-
tyl diester (pBBG)55,56. pBBG is an inhibitor of glyoxalase 1 (GLO1), the 
rate-limiting enzyme for the metabolism of methylglyoxal (MG), which 
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Fig. 4 | Electrophysiology and GLO1 inhibition experiments implicate 
GABAergic inhibition in cocaine addiction-like behaviors. a, Schematic 
showing animal model used for electrophysiology recording in CeA 
slices from HS rats subjected to 4 weeks of abstinence from cocaine IVSA. 
Electrophysiological recordings were taken before and after pBBG treatment 
from tissue slices of five naive, five low AI and five high AI rats. b, Baseline sIPSC 
frequency before pBBG injection. A significant difference between the means of 
the naive versus high AI rats was observed (adjusted P = 0.004, Tukey’s honestly 
significant difference test). c, sIPSC frequency following pBBG treatment. We 
observed significantly reduced frequency in the CeA slices from high and low AI 

rats but not in naive rats when we compare baseline versus pBBG in each group 
(Phigh = 7.6 × 10–5; Plow = 3.4 × 10–3, Pnaive = 0.51, paired two-sided Student’s t-test).  
d–f, Change in sIPSC frequency following pBBG treatment in naive (d), low AI 
(e) and high AI (f) rats. g, Schematic of animal model used to test cue-induced 
cocaine-seeking behavior. Rats with low and high AI were injected with vehicle or 
pBBG following a period of prolonged abstinence, and re-exposed to SA chambers 
in the absence of cocaine. h, Following injection of pBBG, cocaine-seeking 
behavior in high AI rats (n = 12), but not low AI rats (n = 14), was reduced by pBBG 
treatment (unpaired Student’s t-test with Bonferroni adjusted P = 0.024, vehicle 
versus pBBG in high AI rats). Error bars in panels b, c, and h represent s.e.m.
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is a byproduct of glycolysis that is a competitive partial agonist of 
GABAA receptors55. We found that pBBG reduced the sIPSC frequency 
compared with vehicle for both high and low AI rats (paired t-tests, 
t5 = 11.83, P = 7.6 × 10–5 and t5 = 5.07, p = 3.9 × 10–3, respectively), but not 
naive rats (t5 = 0.71, P = 0.51) (Fig. 4c–f and Supplementary Fig. 19a). 
We observed no effect of pBBG on sIPSCs amplitude (Supplementary 
Fig. 19b,c).

The above results led us to hypothesize that GLO1 inhibition 
might reverse behavioral differences observed following prolonged 
abstinence from cocaine IVSA. Thus, we measured cue-induced rein-
statement of cocaine-seeking behavior in a separate cohort of 26 
low and high AI rats following 4 weeks of abstinence from cocaine 
IVSA. Rats were injected with pBBG or vehicle 30 min before test-
ing57 (Fig. 4g). Rats were subjected to the same operant conditions 
of cocaine IVSA but without drug availability, and reinstatement was 
triggered by re-exposure to the cocaine infusion-associated light cue. 
A significant interaction between AI and pBBG treatment (two-way 
repeated-measures ANOVA, F1,24 = 6.609, P < 0.05) indicated that pBBG 
reduced cue-induced reinstatement in high AI rats (P value < 0.05, post 
hoc comparisons with Bonferroni correction), but not in low AI rats 
(P > 0.05). These results demonstrate that modulating GABAA transmis-
sion via the pharmacological inhibition of GLO1 decreases relapse-like 
behaviors in animals with high cocaine AI.

Chromatin accessibility changes in high versus low groups
We used MACS2 (ref. 58) to identify regions of accessible chromatin 
from the snATAC-seq data. The pseudobulk chromatin accessibility 
showed the expected cell-type-specific patterns at the transcription 
start sites (TSS) of marker genes for each cell type (Fig. 2c,d and Fig. 5a), 
indicating the expected relationship between chromatin accessibility 
and transcriptome measurements.

To better understand the regulatory mechanisms involved in 
cocaine addiction, we performed negative binomial59,60 tests to meas-
ure cell-type-specific differential chromatin accessibility between high 
and low AI rats (Supplementary Data 9) and compared the P values 
observed with those obtained from permuted data, which confirmed 
that the differential peaks between high and low AI are statistically 
significant (Supplementary Fig. 20 and Supplementary Data 10). In 
total, we identified >20,000 peaks across cell types, with significant dif-
ferential accessibility between the high and low AI groups (FDR < 10%). 
However, most differences were small (log2FC < 0.1) (Supplementary 
Fig. 21), indicating that differences in addiction-like behaviors between 
rats are associated with modest regulatory changes at a large number 
of sites.

The differential peaks were categorized into those with higher 
(upregulated) or lower (downregulated) accessibility in the high AI 
rats (Supplementary Fig. 21). Astrocytes had roughly equal numbers 
of up- and downregulated peaks, but other cell types showed profound 
directional biases. Excitatory neurons were the most biased, with only 
two downregulated peaks detected and >8,000 upregulated peaks 

in the high AI group. Inhibitory neurons showed the opposite bias, 
with >4,000 downregulated peaks but only ~500 upregulated peaks 
in the high AI group (Supplementary Fig. 21). These biases probably 
reflect altered activity of transcription factors (TFs) controlling large 
transcriptional programs.

To determine whether the differential chromatin accessibility is 
consistent with the differential gene expression, we overlapped the 
significant differentially accessible (DA) chromatin peaks in each cell 
type with the promoters of significant DEGs and observed a significant 
enrichment (Fisher’s exact test (FET), P < 0.05) at the promoters of 
DEGs compared with non-DEGs (Fig. 5b and Supplementary Table 4), 
including the promoter regions for genes belonging to the oxidative 
phosphorylation pathway in inhibitory neurons, excitatory neurons 
and oligodendrocytes (Supplementary Fig. 22 and Supplementary 
Table 5). These findings confirm that the differences in chromatin 
accessibility and gene expression are concordant.

