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Robust estimation of cortical similarity 
networks from brain MRI

Isaac Sebenius    1,2 , Jakob Seidlitz    3,4,5, Varun Warrier    6, 
Richard A. I. Bethlehem    1,6, Aaron Alexander-Bloch    3,4,5, Travis T. Mallard    7,8, 
Rafael Romero Garcia    1,9, Edward T. Bullmore    1 & Sarah E. Morgan1,2,10

Structural similarity is a growing focus for magnetic resonance imaging 
(MRI) of connectomes. Here we propose Morphometric INverse Divergence 
(MIND), a new method to estimate within-subject similarity between 
cortical areas based on the divergence between their multivariate 
distributions of multiple MRI features. Compared to the prior approach of 
morphometric similarity networks (MSNs) on n > 11,000 scans spanning 
three human datasets and one macaque dataset, MIND networks were more 
reliable, more consistent with c or ti cal c yt oa rc hi te ctonics and symmetry 
and more correlated with tract-tracing measures of axonal connectivity. 
MIND networks derived from human T1-weighted MRI were more sensitive 
to age-related changes than MSNs or networks derived by tractography of 
diffusion-weighted MRI. Gene co-expression between cortical areas was 
more strongly coupled to MIND networks than to MSNs or tractography. 
MIND network phenotypes were also more heritable, especially edges 
between structurally differentiated areas. MIND network analysis provides 
a biologically validated lens for cortical connectomics using readily 
available MRI data.

A single structural magnetic resonance imaging (MRI) scan of a human 
brain contains an immense amount of information. Standard MRI-based 
surface reconstructions of the cortex, for example, comprise hundreds 
of thousands of vertices, each characterized by many features or phe-
notypes1. The challenging task of integrating this wealth of informa-
tion to model the structural architecture of the brain is essential for a 
better understanding of healthy and disordered brain development 
and function.

Traditional, univariate studies of brain structure focus on indi-
vidual MRI features, such as cortical thickness (CT) or volume, with 
recent large-scale research in this vein mapping the developmental 

trajectories for each of multiple regional (cortical and subcortical) gray 
matter volumes2. However, brain regions do not function or develop in 
isolation but, instead, form an integrated, genetically coordinated, ana-
tomically interconnected network. Accurately modeling the network 
architecture or connectome of the brain is crucial for understanding 
its putative role across typical and atypical functioning and develop-
ment3–5. Recently, the construction of structural similarity networks has 
emerged as a promising approach for integrating multiple structural 
MRI features into biologically relevant single-subject connectomes6,7. 
Morphometric similarity networks (MSNs), the prototypical such 
method, are based on representing each brain region as a vector of 
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to the Human Connectome Project-Young Adult (HCP-YA, n = 960, aged 
21–35 years) and Human Connectome Project-Development (HCP-D, 
n = 655, aged 8–21 years) cohorts20,21, two independent datasets com-
prising individuals of different age groups. For each individual, we 
constructed MSNs and MIND networks using a symmetric subdivision 
of the Desikan–Killiany (DK) atlas22 into 318 parcels of similar volume, 
henceforth referred to as DK-318 (ref. 23). We used the five morpho-
metric features indicated in Fig. 1 for both MIND network and MSN 
construction: cortical thickness (CT), mean curvature (MC), sulcal 
depth (SD), surface area (SA) and gray matter volume (Vol), which was 
estimated at the vertex level by combining local measurements of thick-
ness and area. These features are readily available from standard MRI 
processing pipelines using T1w images alone1; as such, we ensured that 
the method is applicable to most legacy structural MRI data. Details on 
the sensitivity of similarity network analysis to the choice of features 
can be found in Supplementary Fig. 6, and a comparison of group-level 
networks across cohorts is provided in Supplementary Fig. 14.

In the HCP-YA dataset, we also compared multivariate MIND net-
works to published connectomes derived by tractography of DWI 
data24,25 and to univariate MIND networks based on CT alone (Methods). 
Finally, we additionally accessed open gene expression data from the 
AHBA9,26, published macaque tract-tracing connectomes27,28 and MRI 
data from n = 19 macaques29,30. The macaque MRI included the same 
five structural features as for human data plus the T1w/T2w ratio as an 
estimate of intra-cortical myelination.

Network reliability
We evaluated the technical reliability of MIND networks and MSNs as 
measures of brain network organization by examining the consistency 
of each method between subjects and measuring their dependence 
on the choice of parcellation template. We also evaluated the effect of 
including uninformative (noise) features into both types of network 
construction.

Between-subject consistency. The group-level MSN and MIND net-
works were correlated in terms of both edge weights (r = 0.48; Fig. 2d) 
and weighted nodal degrees (r = 0.38). However, MIND networks were 
substantially more consistent across subjects (Fig. 2e), measured by 
pairwise correlation of edges (mean pairwise r = 0.62 versus r = 0.38) and 
degrees (mean pairwise r = 0.73 versus r = 0.45), suggesting that MIND 
network construction may lead to less noisy estimates of a common 
structural architecture. These results were replicated in the HCP-YA 
cohort, where multivariate (five-feature) MIND networks also showed 
increased inter-individual consistency compared to DWI tractography 
and univariate (CT-based) MIND networks (Supplementary Fig. 8).

Parcellation consistency. Brain network analysis assumes that major 
topological features can be replicated across cortical parcellations, 
and network-derived metrics should demonstrate high spatial con-
sistency across parcellation schemes. We analyzed the consistency 
of group-level MSNs and MIND networks across three commonly 
used cortical parcellations of varied granularity: the 68-region DK 
atlas, the 318-region DK-318 atlas derived by subdivision of DK areas  
(the principal parcellation used for this study) and the 360-region  
HCP parcellation31.

We examined edge-level consistency by leveraging the fact that 
DK-318 is a strict subdivision of the DK atlas, allowing us to compare 
the original group DK networks with interpolated versions derived 
from the DK-318 group networks (Methods). MIND networks showed 
markedly higher edge consistency (Fig. 2h) in terms of the correlation 
between the original and interpolated DK networks (r = 0.70 versus 
r = 0.39 for MSNs).

To calculate between-parcellation correlations, each vertex was 
labeled by the weighted degree of the region to which it was assigned, 
for each parcellation, and the correlation was estimated between these 

several MRI features, typically including macrostructural metrics—for 
example, CT—as well as microstructural metrics—for example, the T1w/
T2w ratio between longitudinal relaxation time (T1-) and transverse 
relaxation time (T2-) weighted data, a marker of cortical myelination. 
The morphometric similarity between regions is then estimated by the 
pairwise correlation between (standardized) regional feature vectors.

Although simple in construction, MSNs have demonstrated the 
promise of structural similarity networks to link macroscale MRI phe-
notypes with their neurobiological substrates. For example, MSNs 
recapitulated known brain organizational principles and cortical cyto-
architectonic classes8 more robustly than similar networks derived 
from tractography of diffusion-weighted imaging (DWI) data in n ~ 300 
healthy young adults6. Moreover, MSNs from macaque MRI data were 
positively correlated with gold standard axonal connectivity measured 
by tract tracing6. Most promisingly, MSNs have provided a useful bridge 
between brain structure, cortical gene expression and genetics. For 
example, by combining cortical transcriptomic data from the Allen 
Human Brain Atlas (AHBA)9 with structural MRI from individuals with 
one of six different chromosomal copy number variation (CNV) disor-
ders, Seidlitz et al.10 demonstrated that the changes in morphometric 
similarity induced by each CNV closely resembled the spatial patterning 
of expression of genes from the affected chromosome. Other studies 
have shown that changes in morphometric similarity in psychotic 
disorders11, major depressive disorder12 and Alzheimer’s disease13 cor-
respond to the cortical expression of disease-relevant genes.