In total, 3.2% of the significant differential peaks were annotated 
as promoter or TSS regions (Supplementary Fig. 23 and Supplemen-
tary Dataset 11), which is a substantial enrichment given the genomic 
annotations of all accessible chromatin regions in the main cell types 
(FET, FDR < 10%) (Fig. 5c and Supplementary Table 6). This enrichment 
may indicate that changes in chromatin associated with addiction-like 
behaviors are more concentrated at promoters, or that we have greater 
statistical power to detect changes at promoters, due to larger effect 
sizes or greater chromatin accessibility.

We hypothesized that differences in chromatin accessibility 
between high and low AI rats are caused by differential TF activity. To 
test this hypothesis, we analyzed the snATAC-seq data using ChromVAR 
(Supplementary Dataset 12), which identifies TF motifs associated 
with differential accessibility using sparse single-cell data61. As many 
TFs recognize similar motifs, we grouped them into motif clusters and 
summarized results across cell types (Fig. 5d).

The motif cluster with the most significant difference in acces-
sibility between high and low AI rats contained motifs for basic 
helix-loop-helix (bHLH) TFs. This motif cluster had substantially higher 
accessibility in the excitatory neurons of high AI rats compared with low 
AI rats (deviance 3.8; P = 1 × 10–280), and a modest increase in accessibil-
ity in inhibitory neurons (deviance 0.38; P = 1 × 10–34) (Fig. 5e–g). The 
top-ranked motifs in this cluster all harbored the sequence CAGATGG, 
which closely matches binding site motifs for several neuronal pioneer 
TFs, including those of the bHLH, RFX and FOX families62,63. Thus, the 
widespread increases in chromatin accessibility in excitatory neurons 
of high AI rats could reflect increased activity of pioneer TFs that recruit 
chromatin remodelers. However, we did not observe corresponding 
upregulation in the expression of genes encoding TFs belonging to 
these clusters (Supplementary Data 5 and Supplementary Data 12), 
suggesting that a different mechanism might affect their activity.

Many motif clusters with increased accessibility in the neurons 
of high AI rats have decreased accessibility in oligodendrocytes  
(Fig. 5d–g). Prominent among these motif clusters are those containing 

Fig. 5 | Analysis of chromatin accessibility and regulatory elements involved 
in cocaine dependence. a, Pseudobulk chromatin accessibility at the promoter 
regions of marker genes for main cell types. b, Significant DEGs (FDR < 10%) 
for each main cell type are enriched for promoters with DA chromatin. Points 
are log2OR (odds ratio) and error bars are 95% CIs (FDR < 10%; two-sided 
FET, n = 12,081 genes for astrocytes, n = 12,590 for ExNeuron, n = 12,679 
for InhNeuron, n = 11,232 for microglia, n = 11,886 for oligodendrocytes 
and n = 11,646 for OPC). This indicates that the snRNA-seq and snATAC-seq 
results are consistent and that gene expression changes are associated with 
changes in promoter chromatin accessibility. c, Cell-type-specific DA peaks 
are enriched in TSS/promoter regions compared with non-TSS/promoter 
regions. Points are log2OR and error bars are 95% CIs (FDR < 10%; two-sided FET, 
n = 291,844 peaks) d, Heatmap showing differential activity of various motifs 
in the significant differential peaks of each cell type. Values indicate average 

difference of chromVAR deviation scores with –log10(Q) in parentheses, where 
Q is the Benjamini–Hochberg FDR-corrected P value from a two-sided Wilcoxon 
signed rank test for difference in deviation scores. There are many cases where 
motifs display increased activity in upregulated peaks in neurons while also 
displaying decreased activity in downregulated peaks in oligodendrocytes. 
e–g, Volcano plots showing average (mean) difference (x axis) and –log10(Q) 
(y axis) of chromVAR deviation scores for the top 50 motif clusters in excitatory 
neurons (e), inhibitory neurons (f) and oligodendrocytes (g). h, LD score 
regression results showing significance of enrichment of heritability for several 
traits related to alcohol and nicotine addiction in cell-type-specific accessible 
chromatin regions (mapped to hg19). Significance is reported as –log10(Q), 
where Q is the Benjamini–Hochberg FDR-corrected P value obtained from the 
ldsc software98.
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FOX and RFX motifs (Fig. 5d–g). Several motif clusters also have oppo-
site effects between excitatory and inhibitory neurons, including SOX, 
MEF2 and Fos (activator protein 1 (AP1)) motifs. AP1 and MEF2 motifs 
are implicated in addiction64–67 and their expression changes in the 
brain following chronic exposure to cocaine and other drugs68–72.  
Consistent with these results, we observed decreased expression of 
genes encoding AP1 TFs including Fosl1, Fos, Jun, Junb and Jund in inhibi-
tory neurons of high AI rats compared with low AI rats (Supplementary 
Fig. 24), suggesting that differences in their expression level affect 
their regulatory activity. These results implicate many motif clusters 
associated with addiction-like behaviors across thousands of regula-
tory regions and in a cell-type-specific manner.

To assess whether our rat snATAC-seq data is relevant for human 
addiction-related traits, we mapped the accessible chromatin peaks to 
the human reference genome and performed cell-type-specific linkage 
disequilibrium (LD) score regression73 using summary statistics from 
well-powered genome-wide association studies (GWAS) for alcohol 
and tobacco use74,75. We found significant enrichments (FDR < 10%) 
of single nucleotide polymorphism heritability in every trait tested in 
almost every cell type (Fig. 5h), with the most significant enrichments 
in neurons, astrocytes, oligodendrocytes and OPCs. These results indi-
cate that the regulatory architecture of HS rats is relevant for human 
addiction-related traits.

Discussion
To better understand the molecular basis of addiction, we generated an 
atlas of single-cell gene expression and chromatin accessibility in the 
amygdala of rats with divergent cocaine addiction-like behaviors after 
a prolonged period of abstinence. Our dataset is the largest resource 
of cell types in the mammalian amygdala, with over 163,000 nuclei in 
our snRNA-seq dataset and 81,000 nuclei in our snATAC-seq dataset 
(Fig. 2a,b). The snATAC-seq dataset is the first map of cell-type-specific 
regulatory elements in the amygdala, enabling the identification of TF 
motifs that may drive addiction-related processes.

Previous rodent snRNA-seq studies have focused on the acute 
effects of passive treatment with psychoactive drugs22,23, which can-
not fully capture the motivational processes underlying addiction. In 
contrast, our behavioral protocol using extended access to cocaine 
IVSA reflects key aspects of cocaine addiction, including escalation 
of drug use, enhanced motivation for drug seeking and taking, and 
persistent drug use despite adverse consequences76. In addition, using 
an outbred rat population allowed us to correlate molecular differences 
not only with a high AI phenotype, which reflects vulnerability, but 
also with a low AI phenotype, which reflects resiliency to developing 
addiction-like behaviors77.

One striking finding from our study is that there were strong biases 
in the direction of regulation of open chromatin regions between high 
and low AI rats in several main cell types (Supplementary Figs. 16, 
17 and 21). Most of these differences were small, suggesting that the 
combined action of many small effects on gene expression and chro-
matin accessibility underlies the behavioral differences between rats 
with high and low AI. Because the HS rats are genetically diverse, the 
molecular differences between high and low AI rats could arise from 
genetic differences or it could be a consequence of consuming different 
amounts of cocaine. The results are consistent with a polygenic model 
wherein addiction-like behaviors result from the collective action of a 
large number of genetic risk loci with small individual effects. This is a 
plausible explanation because of the high genetic diversity in the HS 
rats and because complex traits, including addiction, are known to be 
highly polygenic in humans73,78. In support of the genetic hypothesis, 
we observed that most DEGs have eQTLs that were identified inde-
pendently in HS rat brains45 (Supplementary Fig. 17), including Kcnq3, 
Fkbp5 and Sgk1 (Fig. 3a–e). Alternatively, a relatively small number of 
TFs could affect many downstream genes and chromatin sites. Because 
the motifs with the strongest chromatin accessibility differences  

(Fig. 5e–h) are recognized by pioneer TFs (for example, BHLH, SOX 
and FOX) with an intrinsic ability to modify chromatin, they may lead 
to widespread differences in accessibility79. These explanations are 
not mutually exclusive, and it is probable that some differences are 
caused by eQTLs while others are caused by differences in the activity 
of upstream regulators (which themselves may be affected by genetics 
or other factors).

To uncouple pre-existing genetically controlled gene expression 
differences from cocaine-induced neuroadaptations, we compared 
our observed DEGs with differences in expression obtained from 
genotype-based prediction models. We found significant correlations 
in observed versus predicted differential gene expression between high 
versus low AI rats, supporting a genetic role in the differences in gene 
expression that we observed. The correlation metrics obtained from 
our analysis were modest, as expected due to three limitations of the 
predictive model. First, the models are trained on whole-brain tissue 
lacking the cell-type-specific resolution of our snRNA-seq data. Second, 
the size of the cohort on which the predictive models were trained was 
modest (n = 339). Third, the models can capture only a small fraction 
of variation in expression and do not account for trans-acting eQTLs or 
numerous other influences on gene expression. Despite these limita-
tions, this analysis establishes that at least some of the differences are 
due to genetic variation (Supplementary Fig. 18). As more rat behavioral 
GWAS are completed, it will be possible to uncouple the role of genetics 
versus cocaine exposure more fully, for example, through the use of 
polygenic risk scores for addiction-related traits28,30–32,80.

Consistent with previous findings showing enhanced GABAergic 
transmission following excessive cocaine use81, our differential gene 
expression analysis showed enrichment of genes in the GABAergic 
synapse pathway (Fig. 3f) and our electrophysiology results indicated 
an enhanced GABAergic transmission in high AI rats (Fig. 4b). Moreo-
ver, we found that inhibition of GLO1—the enzyme responsible for MG 
metabolism—restored electrophysiological (Fig. 4c–f) and behavioral 
(Fig. 4h) differences associated with addiction-like behaviors. Specifi-
cally, while pBBG diminished GABA transmission in electrophysiologi-
cal recordings for both low and high AI rats (Fig. 4c), it had an inhibitory 
effect on the drug-seeking behaviors in high AI rats but not in low AI 
rats (Fig. 4h). This suggests that the inhibitory effects of pBBG on 
relapse-like behaviors depend on a given threshold of GABAergic trans-
mission. These results corroborate previous findings that MG acts as 
an endogenous competitive agonist for GABAA receptors82,83. GABAA 
receptor agonists used in the context of cocaine-seeking behavior have 
shown contrasting results leading to both reductions and increases in 
cocaine-seeking behaviors84–90. Since MG is generated in proportion 
to glycolytic activity of nearly every cell and does not accumulate in 
synaptic vesicles, it may activate GABAA receptors at synaptic and 
extra synaptic sites; thus, manipulating the endogenous levels of MG 
by GLO1 inhibition represents a unique mechanism of GABAA receptor 
regulation. In our electrophysiological experiments, we did not observe 
changes in postsynaptic currents in the CeA; thus, we speculate that 
MG-based pharmacological manipulations may alter presynaptic 
GABAA receptor function, reducing GABA release at inhibitory termi-
nals and suppressing inhibitory connections in the CeA. Consistent 
with this notion, previous studies have demonstrated that the activa-
tion of presynaptic GABAB receptors suppresses inhibitory connection 
in the CeA91 and that negative regulation of GABAergic transmission 
can occur through a presynaptic mechanism92. An alternative scenario 
is that the magnitude of effects is not sufficient to cause detectable 
changes in amplitude. Overall, these results offer a new pharmacologi-
cal target for improving therapeutic approaches for cocaine addiction.

While the pharmacological inhibition experiments are not 
cell-type-specific, the pathway enrichment analysis of the transcrip-
tomic data suggest that GABAergic synapse-related genes may be 
specific to Cck+/Vip+ and Nos1+ subtypes of inhibitory neurons. Previous 
studies manipulating GLO1 activity directly in the mouse amygdala by 
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transgenic expression of Glo1 or MG microinjection were sufficient to 
reduce anxiety-like behaviors93. Future experiments targeting specific 
subregions or cell types of the amygdala will be necessary to further 
characterize the effects of GLO1 inhibition on cocaine addiction-related 
phenotypes.