Despite the promise of MSNs, they suffer from two technical con-
straints: (1) they reduce the rich, vertex-level data from MRI-based 
cortical surface reconstructions to single summary statistics for each 
feature per region; and (2) their construction is based on standard-
ized statistics (z-scores) that unrealistically force each MRI feature 
to be equally variable across cortical areas. Although other work has 
explored structural similarity measured directly from vertex-level data, 
these methods were limited to the use of a single structural feature, 
such as CT14 or gray matter volume15,16.

Here we propose Morphometric INverse Divergence (MIND) as a 
novel method for estimating structural similarity networks from MRI 
data. Each cortical area is characterized by a multidimensional distri-
bution of multiple structural MRI features measured at each of many 
vertices—for example, vertex-wise measures of CT and curvature. The 
MIND similarity between each pair of regions is then derived from the 
symmetric Kullback–Leibler (KL) divergence (also known as Jeffrey’s 
divergence17) between their multivariate distributions.

Using more than 11,000 scans from three large human cohorts and 
one dataset of non-human primates, we compared MIND networks to 
MSNs and to networks derived by tractography of DWI data, across 
a suite of analyses designed to evaluate their relative performance 
against three major criteria, namely: (1) technical reliability, indexed 
by between-subject variability and resilience to noise; (2) biological 
validity, indexed by recapitulation of known anatomical principles 
of cortical organization, coupling with gene expression and genetic 
heritability; and (3) developmental sensitivity, indexed by prediction 
of age from individual differences in brain networks.

Results
MIND estimation
The pipeline for constructing MIND networks is summarized in Fig. 
1 and Supplementary Fig. 1. A more rigorous definition of MIND as a 
similarity metric, in addition to a description of the k-nearest neighbor 
algorithm used to estimate symmetric multivariate KL divergence18, is 
provided in the Methods.

Data and network construction
As our principal human MRI dataset, we used data from 10,367 individu-
als (aged 9–11 years) from the Adolescent Brain Cognitive Development 
(ABCD) study19, including 641 twin pairs. We also extended our analyses 
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two identical-length vectors of parcellation-specific degree projected 
to each vertex (Fig. 2h and Supplementary Fig. 5). MIND networks were 
strongly correlated across all (three) possible pairs of the three parcel-
lations, whereas MSN degree demonstrated limited generalizability 
across parcellations (for example, r = 0.59 versus r = 0.18 for MIND 
networks and MSNs, respectively, when comparing weighted degree 
for DK and DK-318 atlases). We replicated these results in the HCP-YA 
dataset; here, univariate CT-based MIND networks demonstrated simi-
larly high parcellation consistency, suggesting that the relative invari-
ance to parcellation demonstrated by MIND networks over MSNs was 
due primarily to their use of vertex-level data (Supplementary Fig. 8).

Resilience to noisy features. We studied the robustness of MIND 
networks and MSNs to the inclusion of uninformative (noise) features. 
We created additional MIND networks and MSNs with between one and 
five 𝒩𝒩𝒩0, 1) noise features at each vertex (in addition to the five meas-
ured MRI features) for a random subset of 150 subjects. Because we 
standardized each morphometric feature, the non-random, measured 
variables also had a mean of 0 and a variance of 1. MIND networks 
constructed from these noisy data were almost perfectly correlated 
with MIND networks constructed from the measured features only 
(Fig. 2f), whereas MSN construction was substantially degraded by the 
inclusion of noise features (for example, mean r = 0.95 versus r = 0.50 
for MIND networks and MSNs with five noise features).

Validation by principles of cortical organization
We studied the extent to which each network type represented founda-
tional principles known to govern cortical organization. Specifically, 
we benchmarked the biological validity of each type of structural simi-
larity using the following basic premises about four known principles 
of brain structure:

•	 Symmetry: The cortex is highly symmetric, and homologous 
regions of right and left hemispheres are reciprocally intercon-
nected, so a valid measure of structural similarity should have 
strong weights for inter-hemispheric edges while respecting 
known structural asymmetries.

•	 Cortical microstructure: Cortical areas can be cytoarchitectoni-
cally classified based on microstructural properties measured his-
tologically, so a valid MRI measure of structural similarity should 
have strong weights for edges between cortical areas histologically 
assigned to the same cytoarchitectonic class8.

•	 Axonal connectivity: Cortical areas are interconnected by white 
matter tracts, and cytoarchitectonically similar regions are more 
likely to be axonally interconnected32, so a valid measure of struc-
tural similarity should correlate with axonal connectivity as meas-
ured by gold standard tract tracing in non-human primates.

•	 Developmental remodeling: The cortex undergoes substantial, 
coordinated remodeling across the lifespan2, so a valid measure 
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Fig. 1 | Estimation of MIND. As input, we used the mesh reconstructions of 
the cortical surface generated from T1w MRI scans by FreeSurfer’s recon-all 
command48. This surface can be described by a set of vertices (163,842 vertices 
per hemisphere for the fsaverage template1). Each vertex was characterized by 
five structural MRI features: CT, SA, Vol, MC and SD. To estimate the similarity 
between cortical areas, we standardized each MRI feature across all vertices 
and then aggregated all the MRI metrics for all vertices within each cortical 
area (defined by a prior parcellation template) to form a regional multivariate 
distribution. We then compiled a pairwise distance matrix using a k-nearest 
neighbor density algorithm to estimate the symmetrized KL divergence49, also 
known as Jeffrey’s divergence17, between each pair of regional multivariate 

distributions. Finally, we transformed the KL divergence KL(a,b) for regions a 
and b to estimate the inter-areal MIND similarity, bounded between 0 and 1, with 
higher values indicating greater similarity. Illustrative distributions for regions 
a and b are shown as scatter plot matrices, with diagonal panels showing the 
marginal univariate distribution for five structural features and the off-diagonals 
showing each pairwise bivariate relationship. Bottom row: visualization of a 
group mean MIND similarity matrix and cortical surface maps of two elementary 
MIND network phenotypes—that is, edges between cortical nodes (the top 2% are 
shown here) and weighted nodal degree, calculated as the average edge weight 
for each of 318 cortical nodes defined by the DK parcellation.
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of structural similarity should accurately detect developmental 
changes in the brain.

Symmetry and inter-hemispheric connections. Across a range of 
network densities, we measured how many bilateral connections were 
represented by each type of group mean network. Over all densities, 
MIND networks comprised a substantially larger fraction of bilaterally 
symmetric connections than MSNs (Fig. 2g). This result was replicated 
in the HCP-YA cohort using two parcellations (Supplementary Fig. 8). 

Multivariate MIND networks also captured stronger inter-hemispheric 
connections than DWI-based tractography or univariate MIND net-
works. Moreover, inter-hemispheric MIND connections were more 
closely aligned than MSNs with known patterns of asymmetry of the 
SA of bilaterally homologous cortical areas (Supplementary Fig. 4).