The results from the GLO1 inhibition experiments indicate that 
an altered metabolic state in the amygdala impacts several cellular 
processes that are involved in vulnerability to, and development of, 
addiction. Moreover, genes differentially regulated in high versus low 
AI rats were enriched in pathways related to energy metabolism, such 
as oxidative phosphorylation, which determines cellular ATP levels94. 
ATP is not only crucial for sustaining electrophysiological activity and 
cell signaling in the brain95,96, it is also required for ATP-dependent 
chromatin remodeling events initiated by pioneer TFs97. This could 
potentially explain the striking observations that excitatory and inhibi-
tory neurons show opposite directions of regulation in chromatin 
accessibility (Supplementary Fig. 21) and that DEGs are enriched in 
the oxidative phosphorylation pathway (Fig. 3f). Future experiments 
that directly manipulate the expression of specific metabolic enzymes 
or pioneer TFs in a cell-type-specific manner will be necessary to fully 
elucidate their role in addiction.

In conclusion, the amygdalar cellular atlas produced by this study is 
a valuable resource for understanding the role of cell-type-specific gene 
regulatory programs in the development of cocaine addiction-related 
behaviors. Our results emphasize the importance of cellular energet-
ics and GABAA-mediated signaling in the enduring effects of cocaine 
use, and identify GLO1 as a potential new target for the treatment of 
cocaine addiction.
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Methods
Experimental
Animals. All protocols were approved by the Institutional Animal Care 
and Use Committee at the University of California San Diego (UCSD). 
HS rats (RRID:RGD_2314009) were provided by L. Solberg Woods (Wake 
Forest University School of Medicine). To minimize inbreeding and 
control genetic drift, the HS rat colony is maintained using an optimized 
breeding strategy, with each breeder pair contributing one male and 
one female to subsequent generations. Rats were shipped at 3–4 weeks 
of age, quarantined for 2 weeks and then housed two per cage on a 
12 h/12 h reversed light/dark cycle in a temperature- (20–22 °C) and 
humidity- (45–55%) controlled vivarium with ad libitum access to tap 
water and food pellets. Rats were 3–4 weeks of age at the start of the 
experiment. We used 46 HS rats for the behavioral experiments pre-
sented in Fig. 1, of which 20 male rats (high and low AI) were used to 
generate snRNA-seq and snATAC-seq data, along with 11 naive male rats. 
Additionally, 26 of these 46 behaviorally phenotyped rats (13 female, 
13 male) were used for the cue-induced reinstatement experiments. 
For snRNA-seq, we used 19 male rats (6 high AI, 6 low AI, 7 naive). For 
snATAC-seq, we used 12 male rats (4 high AI, 4 low AI, 4 naive). We used 
a different cohort of 15 female and male HS rats (5 high AI, 5 low AI,  
5 naive) for the electrophysiology experiments. In addition, 6 male  
ACI/EurMcw rats (RRID:RRRC_00284) were obtained from the Rat 
Genome Database and used for snRNA/snATAC-seq. No statistical 
methods were used to predetermine sample sizes, but our sample sizes 
are similar to those reported in previous publications99,100.

Drugs. Cocaine HCl (National Institute on Drug Abuse) was dissolved in 
0.9% saline and administered intravenously at a dose of 0.5 mg kg–1 per 
infusion. pBBG was synthesized in the laboratory of D. Siegel (Skaggs 
School of Pharmacy and Pharmaceutical Sciences, UCSD). pBBG was 
dissolved in a vehicle of 8% dimethylsulfoxide, 18% Tween-80 and 74% 
distilled water and administered intraperitoneally 30 min before the 
test session.

Brain samples. Brain tissues were obtained by the cocaine brain bank 
at UCSD24 after 4 weeks of abstinence from cocaine self-administration 
(SA), a timepoint used in previous studies to examine long-lasting 
effects of SA32,101–106. Behavioral data was collected with the MedPCIv 
v.5 software. Brain tissues were extracted and snap-frozen (at –30 °C). 
Cryosections of 500 μm (Bregma –1.80 to 3.30 mm) were used to dis-
sect the amygdala, including the CeA, BLA and medial amygdala from 
both hemispheres. Punches from three sections were combined for 
each rat. In addition, six ACI/EurMcw rats were used for dissection of 
the CeA and BLA.

Single-cell library preparation, sequencing and alignment. 
snRNA-seq libraries from whole amygdala tissues were generated by the 
Center for Epigenomics, UCSD. Briefly, frozen tissue was homogenized 
via glass dounce. Nuclei were resuspended in 500 µl of nuclei permea-
bilization buffer (0.1% Triton-X-100 (Sigma-Aldrich, catalog no. T8787), 
1× protease inhibitor, 1 mM DTT and 1 U µl–1 RNase inhibitor (Promega, 
catalog no. N211B), 2% bovine serum albumin (BSA; Sigma-Aldrich, 
catalog no. SRE0036) in PBS). Samples were incubated on a rotator 
for 5 min at 4 °C and then centrifuged at 500g for 5 min (4 °C). Pellets 
were resuspended in 400 µl of sort buffer (1 mM EDTA, 0.2 U µl–1 RNase 
inhibitor (Promega, catalog no. N211B), 2% BSA (Sigma-Aldrich, catalog 
no. SRE0036) in PBS) and stained with DRAQ7 (1:100; Cell Signaling, 
catalog no. 7406). Up to 75,000 nuclei were sorted using a SH800 
sorter (Sony Cell Sorter Software v.2.1.2-5) into 50 µl of collection 
buffer consisting of 1 U µl–1 RNase inhibitor in 5% BSA. Sorted nuclei 
were centrifuged at 1,000g for 15 min at 4 °C and then resuspended in 
35 µl of reaction buffer (0.2 U µl–1 RNase inhibitor (Promega, catalog 
no. N211B) and 2% BSA (Sigma-Aldrich, catalog no. SRE0036) in PBS). 
Then, 12,000 nuclei were loaded onto a Chromium Controller (10x 

Genomics). Libraries were generated using the Chromium Single-Cell 
3′ Library Construction Kit v.3 (10x Genomics, catalog no. 1000075) 
with the Chromium Single-Cell B Chip Kit (10x Genomics, catalog no. 
1000153) and the Chromium i7 Multiplex Kit for sample indexing (10x 
Genomics, catalog no. 120262) according to manufacturer specifica-
tions. cDNA was amplified for 12 PCR cycles.

For snATAC-seq libraries from the whole amygdala tissues, nuclei 
were purified using an established method107. Frozen amygdala tissue 
was homogenized using a 2 ml glass dounce with 1 ml cold homog-
enization buffer (0.26 M sucrose, 0.03 M KCl, 0.01 M MgCl2, 0.02 M 
Tricine-KOH pH 7.8, 0.001 M DTT, 0.5 mM spermidine, 0.15 mM sper-
mine and 0.3% NP40). The cell suspension was filtered using a 70 μm 
Flowmi strainer (Millipore Sigma, catalog no. BAH136800070) and cen-
trifuged at 350g for 5 min at 4 °C. Nuclei were isolated by iodixanol (Mil-
lipore Sigma, catalog no. D1556) density gradient. The nuclei iodixanol 
solution (25%) was layered on top of 40% and 30% iodixanol solutions. 
Samples were centrifuged in a swinging bucket centrifuge at 3,000g for 
20 min at 4 °C. Nuclei were isolated from the 30–40% interface. Nuclei 
were washed in ATAC-RSB-Tween buffer (0.01 M Tris-HCl pH 7.5, 0.01 M 
NaCl, 0.003 M MgCl2, 0.1% Tween-20) and then resuspended in nuclei 
resuspension buffer (10x Genomics, catalog no. PN 2000207). Then, 
12,000 nuclei were loaded on the 10x Genomics Chromium Controller 
for GEM (gel bead in emulsion) generation. Libraries were generated 
using the Chromium Next GEM Single Cell ATAC v.1.1 (10x Genomics, 
catalog no. PN-1000175) with the Chromium Next GEM Chip H Single 
Cell Kit (10x Genomics, catalog no. 1000162) and the Chromium i7 
Multiplex Kit for sample indexing (10x Genomics, catalog no. 1000212) 
according to manufacturer specifications. DNA was amplified for 
eight cycles.

For snRNA libraries from BLA and CeA, frozen brain tissues were 
obtained from the ACI/EurMcw rat strain—one of the HS rat founder 
strains. Nuclei were isolated as described above for snATAC-seq librar-
ies. RNAse inhibitors (Roche Diagnostics, catalog no. 03335402001) 
were added to all buffers (1 U μl–1). Then, 12,000 nuclei were loaded on 
the 10x Genomics Chromium Controller for GEM generation. Libraries 
were generated using the Chromium Next GEM Single Cell Multiome 
Reagent Kit A (catalog no. 1000282) following Chromium Next GEM 
Single Cell Multiome ATAC + Gene Expression Reagent Kits User Guide 
(10x Genomics). After the transposition reaction, nuclei were encap-
sulated and barcoded. Next-generation sequencing libraries were 
constructed following the User Guide. Final libraries were sequenced 
using the NovaSeq6000 (Illumina).

Behavioral experiments. Behavioral testing of rats used for snRNA-seq 
and snATAC-seq experiments followed an established protocol24,33,34. 
Briefly, after surgical implantation of intravenous catheters and a week 
of recovery, HS rats were trained to self-administer cocaine (fixed 
ratio 1 with 0.5 mg kg–1 per infusion) in ten ShA sessions (2 h per day, 
5 days per week). Next, the animals were allowed to self-administer 
cocaine in 14 LgA sessions (6 h per day, 5 days per week) to measure 
the escalation of drug intake (Fig. 1e). Then, rats were screened for 
motivation using the PR test and for persistent drug-seeking despite 
adverse consequences using footshock (30% contingency). The break-
point (Fig. 1f) was defined as the maximal number of presses com-
pleted before a 60-min period during which a rat does not complete 
the next schedule. Rats were classified as high AI or low AI via a median 
split108,109. AI was computed by averaging normalized measurements 
(z-scores) for the three behavioral tests after the LgA phase: escala-
tion of drug intake, motivation and compulsive-like behavior, or drug 
taking despite adverse consequences (Fig. 1c,d)33. The z-scores were 
calculated as z = (x – μ)/σ, where x is the raw value, μ is the mean of the 
cohort and σ is the s.d. of the cohort. For the pBBG studies (Fig. 4h), we 
used a different cohort of rats with low or high AI phenotyped using 
the same behavioral protocol. Four weeks after the last IVSA session, 
the rats were placed back in the SA chambers without the availability 
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of cocaine. The number of responses to the previous drug-paired lever 
(cocaine-seeking behavior) was measured 30 min after intraperitoneal 
injection of pBBG (15 mg kg–1 ml–1) or its vehicle, in a Latin square design. 
The 30-min timepoint was selected based on a previous study57. Data 
were analyzed using Prism v.9.0 software (GraphPad). SA data were ana-
lyzed using repeated-measures ANOVA or mixed effect model followed 
by Bonferroni post hoc tests when appropriate. For pairwise compari-
sons, data were analyzed using the unpaired t-test. Data are expressed 
as mean ± s.e.m. unless otherwise specified. Values of P < 0.05 were 
considered statistically significant. Data distributions were assumed 
to be normal, but this was not tested formally. Experimenters were 
blinded to group allocation during behavioral data collection before 
brain collection.