Cytoarchitectonics and within-class connections. Next, we analyzed 
the extent to which MIND networks and MSNs recapitulated known 
patterns of cortical microstructure, measured by higher similarity 
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Fig. 2 | Cortical similarity connectomes: MIND networks and MSNs compared. 
a,b, Illustrative MIND network and MSN from the same randomly sampled 
participant in the ABCD cohort. LH, left hemisphere; RH, right hemisphere; MS, 
morphometric similarity. c, Cortical surface maps of group mean weighted 
degree for the MIND networks and MSNs. d, Scatter plot representing the positive 
correlation between edge weights of the group mean MIND networks and MSNs. 
e, The distributions of pairwise correlations of network edges between subjects 
for MIND networks and MSNs, for all pairs of 10,367 subjects. f, The correlation 
between MIND networks and MSNs constructed using 1–5 additional random 
features of Gaussian noise (for n = 150 random subjects). The solid line represents 
mean values, with shading representing empirical 95% confidence interval (CI). 
g, The fraction of total inter-hemispheric connections represented at different 
network densities for both group mean MIND networks and MSNs. h, Parcellation 
consistency of MIND network phenotypes at nodal level (weighted degree) 

and at edge level. The left plot shows the correlation between weighted degree 
estimated by each of the possible pairs of three parcellation templates: DK, 
DK-318 and HCP. To calculate between-parcellation correlations, each vertex was 
assigned the weighted degree of the region within which it was located, for each 
parcellation, and the correlation was calculated between the resulting vectors of 
vertex-wise values. The right plot shows the correlation between 2,278 network 
edges calculated using the 68-region DK parcellation or by using the finer-grained 
DK-318 parcellation to estimate 50,403 edges and coarse graining (DK-318 
interp.) to match the number of edges in the original DK network. i, The fraction 
of edges between two regional nodes of the same cytoarchitectonic class over a 
range of network densities. In g and i, shading represents the 95% CI estimated 
by population bootstrapping, and the solid line represents the mean over all 
bootstrapped results. In all panels, except as noted in h, the DK-318 parcellation 
was used to define 318 cortical regions of approximately equal volume.
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between regions of the same Von Economo cytoarchitectonic class8. 
MIND networks demonstrated higher intraclass connectivity across 
a range of network densities (Fig. 2i), indicating a closer correspond-
ence with known patterns of cytoarchitectonic similarity at the scale 
of neuronal organization. This result was replicated using two parcel-
lations in the HCP-YA cohort, where multivariate MIND networks, but 
not MSNs, also demonstrated stronger within-class connections than 
DWI tractography or univariate MIND networks (Supplementary Fig. 8).

Axonal connectivity and structural similarity. Previous work showed 
that regions with similar cytoarchitecture are more likely to be con-
nected by axonal tracts than regions that are microstructurally dis-
similar32–34. We therefore anticipated that more robust estimation of 
structural similarity via MIND networks, compared to MSNs, would 
result in stronger correlations with axonal connectivity measured by 
retrograde tract tracing in the macaque monkey brain.

Using MRI data from 19 macaques29,30, we constructed group-level 
MSN and MIND networks using the same five structural features as for 
human MRI analysis as well as the T1w/T2w ratio. We compared the 
correspondence between axonal connectivity and structural similarity 
across five tract-tracing connectomes based on two distinct cortical 
parcellations (detailed in Fig. 3a and Methods).

Replicating and extending the work by Seidlitz et al.6, which used 
a different macaque MRI dataset, we found that edge weights of axonal 
connectivity estimated from tract-tracing data were positively corre-
lated with the corresponding edge weights of structural similarity esti-
mated from MRI data by MSN or MIND network analysis (Fig. 3a). Axonal 
connectivity weights were significantly more positively correlated with 
MIND network edges than with MSN edges across all five connectomes 
analyzed (P < 0.01 from edge bootstrapping, Bonferroni corrected). 
Using the {40 × 40} matrix (the largest weighted connectome with 
complete source and target data), we recapitulated this result over a 
range of tract-tracing network densities (Fig. 3b). Moreover, the degree 
to which regional profiles of MIND and MS corresponded to a region’s 
tract-tracing connections was highly correlated (r = 0.78), although 
MIND showed a higher correspondence with regional tract tracing for 
85% of regions (Fig. 3c).

To test the contribution of individual morphometric features, we 
recalculated the correlations between the {40 × 40} tract-tracing con-
nectome and structural similarity networks estimated with all possible 
subsets of four or five (of the total set of six) MRI features. The greater 
positive correlation of tract tracing with MIND networks, compared 
to MSNs, was maintained across all feature subsets (Fig. 3d). Further 
analysis demonstrated that univariate MIND networks calculated with 
any single morphometric feature alone had reduced correspondence 
to tract-tracing networks, pointing to the importance of a multivariate 
approach (Supplementary Fig. 13).

Sensitivity to developmental changes. We gauged the sensitiv-
ity of MIND networks and MSNs to detect developmentally relevant 
inter-individual variation by comparison on the task of age prediction 
from brain MRI data in the HCP-D (ages 8–21 years) and HCP-YA (ages 
21–35 years) cohorts. For HCP-YA, we also benchmarked both methods 
against DWI tractography24. Using either nodal degree or network edge 
weights as input, we trained machine learning models to predict each 
participant’s age, evaluating model performance over 10 data splits 
and controlling for several potential confounds (Methods).

Predictive performances are summarized in Fig. 4. All models 
improved when trained on all network edges, reflecting information 
loss when considering node degree alone. Models trained on MIND 
degree outperformed other degree-based models in both datasets (for 
example, mean correlation with HCP-D test sets = 0.65 versus 0.34 for 
MIND and MS, respectively). Models trained on MIND network edges 
again showed the highest performance, although to a lesser extent (for 
example, mean correlation with HCP-YA test sets = 0.31, 0.27 and 0.20 

for MIND, MS and DWI tractography, respectively). DWI tractography 
connectomes processed through a separate pipeline and using an 
alternative measure of connectivity25 gave highly consistent results 
(Supplementary Fig. 9 and Supplementary Table 1).

Transcriptional similarity and structural similarity networks
The finding that morphometric similarity networks are spatially 
co-located with transcriptional similarity or gene co-expression net-
works6 builds on foundational work in imaging transcriptomics35 and 
has spurred subsequent research efforts to link MRI-derived connec-
tomes to underlying transcriptional patterns10,11,13,36,37.

Following standardized processing protocols38, we combined 
high-resolution spatial gene expression data on six postmortem adult 
donors from the AHBA to generate an expression matrix for 15,633 
genes in 34 regions from the left hemisphere of the DK atlas9,26. We 
then calculated the pairwise similarity of regional expression profiles 
to generate a {34 × 34} matrix of transcriptional similarity.

MIND networks (parcellated by the DK template) demonstrated 
a remarkably strong correspondence with the brain transcriptomic 
co-expression network (Fig. 5). At the edge level, there was a greater 
than three-fold increase in correlations between edge weights of 
transcriptional similarity and MIND networks (Pearson’s r = 0.76, 
Spearman’s ρ = 0.81) compared to the equivalent correlations for 
MSNs (r = 0.23, ρ = 0.23). At the nodal level, there was an approxi-
mately two-fold increase in correlations between weighted degrees 
of transcriptional similarity and MIND networks (r = 0.85, ρ = 0.88) 
compared to the equivalent correlations for MSNs (r = 0.47, ρ = 0.30). 
A similar result was obtained when including the mean regional gray 
matter volume as a covariate (r = 0.75 for MIND networks, r = 0.5, for 
MSNs), suggesting that results were not driven by mean volume. We 
also observed an increased coupling between multivariate MIND 
networks and gene co-expression compared to both consensus DWI 
tractography from the HCP-YA cohort39 and univariate MIND networks 
based on CT only (Fig. 5d).

We tested the robustness of the strong relationships between 
MIND measures of structural similarity and transcriptional similarity 
through several sensitivity analyses: (1) constructing different tran-
scriptional similarity networks based on all possible subsets of six 
donor brains (Fig. 5d and Supplementary Fig. 10); (2) changing the 
gene inclusion criteria based on varying thresholds of differential 
stability (Supplementary Fig. 10)9; and (3) replicating these analyses in 
the finer-grained DK-318 cortical parcellation (Supplementary Fig. 11).  
Under all conditions, we found that MIND network edge weights and 
weighted degrees remained strongly correlated with edge weights 
and weighted degrees of anatomically commensurate transcriptional 
similarity networks.

Cell-type-specific transcriptional profiles and MIND network 
degrees. To characterize the relationship between MIND degree and 
cell-typical gene expression, we used partial least squares (PLS) regres-
sion to relate the {15,633 × 34} matrix of regional gene expression with 
the {34 × 1} vector of group-averaged MIND network weighted degree. 
The first PLS component (PLS1) explained a significant amount of 
covariance (62% variance explained, Pspin = 0.01, using a ‘spin’ permu-
tation test to correct for cortical spatial autocorrelation; Methods). 
Figure 5e shows the similarity between MIND degree and the cortical 
map of PLS-aligned transcription, calculated by averaging the spatial 
expression of all genes weighted by their PLS1 loadings.

Using published lists of genes specific to neuronal and glial cell 
types10, we calculated the median rank of genes in the PLS1 load-
ings within each cell-typical gene set, in line with prior enrichment 
work10,11. PLS1 was positively enriched for neuronal genes and negatively 
enriched for glial genes, with significant enrichment found for excita-
tory neurons and microglia (Fig. 5f). The result that MIND network 
hubs were located in cortical areas with high levels of neuron-typical 
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transcription was consistent with the observation that MIND network 
degree was correlated with axonal connectivity in the macaque brain, 
given existing work demonstrating both higher tract-tracing connec-
tivity between transcriptionally similar brain regions in mice40 and 
increased likelihood of connectivity between neurons with similar 
transcriptional profiles in Caenorhabditis elegans41.

Heritability of structural similarity network phenotypes
To characterize the extent of genetic influences on structural similar-
ity networks, we first estimated the twin-based heritability (h2twin) for 
each of the five MRI features measured at each region and for each 
edge weight and weighted degree of the MSNs and MIND networks 
derived from them. Using 641 twin pairs (366 dizygotic and 275 monozy-
gotic, total ntwins = 1,282) from the ABCD cohort, we fitted a standard 
ACE model to estimate additive genetic (A), shared environmental (C) 
and unique environmental (E) components of variance and to estimate 
twin heritability for each phenotype (Methods).

MIND demonstrated increased twin-based heritability compared 
to MSNs in terms of both edge weights (mean h2twin = 0.15 versus 0.11, 
two-sided t-test, P < 0.001) and weighted nodal degree (mean 
h2twin = 0.21 versus 0.15, two-sided t-test, P < 0.001) (Fig. 6a). To ensure 
that the higher heritability of MIND network phenotypes compared to 
MSNs was not due to differing relationships with brain size (see Sup-
plementary Fig. 7 for details), we confirmed that MIND network degree 

demonstrated increased twin-based heritability compared to MSN 
degree (two-sided t-test, P < 0.001) after controlling for estimated total 
intracranial volume (eTIV).

The five regional MRI features had average twin-based heritabili-
ties both higher and lower than the heritabilities of network pheno-
types derived from them, ranging from h2twin = 0.44  for SA to 
h2twin = 0.12 for MC. The average heritability of MIND weighted degree 
(Fig. 6d) was significantly higher than h2twin for regional MC (two-sided 
t-test, P < 0.001), similar to the h2twin for regional estimates of mean SD 
(two-sided t-test, P > 0.05), and lower than the heritabilities of the three 
macrostructural MRI metrics related to the size of each regional node 
of cortex (SA, CT and Vol; two-sided t-tests, all P < 0.001). The cortical 
maps of regional MRI heritability for the different MRI features were 
positively correlated with each other (0.09 < r < 0.61; Supplementary 
Fig. 12). This result points to the existence of a general gradient of brain 
structural heritability, where similar anatomical patterns of heritability 
are observed across different MRI phenotypes.

Single-nucleotide polymorphism-based heritability. We estimated 
single-nucleotide polymorphism (SNP)-based heritability for weighted 
degree in MSN and MIND networks using genetic data from 4,085 
unrelated individuals of predominantly European genetic ancestries 
from the ABCD cohort, and we used GCTA42 software for genome-wide 
complex trait analysis.
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Fig. 3 | Structural similarity from MRI compared to axonal connectivity 
from tract tracing in the macaque brain. a, Correlation between structural 
similarity edge weights, in MIND networks or MSNs derived from macaque 
MRI, and axonal connectivity edge weights derived from tract tracing in five 
connectomes: the {29 × 29}, {29 × 91}, {40 × 40} and {40 × 91} versions of the 
Markov parcellation, with the number of target and source regions, respectively, 
indicated in each case27,28, and the whole-cortex connectome based on the 
separate RM parcellation27,28,50. The five connectomes contained n = 536, n = 1,615, 
n = 978, n = 2,229 and n = 3,267 edges, respectively. Shading indicates 95% 
confidence interval (CI). Asterisks indicate significantly increased correlation 
with tract-tracing data for MIND networks compared to MSNs, determined by 
bootstrapping network edges and performing a two-sided test on the difference 
in tract-tracing correlations: *P = 0.0018 and **P < 0.001, uncorrected.  
b, Correlation between tract-tracing {40 × 40} weights and MIND network or MSN 
edge weights over a range of tract-tracing network densities. Shading represents 

95% CI. c, Scatter plot of the correlations between tract-tracing weights and MRI 
similarities (MIND or MS) for the set of edges connecting each regional node to 
the rest of the connectomes; thus, each point represents the correspondence 
between tract-tracing weights and structural similarity for each region in the 
{40 × 40} connectome (averaged for afferent and efferent connections; see 
Methods for details). The dashed line y = x highlights that similarities estimated 
by MIND were generally more strongly correlated with tract-tracing weights 
(above the line of identity) than morphometric similarities. d, Radar plots of 
the stability of the correlation between axonal connectivity, again from the 
{40 × 40} connectome, and structural similarity from MSNs or MIND networks, 
estimated over all possible input feature sets with one or two missing features. 
Missing features are noted at each radial position, with the radius from the center 
indicating correlation with tract-tracing weights. Best-case correlations for each 
type of structural similarity network estimated using all six MRI features are 
shown as dashed lines: MY, myelination (T1/T2 ratio).
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SNP-based heritability for weighted degree of MIND networks 
(mean h2SNP = 0.064 ) was greater than for degree of MSNs (mean 
h2SNP = 0.046), and this difference was significant (two-sided t-test, 
P < 0.001; Fig. 6b). SNP-based and twin-based heritabilities were posi-
tively correlated for weighted degree of MIND networks (r = 0.22, 
Pspin < 0.001) but were not correlated for degree of MSNs (r = 0.07, 
Pspin = 0.31) (Fig. 6c). This demonstrates that common genetic variants 
partly explain variance in MIND networks.

Increased heritability of MIND between dissimilar regions. 
Twin-based heritabilities for MIND network edges were robustly and 
negatively correlated with edge weights (r = −0.37; Fig. 6g). This is 
visualized in Fig. 6e,f, where the highest MIND edges, between the 
most similar areas of cortex—for example, inter-hemispheric con-
nections—have much lower heritability than the lowest MIND edges, 
between the most dissimilar areas of cortex—for example, connections 
between neocortical areas and areas of insular and limbic cortex. We 
observed no correlation between Euclidean distance and edge herit-
ability (r = 0.02, Pspin = 0.66), despite an exponentially decaying rela-
tionship between distance and MIND (Supplementary Fig. 3).