Electrophysiology. CeA slices were prepared after 4 weeks of 
abstinence from cocaine IVSA following the same behavioral proto-
col described above or age-matched naive rats that received sham 
IV surgery. These rats were distinct from those used for snRNA-seq 
and snATAC-seq and included five high AI, five low AI and five naive 
rats. Slices from each group were also used to record sIPSCs after 
pBBG treatment. Brain tissues were placed in oxygenated (95% O2, 5% 
CO2) ice-cold cutting solution (206 mM sucrose, 2.5 mM KCl, 1.2 mM 
NaH2PO4, 7 mM MgCl2, 0.5 mM CaCl2, 26 mM NaHCO3, 5 mM glucose 
and 5 mM Hepes). Transverse slices (300 μm thick) were cut on a 
Vibratome (Leica VT1200S; Leica Microsystems) and transferred to 
oxygenated artificial cerebrospinal fluid (130 mM NaCl, 2.5 mM KCl, 
1.2 mM NaH2PO4, 2.0 mM MgSO4·7H2O, 2.0 mM CaCl2, 26 mM NaHCO3 
and 10 mM glucose) for 30 min at 35 °C and then at room tempera-
ture for the rest of the experiment conducted in a recording chamber 
mounted on the stage of an upright microscope (Olympus, catalog no. 
BX50WI). The slices were perfused continuously with oxygenated arti-
ficial cerebrospinal fluid at a rate of 3 ml min–1. Whole-cell recordings 
were performed using a Multiclamp 700B amplifier (10 kHz sampling 
rate, 10 kHz low-pass filter) and Digidata 1440A and pClamp 10 soft-
ware (Molecular Devices). Patch pipettes (4–6 MΩ) were pulled from 
borosilicate glass (Warner Instruments) and filled with 70 mM KMeSO4, 
55 mM KCl, 10 mM NaCl, 2 mM MgCl2, 10 mM Hepes, 2 mM Na-ATP and 
0.2 mM Na-GTP. Pharmacologically isolated sIPSCs were recorded in 
the presence of the glutamate receptor blockers, CNQX (Tocris, catalog 
no. 0190) and APV (Tocris, catalog no. 189) and the GABA-B receptor 
antagonist CGP55845 (Tocris, catalog no. 1246). Experiments with a 
series resistance of >15 MΩ or >20% change in series resistance were 
excluded from the final dataset. pBBG (2.5 μM) was acutely applied in 
the bath. The frequency, amplitude and kinetics of sIPSCs were ana-
lyzed using semiautomated threshold-based minidetection software 
(Easy Electrophysiology) and confirmed visually. Data were analyzed 
using Prism v.9.0 software (GraphPad) with one-way ANOVA followed 
by post hoc Tukey honestly significant difference test or with paired 
t-tests. Data are expressed as mean ± s.e.m unless otherwise specified. 
Values of P < 0.05 were considered statistically significant.

Computational
Alignment of snRNA-seq and snATAC-seq reads. FASTQ files were 
generated from binary base call files using Cell Ranger v.3.1.0 for 
snRNA-seq data, Cell Ranger ATAC v.2.0.0 for snATAC-seq data and 
Cell Ranger ARC v.2.0.0 for Multiome data, using the mkfastq com-
mand110,111. Reads were aligned to a custom rn6 reference genome cre-
ated from FASTA and genome annotation files for Rattus norvegicus 
Rnor_6.0 (Ensembl release 98)112 and JASPAR2022 motifs113, using Cell 
Ranger’s count command.

Quality control and preprocessing of snRNA-seq data. All snRNA-seq 
preprocessing was performed with Seurat v.3.2.3 (ref. 114). For each 
sample, we computed metrics for each cell including the number of 
unique genes detected (nFeature_RNA); the total molecules detected 

(nCount_RNA) and the percentage of reads mapping to the mitochon-
drial genome (percent.mt) (Supplementary Figs. 1–3, Supplementary 
Data 1 and Supplementary Data 3). We removed cells for which any 
of these metrics was more than three s.d. units from the mean in the 
sample. Next, we normalized the count data for each sample using 
sctransform115 with percent.mt as a covariate.

Integrating snRNA-seq data across samples and clustering.  
To integrate snRNA-seq data across samples, we used reciprocal prin-
cipal component analysis (PCA), as implemented in Seurat114,116. We 
identified 2,000 highly variable features across the samples using 
the ‘SelectIntegrationFeatures()’ function, performed dimensionality 
reduction with PCA on each sample, and identified anchors using ‘Find-
IntegrationAnchors()‘, specifying reciprocal PCA as the dimensionality 
reduction method. We used the resulting anchor set to integrate across 
samples using ‘IntegrateData()’ with two rats (one high AI, one low 
AI) as reference samples. We clustered the integrated dataset by con-
structing a K-nearest neighbor (KNN) graph using the first 30 principal 
components followed by the Louvain algorithm. Finally, we ran PCA 
on the integrated dataset and visualized the data in two dimensions 
using uniform manifold approximation and projection (UMAP) (Sup-
plementary Fig. 9a–c). To compare CeA and BLA subregion samples 
with the whole amygdala, we subsampled whole amygdala samples 
from the naive rats and performed the same integration technique. 
The integrated subregion data was visualized using UMAP.

Cell-type assignment for snRNA-seq data. We identified marker 
genes of each cluster in our integrated snRNA-seq dataset using 
MAST117, implemented with the ‘FindMarkers()’ function in Seurat. 
Cell type identities were assigned based on expression of known  
marker genes.

Cell-type-specific gene expression analysis for snRNA-seq data. 
We tested for cell-type-specific DEGs between high versus low AI rats 
using the negative binomial test59,60 implemented with the ‘FindMark-
ers()’ function in Seurat, using percent.mt and the library prep date 
as covariates. We did not pre-filter genes for testing based on logFC 
or minimum fraction of cells in which a gene was detected. We used  
Benjamini–Hochberg FDR of 10% as a significance threshold. Per-
mutation tests were performed using the same methods, covari-
ates and filtering options but with shuffled AI labels. Results from 
permuted and unpermuted data were compared by visualizing the 
distributions of uncorrected P values (Supplementary Fig. 15 and 
Supplementary Data 6).

We used ClusterProfiler118 to perform GSEA of KEGG pathways. 
A ranked list of the avg_logFC values for all genes evaluated with our 
negative binomial test was given as input to GSEA. Multiple testing 
correction for GSEA results was performed using Benjamini–Hochberg 
adjustment, with statistical significance assessed at FDR < 10%.

Conditionally independent cis-eQTLs (FDR < 5%) were down-
loaded from the RatGTEx portal (https://ratgtex.org/download/). We 
examined cis-eQTLs in the following brain tissues: BLA, brain, infral-
imbic, lateral habenula, nucleus accumbens, nucleus accumbens 2, 
orbitofrontal cortex, prelimbic, prelimbic 2. We assessed enrichment 
of significant DEGs (FDR < 10%) that also had eQTLs in the rat brain 
with a Chi-squared test.