MIND network weighted degree was also negatively correlated 
with heritability (r = −0.24, Pspin = 0.02). When categorized by cytoarchi-
tectonic class (Supplementary Fig. 12), weighted degree was more 
strongly heritable (mean h2twin ≥ 0.28) for insular, primary sensory and 
limbic cortex and less strongly heritable for primary motor, association 
and secondary sensory cortex (mean h2twin ≤ 0.22). The difference in 
heritabilities between cytoarchitectonic classes was significant 
(ANOVA, F6,311 = 7.54; P < 0.001).

Discussion
We present MIND network analysis as a method for distilling the 
large-scale, multidimensional, vertex-level data from structural brain 
MRI into a unified network model of cortical structure. These networks 

are technically reliable, map closely onto known principles govern-
ing cortical organization and can effectively detect individual differ-
ences in human connectomes due to both developmental changes 
and genetic variation.

At a methodological level, the relative superiority of individual 
brain connectome mapping by MIND networks compared to MSNs 
is simply explained. MIND measures similarity by the divergence 
between multidimensional distributions with many degrees of free-
dom, whereas MSNs are predicated on regional summary statistics 
of each MRI feature and are, therefore, less efficiently estimated with 
fewer degrees of freedom. Moreover, the regional z-scoring in MSN 
construction forces each feature to be equally variable across regions, 
which is biologically unrealistic, whereas MIND is driven only by struc-
tural features that truly differentiate cortical areas. These fundamental 
differences between MIND and MSN estimators of structural similar-
ity greatly enhanced the reliability of the resulting MIND networks in 
terms of consistency between subjects, resilience to the inclusion of 
noise features and robustness to the choice of parcellation template 
used to define cortical nodes.

Benchmarking both MIND networks and MSNs against prior 
principles of cortical network organization8,33,34, we found that MIND 
networks were more representative of connections for left and right 
homologous regions, for regions belonging to the same cytoarchi-
tectonic class and for regions with axonal interconnectivity demon-
strated by the gold standard of retrograde tract tracing in the macaque 
monkey. These results consistently indicate that the connectomes 
rendered by MIND analysis of structural similarity are more aligned 
with the principles that structural similarity between regions should 
be greater for bilaterally homologous cortical areas, cytoarchitectoni-
cally homogenous areas and axonally connected areas. MIND networks 
were also more sensitive to age-related changes in structural architec-
ture than either MSNs or diffusion tensor imaging (DTI) connectiv-
ity. This result suggests that the high between-subject consistency 
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demonstrated for MIND networks does not preclude their sensitivity 
to detect developmentally relevant individual differences in cortical 
network organization.

Recent work has begun to establish another principle of brain net-
work organization: that structurally similar or axonally interconnected 
regions will typically have more similar profiles of gene transcription 
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Fig. 5 | Structural similarity and transcriptional co-expression networks.  
a, Gene co-expression networks (upper triangles) compared to MIND networks 
and MSNs (lower triangles). LH, left hemisphere. b,c, Correlation between the 
gene similarity network and the group MSN or MIND network, at the level of 
edges (b) and weighted nodal degrees (c). Shading represents 95% confidence 
interval (CI) of best-fit line. P values (uncorrected) were based on a two-sided spin 
test that generated a distribution of null correlations from random spatial 
network rotations (Methods). d, Stability of the correlation between structural 
and transcriptomic networks constructed from all subsets of the six postmortem 
brain gene expression datasets available. Also included are results on univariate 
MIND networks derived from cortical thickness and consensus DTI connectivity 
from the HCP-YA dataset39. For each number of donors included, all combinations 
of transcriptional networks were constructed (without gene filtering), and the 

mean edge correlation was calculated for each network type. There were ( 6n )
 

possible networks created for n = 1, 2…6 included donors. Shading indicates the 
minimum and maximum value of the association observed for each number of 
included donors. e, Cortical brain maps of MIND weighted node degree beside a 

weighted gene expression map derived from PLS analysis of the covariation 
between degree, or ‘hubness’, of MIND nodes and gene expression. PLS1 
explained a significant amount of covariance (62%, Pspin = 0.01, two-sided spin 
test) between these two modalities. f, Cell type enrichment of the weighted, 
ranked gene list from PLS analysis of covariation between MIND degree and gene 
expression, using the median loading rank within one of seven sets of genes, each 
characteristic of a canonical class of cells in the central nervous system: 
excitatory neurons (Neuro-Ex, P = 0.049), inhibitory neurons (Neuro-In, P = 0.17), 
endothelial cells (Endo, P = 0.81), astrocytes (Astro, P = 0.48), microglia (Micro, 
P = 0.02), oligodendrocytes (Oligo, P = 0.42) and oligodendroglial precursor cells 
(OPC, P = 0.30). The zero position on the x axis represents the median position of 
all 15,633 genes (position 7,816), with negative ranks indicating genes that have 
expression positively correlated with MIND node degree—that is, overexpressed 
at highly connected MIND network hubs. P values were FDR corrected after a 
two-sided permutation test controlling for both spatial autocorrelation in the 
brain MRI data and correlation structure in gene expression (*P < 0.05; see 
Methods for details).
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than cytoarchitectonically dissimilar or unconnected pairs of regions43. 
In short, the structural architecture of the connectome recapitulates 
the organization of the brain gene co-expression network. We therefore 
expected—and confirmed—that the more reliable and valid connec-
tomes produced by MIND analysis are more strongly correlated than 
MSNs or DTI networks with a gene co-expression network derived from 
the AHBA. Although the upper bound of the relationship between struc-
tural similarity and gene co-expression is unknown, the significantly 
greater strength of association between transcriptional similarity 
and structural similarity measured by MIND was evident at the level of 
both edges and nodes and across multiple parcellations. Moreover, the 
high-degree hubs of MIND networks were significantly co-located with 
areas where neuron-specific genes were highly expressed10.

These results strongly support the preferred use of MIND network 
analysis for future imaging studies designed to discover the transcrip-
tional mechanisms underpinning anatomical connectomes in health 

and disease. However, several causal pathways could explain the strong 
coupling between MIND and transcriptional networks. Spatially pat-
terned and developmentally phased gene expression drives the expan-
sion and development of the human cortex44, so it is at least plausible 
that the network organization of transcription is an important driver 
or template of the network organization of the structural similarity 
and axonal connectivity of the cortex.

To investigate genetic effects on MIND phenotypes more directly, 
we demonstrated that MIND network edge weights and nodal degrees 
had higher twin-based and SNP-based heritabilities than similar MSN 
phenotypes. Notably, the heritability of the MIND similarity between 
two regions was found to be higher for edges between structurally 
dissimilar or differentiated regions—for example, edges connecting 
limbic, insular or primary sensory cortical areas to the rest of the net-
work. Consequently, MIND network hubs in motor and association 
cortex, with a high degree of similarity to many other neocortical 
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areas, were less genetically influenced than primary sensory, insu-
lar and limbic non-hub regions with more distinctive, less generally 
similar cytoarchitecture. These results are in line with previous work 
demonstrating increased heritability of brain structure in evolutionar-
ily conserved, primary sensory regions as opposed to more recently 
developed heteromodal areas45,46. They are also complementary to 
recent work demonstrating that the heritability of functional network 
topography is stronger in unimodal as compared to association cortical 
regions47. Together, these results further endorse the biological validity 
of MIND networks compared to MSNs and set the scene for future, more 
detailed investigation of genetic effects on MIND network phenotypes.

One limitation of MIND networks—shared by MSNs—is that they do 
not currently include subcortical regions, which are not represented 
by surface reconstructions. In principle, however, MIND methodol-
ogy could be extended to voxel-level metrics describing subcortical 
structures, such as microstructural metrics from DWI images. There 
are also current limitations in terms of our understanding of the opti-
mal number and type of MRI metrics to measure for the purposes of 
MIND network analysis. In the present study, we mainly used five mac-
rostructural MRI metrics that can be conveniently measured in widely 
available T1w MRI data from humans as well as the T1w/T2w ratio (a 
microstructural metric of intracortical myelination) in MIND analysis 
of macaque data. Although it is pragmatically encouraging to see that 
reliable and valid MIND networks can be estimated from standard T1w 
MRI data, it is plausible that MIND analysis based on a larger number 
and/or a more diverse range of MRI metrics might provide additional 
information about brain network organization.

Ultimately, we expect the study of MIND networks to provide a 
practical and informative new perspective on principles of cortical 
network organization that reflect the genetic architecture of the brain, 
with implications for mapping of individual human connectomes 
throughout normative and disordered processes of brain develop-
ment and aging.
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Methods
Ethics oversight
All data used for this study were previously published and collected in 
accordance with appropriate independent ethical approvals. Approval 
for our use of the ABCD data fell under a National Institute of Mental 
Health Data Archive (NDA) agreement, reflected in study 1796 on the 
NDA website.

MIND estimation
Definition of the MIND similarity metric. Here we describe the 
definition of MIND as a statistical metric of structural similarity given 
a surface reconstruction of the cortex. This surface can be described 
by a set of vertices vi ∈ 𝒱𝒱 , where each vi is a vector of d structural 
features, such as CT and SD. These features (interchangeably 
described as structural and morphometric features) are automati-
cally generated at the vertex level by FreeSurfer’s recon-all com-
mand. A cortical parcellation with R regions is a partition of 𝒱𝒱   
such that 𝒱𝒱 = 𝒱𝒱𝒱𝒱1},… 𝒱𝒱𝒱R}}. For each region r, we let Pr be the true mul-
tivariate distribution of structural features from which vi ∈ 𝒱𝒱r   
are observations.

For a given pair of regions a and b, we estimate the KL divergence 
of Pb from Pa, denoted as DKL(Pa∥Pb). Because KL divergence is not sym-
metric, we use a commonly used symmetric version of the metric, 
computed as follows and in line with previous work14,51:

D𝒩Pa,Pb) = DKL𝒩Pa ∥ Pb) + DKL𝒩Pb ∥ Pa) (1)

The value of D(Pa, Pb) corresponds to the value of KL(a,b) referred 
to in Fig. 1, which is used for simplicity in the diagram. We define 
the morphometric inverse divergence (MIND) metric of similarity, 
bounded between 0 and 1, as follows:

MIND𝒩a,b) = 1
1 + D𝒩Pa,Pb)

(2)

Multivariate KL divergence estimation. One key challenge in calculat-
ing MIND networks is appropriately estimating multivariate KL diver-
gence. Traditionally, KL divergence between empirical distributions is 
calculated by a two-step approach: (1) non-parametric estimation of 
the probability density functions (PDFs) of the observed data and (2) 
computation of the divergence using the approximated PDFs. How-
ever, the initial density estimation step of this approach is sensitive to 
many choices of parameters14,15,18,51. Extended to multiple dimensions, 
density estimation becomes especially problematic; for multivariate 
data with as few as three dimensions, standard non-parametric density 
estimators provide very poor results52. Although research into alternate 
methods for higher-dimensional density estimation is actively ongo-
ing, no consensus currently exists on an effective, efficient method 
for this purpose52.

Here, we circumvent the need to perform the difficult first 
step of density estimation by leveraging a k-nearest neighbor 
approach18 for calculating multivariate KL divergence directly from 
the observed vertex-level data. This approach has considerable 
advantages compared to explicit density estimators—namely, it 
does not require the specification of any parameters, and it can be 
computed efficiently53.

More formally, given regions a and b, vertices Va and Vb, with true 
multivariate distributions Pa and Pb, the KL divergence between Pa and 
Pb is defined mathematically as follows:

DKL𝒩Pa ∥ Pb) = ∫
ℝd
pa𝒩x) log

pa𝒩x)
pb𝒩x)

dx ≥ 0 (3)

We used the k-nearest neighbor divergence approximation by 
Perez-Cruz18 to estimate DKL(Pa∥Pb):

D̂KL𝒩Pa ∥ Pb) = −dn
n
∑
i=1

log rk 𝒩xi)sk 𝒩xi)
+ log m

n − 1 (4)

Here, d is the number of structural features used, n =∥ 𝒱𝒱a ∥ and 
m =∥ 𝒱𝒱b ∥, and rk 𝒩xi) and sk 𝒩xi) are the Euclidean distances of xi to the 
k-th most similar vertex of xi in 𝒱𝒱a ⧵ xi and 𝒱𝒱b, respectively (where 𝒱𝒱a ⧵ xi 
is the set 𝒱𝒱a with the sample xi removed). We use k = 1 (nearest neighbor) 
in our analysis, and we calculate rk 𝒩xi)  and sk 𝒩xi)  efficiently using 
k-dimensional trees, a method for data representation that enables 
the rapid lookup of nearest neighbors.

To account for the unlikely but possible occurrence that the esti-
mation of KL is negative, we set the minimum value of the estimate to 
be 0. A symmetric measure of KL divergence was then given by:

D̂𝒩Pa,Pb) = max𝒩D̂KL𝒩Pa ∥ Pb),0) +max𝒩D̂KL𝒩Pb ∥ Pa),0) (5)

And MIND was finally estimated by:

MIND𝒩a,b) = 1
1 + D̂𝒩Pa,Pb)

(6)

Standardizing and filtering vertex-level data. Because each feature 
is measured on different scales, we standardized (z-score) each fea-
ture across all vertices in the brain before parcellating the data into 
vertex-level distributions and calculating MIND.

Additionally, structural vertex-level data can sometimes represent 
biologically unfeasible conditions—namely, when vertices have values 
of 0 for CT, Vol or SA. For MIND estimation, we discarded all such ver-
tices. One result of this filtering step is that if a region is left with zero 
or one vertices, a complete MIND network cannot be computed. Thus, 
using parcellations of smaller parcel size will generally lead to higher 
likelihood that one or more regions contains no vertices and, therefore, 
fewer networks that can be fully calculated. Removing the condition 
that all vertices must have above-zero values of thickness, volume and 
area will mitigate this, although at the tradeoff of including vertices 
that correspond to potentially unfeasible conditions.

Computational costs of MIND network analysis. Construction of 
MIND networks can be completed at reasonable computational cost. 
Given d dimensions and n vertices, a k-dimensional tree can be con-
structed in 𝒪𝒪𝒩dn logn)—with more recent approaches further improv-
ing a worst-case construction time to 𝒪𝒪𝒩n𝒩d + logn)) (ref. 53)—and can 
be queried in 𝒪𝒪𝒩logn) (refs. 54,55). This computation is not a bottle-
neck; in practice, we observed that the computational resources 
expended during structural image (FreeSurfer) pre-processing far 
exceeded MIND network computation. For reference, on consumer 
hardware, computation of a single MIND network ranged from 
roughly 1 min (68-region of interest (ROI) DK atlas) to roughly 10 min 
(360-ROI HCP atlas).