To obtain bootstrap distributions of DEG effect sizes, we resam-
pled nuclei with replacement 1,000 times. Resampling was performed 
separately for nuclei from high and low AI rats so that the sample size of 
each set remained consistent. For each bootstrap iteration, we recorded 
the P value and the coefficients for the high and low AI conditions from 
the negative binomial regression performed by Seurat’s ‘FindMarkers()’ 
function. We then rescaled the coefficient to be in units of log2FC. The 
log2FC estimates obtained by this method differ slightly from Seurat’s 
average (avg)_log2FC estimates, which introduce a pseudocount and do 
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not use covariates. The distribution of resulting bootstrap FC estimates 
and Q values were visualized with violin plots (Fig. 3c–e).

Comparing observed gene expression differences with predicted 
gene expression differences based on cis-genetic variation. To 
estimate the genetic component of gene expression variation in the 
brain, conditionally independent cis-eQTLs and their allelic FC esti-
mates for whole-brain hemisphere tissue were downloaded from the 
RatGTEx Portal (https://ratgtex.org/download/). Using allelic FC as 
effect size, gene expression was predicted from genotypes using eQTL 
linear models51 (https://github.com/PejLab/gene_expr_pred). Predicted 
relative expression was obtained for 26 rats with genotypes, for genes 
with at least one significant cis-eQTL. Genes with zero-variance predic-
tions were removed, resulting in predictions for 8,997 genes. To esti-
mate prediction accuracy, Pearson correlation r2 was calculated 
between predicted and observed log-TPM expression for the 339 rats 
used to discover whole-brain-hemisphere eQTLs. We compared differ-
ences in mean predicted expression between high and low AI rats to 
observed avg_logFC estimates from our DEG analysis by computing 
Spearman correlation (ρ) at different prediction accuracy (r2) cutoffs 
(Supplementary Table 3). Spearman correlation confidence intervals 
(CIs) were calculated using tanh (tanh−1(ρ) ± 1.96

√N−3
).

Quality control and preprocessing of snATAC-seq data. All 
snATAC-seq data preprocessing was performed with MACS2 (ref. 58) and 
Signac119. We called peaks separately using MACS2 because Cell Ranger’s 
peak calling function can merge distinct peaks into single regions119. We 
first called peaks on the snATAC-seq BAM files for each rat with MACS2 
(‘macs2 callpeak -t {input} -f BAM -n {sample} --outdir {output} {params} 
--nomodel --shift -100 --ext 200 --qval 5e-2 -B --SPMR’). We confirmed 
that MACS2 calls more peaks and peaks with smaller widths compared 
with Cell Ranger (Supplementary Fig. 25) and merged overlapping 
peaks to generate a combined peak set using BEDtools120 (‘bedtools 
merge’). Using Signac, we generated a new peak by barcode matrix for 
each sample using the ‘FeatureMatrix()’ function, created Chromati-
nAssay objects in Signac with the BSgenome.Rnorvegicus.UCSC.rn6 
(ref. 121) reference genome using the ‘CreateChromatinAssay()’ func-
tion and created Seurat objects with the ‘CreateSeuratObject()’ func-
tion. We computed quality control metrics for each sample, including 
nucleosome banding pattern (nucleosome_signal), TSS enrichment 
score (TSS.enrichment), total fragments in peaks (peak_region_frag-
ments) and fraction of fragments in peaks (pct_reads_in_peaks) (Sup-
plementary Fig. 4–6, Supplementary Data 2 and Supplementary Data 
4). We removed cells where any of these metrics was more than two 
s.d. units from the mean in the sample. We removed one rat (FTL_463_
M757_933000320046135) from our dataset due to the very low number 
of detected fragments per cell in this sample (Supplementary Fig. 26).

Integrating snATAC-seq data across samples and clustering. Each 
sample was normalized using term frequency-inverse document fre-
quency followed by singular value decomposition119. The combined 
steps of term frequency-inverse document frequency followed by sin-
gular value decomposition are known as latent semantic indexing122,123. 
Nonlinear dimensionality reduction and clustering were performed 
using UMAP and KNN, respectively, following the same procedure 
as for the snRNA-seq data. We merged the data across all samples, 
repeated the process of latent semantic indexing and integrated the 
merged dataset using Harmony124. We observed successful reduction 
of batch effects following integration (Supplementary Fig. 9d–f). We 
then performed nonlinear dimensionality reduction and clustering 
with UMAP and KNN. Raw counts were used for downstream differential 
accessibility analyses.

Label transfer and cell-type assignment for snATAC-seq data. 
We created a gene activity matrix for the integrated snATAC-seq data 

using the ‘GeneActivity()’ function in Signac. This uses the number of 
fragments per cell overlapping the promoter region of a given gene to 
calculate a gene activity score. Gene activity scores were normalized 
using the ‘NormalizeData()’ function in Seurat with the normaliza-
tion method set to ‘LogNormalize’ and the scaling factor set to the 
median value of nCount_RNA across all cells, calculated from the gene 
activity scores. Cell type identities were assigned by integrating the 
snATAC-seq data with the integrated snRNA-seq data and performing 
label transfer114. This process returns a classification score for each cell 
for each cell type defined in the scRNA-seq data. Each cell was assigned 
the cell-type identity with the highest score. By identifying matched 
cells in the snRNA-seq dataset, we were able to impute RNA expression 
values for each cell in our snATAC-seq dataset.

Differential chromatin accessibility analysis of snATAC-seq data. 
To identify DA genomic regions between high versus low AI rats, we 
applied the negative binomial test115,125 implemented in Seurat’s ‘Find-
Markers()’ function using raw snATAC-seq counts as input and peak_
region_fragments, library batch date and rat sample identification 
number as covariates. Multiple testing correction was performed using 
the Benjamini–Hochberg method and FDR < 10% was used to determine 
statistical significance. Permutation tests were performed in the same 
manner as the differential gene expression analyses.