MSN calculation. MSNs were computed as described in Seidlitz et al.6. 
Specifically, we considered the widely used summary statistics com-
puted by FreeSurfer’s mris_anatomical_stats command to charac-
terize each region. The five summary statistics describing each region 
are the following:

•	 Mean sulcal depth
•	 Mean cortical thickness
•	 Total volume
•	 Total surface area
•	 Integrated rectified mean curvature

Each feature was z-scored, and the resulting MSN was defined as 
the pairwise Pearson correlation between all vectors of the five stand-
ardized features. To construct MSNs with 𝒩𝒩𝒩0, 1) noise features (as in 
Fig. 2f), the Gaussian noise columns were added as new features at each 
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vertex, averaged within each region and z-scored across regions before 
inclusion into the vector of structural features.

Human MRI datasets
ABCD imaging dataset. The ABCD cohort currently comprises T1w 
structural MRI data on 11,449 participants (including 697 twin pairs) 
ages 9–11 years at baseline scanning. Recruitment for the ABCD study 
was intended to generate a diverse, representative sample56 for the 
longitudinal study of brain development and cognition. This work is 
registered as study 1796 on the NDA (https://doi.org/10.15154/1528079). 
The number of subjects included for different analyses can be visual-
ized in Supplementary Fig. 2. After data filtering and quality control 
(QC), this led to 10,367 subjects included in our principal dataset par-
cellated in DK-318 (n = 10,353 for DK and n = 9,218 for HCP parcellation, 
with the difference between parcellation due to the vertex filtering 
step described above). Group-level MIND networks and MSNs were 
constructed from these cohorts. These 10,367 subjects in DK-318 par-
cellation included 641 complete twin pairs (366 dizygotic and 275 
monozygotic), which served as the cohort for estimating twin-based 
heritability. To estimate SNP-based heritability, we used a sample 
of 4,085 subjects, comprising unrelated participants of European 
ancestry with MRI and genetic data that passed QC criteria. To study 
the effect of including varying numbers of noise columns (Fig. 2f), we 
used a random subset of 150 subjects to avoid the cost of constructing 
many network versions for all 10,367 individuals.

Extensive documentation of the scanner types and protocols used 
for MRI in the ABCD study can be found in Hagler et al.19,57. T1w images 
were 1-mm isotropic, radiofrequency (RF)-spoiled gradient echo using 
prospective motion correction if available and from one of three (3T) 
scanner models: Siemens (Prisma VE11B-C), Philips (Achieva dStream, 
Ingenia) or GE (MR750, DV25-26)19,48. The images were processed using 
FreeSurfer version 5.3.0.

ABCD MRI QC. To ensure high quality of the included scans, we used 
the Euler number1, an index of scan quality generated automatically 
by FreeSurfer. Supplementary Fig. 2 shows the distribution of Euler 
number in the entire ABCD cohort, with some extreme outliers in the 
sample. To discard these scans, we used a cutoff threshold of −120, 
corresponding to a median absolute deviation (MAD) score of ≥2.6.

ABCD site-related batch effects. ABCD is a multi-site study with 
well-known batch effects due to scanning at different sites58. To correct 
these site-related batch effects in quality controlled data, before MIND 
analysis, we used neuroCombat version 0.2.12 (ref. 59), an adaptation 
of the standard ComBat batch correction tool60 designed specifically 
for structural MRI brain data. While adjusting for site-specific effects 
in this manner, we included age (in months) and sex to be biologically 
relevant covariates (that is, differences in age and sex distribution 
between sites were not considered site-specific effects).

HCP-YA and HCP-D imaging datasets. The HCP-D cohort aims to 
provide MRI scans for over 1,300 participants ages 5–21 years to shed 
light on brain development over adolescence21. The data used in 
this work were part of release 1.0, containing cross-sectional images 
(pre-processed using FreeSurfer version 6.0) from 655 subjects ages 
8–21 years (49% male). All 3T images were acquired on a Siemens Prisma 
scanner 80-mT/m gradient coil, multiecho, and with 0.8-mm isotropic 
resolution. Full imaging acquisition parameters are described in detail 
in Harms et al.61 and Somerville et al.21. Pre-processed DWI images were 
not yet available at the time this work took place and, hence, were not 
considered.

We used data from the HCP-1200 release of the HCP-YA cohort. 
This release provides cross-sectional 3T images (pre-processed using 
FreeSurfer version 5.3.0-HCP as described in Glasser et al.62) from 1,113 
young adults ages 21–35 years. The image acquisition parameters 

are described in detail elsewhere20,62; in short, images were 0.7-mm 
isotropic, field of view (FOV) 224 × 224 mm, TI = 1,000 ms and 
TR = 2,400 ms. Connectivity matrices based on diffusion tractography 
were published by Arnatkevičiūtė et al.24. Detailed pre-processing steps 
are provided in the original publication; in summary, processing of DWI 
images was performed by Arnatkevičiūtė et al.24 using MRtrix3 (ref. 63), 
FSL with FMRIB Software Library64, iFOD2 (ref. 65) and anatomically 
constrained tractography (ACT). Connectivity strengths were based 
on the mean fractional anisotropy within the voxels of streamlines 
between cortical areas. DTI connectivity images were provided in the 
HCP 360-region parcellation and were available for only a subset of 
the entire cohort, so our final total number of subjects with all imaging 
modalities was n = 960 (46% male).

To replicate age prediction results from Fig. 4 on DTI networks 
processed through a separate processing pipeline, we additionally 
used the publicly available individual HCP-YA DTI dataset processed 
by Rosen et al.25, also in the HCP 360-region parcellation. Processing 
for these data used a separate method of probabilistic tractography 
estimation and estimated structural connectivity using streamline 
counts. In line with the original publication, we considered structural 
connectivity to be the log-transformed probabilistic tractography 
values, adding jitter of 1 × 10−10 to ensure that all entries are defined after 
log transformation. Rosen et al.25 provided a more detailed discussion 
of processing steps in the original publication.

To compare consensus DTI connectivity with the network of gene 
co-expression, a population-averaged DTI connectome was needed in 
the DK parcellation (not provided by Arnatkevičiūtė et al.24 or Rosen 
et al.25). We therefore leveraged the population-level DTI connectome 
in DK parcellation pre-processed and provided by the ENIGMA con-
sortium as part of the ENIGMA toolbox39. The original publication 
details all pre-processing steps, including using MRtrix3 with ACT and 
spherical deconvolution informed filtering of tractograms (SIFT2)66. 
Structural connectivity was estimated using fiber density as the meas-
ure of structural connectivity.

Cortical parcellations. We used the DK22, DK-318 (ref. 23) and HCP31 
parcellations in this work. Unlike the DK and DK-318 parcellations, 
which are based entirely on anatomical landmarks from structural 
MRI, the HCP-Glasser parcellation is in part defined by functional 
connectivity estimated from functional MRI (fMRI) data. As such, it 
may transgress structurally defined cortical areas, so conclusions 
drawn about node-specific properties should ensure generalizability 
to alternative parcellations defined using structural landmarks alone. 
To compare edge-wise consistency between group-level DK and DK-318 
atlases (Fig. 2h), we assumed that an edge between two regions in 
the DK atlas should be similar to that derived by averaging all edges 
between the subdivisions of the regions in the finer-grained DK-318 
atlas. In this manner, we interpolated the group DK-318 networks back 
to the original DK atlas and then compared these recreated networks to 
those computed directly on the original 68-region DK parcellation. The 
correlation between the original DK and interpolated (DK-318 interp.) 
networks was used to measure edge-level parcellation consistency.