Partitioned heritability analysis. We downloaded summary statistics 
for the 2019 GWAS of tobacco and alcohol use by Liu et al.74 and used 
the munge_sumstats.py script from LD score (LDSC)73 to reformat the 
file. We used the significant differential peaks (FDR < 10%) for each cell 
type as foreground peaks and DNase I hypersensitivity profiles for 53 
epigenomes from ENCODE Honeybadger2 as background peaks. We 
used the University of California Santa Cruz (UCSC) liftOver tool to 
convert the foreground peaks from rn6 to hg19. We used the make_
annot.py script to make annotation files, the ldsc.py script to compute 
annotation-specific LD scores and the European 1000 Genomes Phase 
3 PLINK126 files to compute LD scores. Finally, using the baseline model 
and standard regression weights from the LDSC Partitioned Heritability 
tutorial, we ran a cell-type-specific partitioned heritability analysis.

Fisher’s exact tests. We performed FETs to test (1) whether differential 
peaks of chromatin accessibility (FDR < 10%) were enriched in pro-
moter regions compared with other genomic regions and (2) whether 
significant DEGs (FDR < 10%) were enriched for promoters with signifi-
cant differential chromatin accessibility. For the first FET, we used the 
annotatePeaks.pl script from HOMER to annotate accessible chromatin 
regions and significant differential peaks (FDR < 10%) for each cell type 
in our integrated dataset127. For each cell type, we generated a 2 × 2 
contingency table for the FET where the cells contained the following 
counts: differential peaks with a TSS/promoter annotation; differen-
tial peaks without a TSS/promoter annotation; nondifferential peaks 
(FDR > 10%) with a TSS/promoter annotation and nondifferential peaks 
(FDR > 10%) without a TSS/promoter annotation. For the second FET, 
we obtained gene coordinates from the TxDb.Rnorvegicus.UCSC.rn6.
refGene annotation package and defined promoter regions as –1,500 
bases upstream to +500 bases downstream of the TSS. We then gener-
ated a 2 × 2 contingency table for the FET that contained the number 
of DEGs with DA promoters, DEGs with non-DA promoters, non-DEGs 
with DA promoters and non-DEGs with non-DA promoters.

Measuring differential activity of TFs with chromVAR. We measured 
cell-type-specific motif activities using chromVAR to test for per motif 
deviations in accessibility between nuclei from high versus low AI rats. 
Motif data was pulled from the JASPAR2020 database and integrated 
with snATAC-seq data using the ‘AddMotifs()’ function in Signac. After 
adding motifs to our snATAC-seq dataset, we ran the ‘RunChromVAR()’ 
wrapper in Signac. Differential analysis of chromVAR deviation scores 
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was performed using the Wilcoxon rank-sum test between high versus 
low AI rats in each cell type. Differential testing was performed using 
Seurat’s ‘FindMarkers()’ function with the mean function set as ‘row-
Means()’ to calculate average difference in deviation scores between 
groups. Multiple testing correction was performed using Benjamini–
Hochberg adjustment and FDR < 10% was used to determine statistical 
significance. Motif clusters were defined using the cluster numbers 
from JASPAR’s matrix clustering-results and the names of the clusters 
were annotated manually. When selecting clusters to visualize, we 
retrieved the top 50 most significant motifs (FDR < 10%) per cell type, 
highlighting the motif clusters present.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated in the current study are available through the 
Gene Expression Omnibus (GSE212417). The following publicly avail-
able datasets were used: Rattus norvegicus Ensembl v.98 reference 
genome and genome assembly (Rnor_6.0, http://useast.ensembl.org/
Rattus_norvegicus/Info/Index); JASPAR2022 TF binding profiles for 
vertebrates (https://jaspar.genereg.net/); ENCODE Honeybadger2 
ChIP–seq (https://personal.broadinstitute.org/meuleman/reg2map/); 
Liu et al.74 GWAS for tobacco and nicotine addiction summary statistics; 
RatGTEx Portal tissue-specific cis-eQTLs (https://ratgtex.org/down-
load/); 1000 Genomes European reference panel (https://alkesgroup.
broadinstitute.org/LDSCORE/); KEGG pathways (https://www.kegg.jp/
kegg/rest/keggapi.html). The HS rats genotype, predicted gene expres-
sion and behavioral data are available through the Zenodo repository 
(https://doi.org/10.5281/zenodo.8242458).

Code availability
All code used to perform analyses in this paper can be found at https://
github.com/mcvickerlab/sn_cocaine_rats.
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www.ncbi.nlm.nih.gov/pmc/articles/PMC6358542/); RatGTEx Portal tissue-specific cis-eQTLs (https://ratgtex.org/download/); 1000 Genomes European reference 

panel (https://alkesgroup.broadinstitute.org/LDSCORE/); KEGG pathways (https://www.kegg.jp/kegg/rest/keggapi.html). 
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 

other socially relevant 

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A
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Randomization We used percent mitochondria reads and library prep date as covariates for differential gene expression analyses. We used number of peak 

region fragments, library batch date, and rat sample ID as covariates for differential chromatin accessibility analyses
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Methods
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MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals  N/NIH heterogeneous stock (HS) rat (RRID:RGD_2314009) and ACI/EurMcw rats (RRID:RRRC_00284). Rats were 3-4 weeks of age at 

the start of the experiments.

Wild animals No wild animals were used in this study.

Reporting on sex We used 57 HS rats for the behavioral experiments, of which 31 male rats were used for the generation of snRNA-seq and snATAC-

seq data and 26 rats (13 female, 13 male) were used for cue-induced reinstatement. Specifically, for snRNA-seq we used 19 male rats 
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and male rats (5 high AI, 5 low AI, 5 naive) for the electrophysiology experiments.

Field-collected samples No filed-collected samples were used in this study.

Ethics oversight All protocols were reviewed and approved by the institutional Animal Care and Use Committee at the University of California San 

Diego.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Nuclei were stained with DRAQ7 (#7406, Cell Signaling)

Instrument Sony SH800

Software SH800S software

Cell population abundance NA

Gating strategy The FACS gating strategy sorted based on particle size and DRAQ7 fluorescence. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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