The mapping from each region in the 318-region subdivision of 
the DK atlas (Fig. 2i) was based on the mapping used in Seidlitz et al.6, 
originally performed by Vértes et al.67 and Whitaker et al.68. These prior 
studies used the closely related DK-308 parcellation23, which is an asym-
metric version of the DK-318 atlas. We used a simple majority-voting 
procedure to translate the DK-308 parcellation to the related DK-318 
atlas. Comparisons to individual DTI connectomes were performed 
using the HCP-360 due to the availability of publicly available, exter-
nally processed data.

Age prediction. We trained machine learning models to predict the 
age of participants in either the HCP-D or HCP-YA cohorts using node 
degree or edge weights of MSNs, MIND networks and DTI connectivity 
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matrices. To align with most of the other analyses in the paper, the 
DK-318 parcellation was used for the HCP-D cohort, where DTI was not 
available. For the HCP-YA cohort, we used the HCP 360-region parcel-
lation to match the parcellation scheme provided by Arnatkevičiūtė 
et al.24 and Rosen et al.25. All models were trained on 10 train/test splits 
(90% train data, 10% test data) with non-overlapping test sets. Models 
were implemented in Python 3.6 using the sklearn package (version 
0.24.1)69. Models trained on node degree used five-fold cross-validation 
for each training set over a set of nonlinear and linear models—specifi-
cally, a support vector machine with an RBF kernel (sklearn specifica-
tion: SVR(kernel = ‘rbf’)) and C regularization values of 0.1, 1.0, 
10 or 100 and a linear Gaussian process (GP) regression model with a 
summed linear and noise kernel (sklearn specification: GaussianPro
cessRegressor(kernel=DotProduct() + WhiteKernel(noise_
level_bounds=(1e-10, np.inf)). The linear GP is equivalent 
to a Bayesian linear regression, with the noise kernel modeling the 
presence of i.i.d noise. All training sets were standardized using the 
StandardScaler() function from sklearn; test sets were accord-
ingly transformed using the normalization function estimated on the 
training set. For models trained on all individual edges, due to the very 
large number of features (>50,000 features), we used the GP regression 
model alone, as in Morgan et al.70.

To evaluate model performance while ensuring that predictions 
were not biased by the presence of confounds related to subject age, 
we used the partial Spearman correlation of predicted versus true age, 
controlling for the effect of sex, Euler number (a measure of scan qual-
ity that is known to have a strong relationship with age25) and a global 
matrix coefficient (defined as the sum over the entire connectivity 
matrix, which may detect global measures such as total intracranial 
volume, as discussed in Supplementary Fig. 7). This post hoc adjust-
ment ensured proper correction for the potential effect of confounds 
by avoiding the statistical issues that arise when regressing confounds 
from feature space before model training71.

Twin-based heritability
We used the umx package (version 2.10.0) using R (version 4.1.3) to 
implement a structural equation model of the ACE model to infer herit-
ability estimates72,73. The ACE model estimates the contributions to 
observed variance due to additive genetic (A) in the context of common 
(C) and specific environmental (E) effects on variance72,73. We defined 
heritability (h2) as the proportion of variance due to additive genetics 
contributions, such that h2 = A

A+C+E  (ref. 74).
The ACE model does not estimate A, C and E directly but, rather, 

estimates path coefficients a, c and e, such that a2 = A, c2 = C and e2 = E. 
These path coefficients are sometimes directly used as reports of herit-
ability (for example, Bethlehem et al.2). To validate our processes for 
twin-based heritability estimation, we replicated a previously reported 
estimate of h2twin = 0.58 for whole-brain gray matter volume (GMV) in 
the ABCD cohort2. The published path coefficients corresponding to 
this heritability estimate were the following: a = 0.745, c = 0.624 and 
e = 0.238. We calculated values of a = 0.765, c = 0.596 and e = 0.246, 
which were highly consistent.

Human genetic data QC and SNP-based heritability
Full details of genetic QC procedures are provided by Warrier et al.75,76. 
In brief, we excluded SNPs with genotyping rate <90% and individuals 
with genotyping rate <95%, whose genetic sex did not match their 
reported sex. We identified individuals of predominantly European 
genetic ancestries using multidimensional scaling after including 
samples from the 1000 Genomes Project phase 3 data77. In the subset of 
individuals of predominantly European ancestries, we further excluded 
SNPs not in Hardy–Weinberg equilibrium (P < 1 × 10−6) and individu-
als with excessive heterozygosity. Related individuals (>5% identity 
by state) were excluded using Genome-wide Complex Trait Analy-
sis Genome-based Restricted Maximum Likelihood (GCTA-GREML) 

software (version 1.93)42 before estimation of SNP-based heritabilities 
using a genetic relatedness matrix. The genetic relatedness matrix 
was derived from genotyped samples after controlling for age, age2, 
age × sex, age2 × sex, sex, imaging center, mean framewise displace-
ment, maximum framewise displacement, Euler Index and the first  
10 genetic principal components as covariates.

Macaque MRI and tract-tracing data
We used MRI data from 19 female rhesus macaque monkeys (Macaca 
mulatta, ages 18.5–22.5 years) in the UC-Davis cohort provided by the 
PRIME-DE resource30. The animals were anesthetized and scanned on a 
Siemens Skyra 3T MRI with a 4-channel clamshell coil with 0.3 isotropic 
resolution (TR = 2,500 ms)30. These data were pre-processed using the 
HCP Non-Human Primate78 pipeline by Xu et al.29.

All individual scans were previously spatially co-registered with the 
group-level Yerkes19 atlas79. On this basis, we constructed group-level 
structural similarity networks by first averaging vertex-level features 
and then constructing a MIND network and an MSN. We calculated 
MSNs by manually generating the same output as performed by Free-
Surfer’s mris_anatomical_stats command used to calculate human 
MSNs. Specifically, within each region, vertex values of SD and CT were 
averaged; Vol and SA were summed; and MC was absolute-valued, mul-
tiplied by SA and summed (thus outputting integrated rectified MC).

We used four tract-tracing connectivity matrices based on the 
91-region Markov M132 parcellation of the left hemisphere27: the 
original and most widely used {29 × 29} complete connectivity matrix 
between 29 cortical areas used both as source and target regions in 
retrograde tract-tracing experiments; the {29 × 91} matrix including 
all originally measured source–target connections27; and the corre-
sponding {40 × 40} and {40 × 91} matrices from a recently published 
extension of the original Markov dataset, which increased the number 
of target regions from 29 to 40 (ref. 28). For all these tract-tracing con-
nectomes, we used the log-transformed fraction of labeled neurons 
(log(FLNe)) as the measure of axonal connectivity6,27. Additionally, we 
used a bi-hemispheric connectivity matrix based on the independent 
regional mapping (RM) parcellation and estimated by using DWI to infer 
the connectivity weights from categorical estimates derived from the 
CoCoMac database50,80.

To study the relationship between structural similarity and 
regional connectivity profiles, we generated two tract-tracing con-
nectivity profiles per region based on the vectors of afferent and effer-
ent edges connected to a node. We correlated both of these vectors 
with the node’s (undirected) profile of structural similarity (MIND 
or MSN), Fisher transformed the two correlations and averaged and 
inverse transformed to calculate a final correlation between a region’s 
tract-tracing connectivity and structural similarity (reported in Fig. 3c).

To test for the difference between the correlation between MIND 
networks and tract tracing versus that between MSNs and tract tracing, 
we performed edgewise bootstrapping with the one-sided null hypoth-
esis that MIND did not have a greater correlation than MSNs with tract 
tracing. Thus, for each bootstrapped edge sample, we calculated the 
difference between the tract-tracing correlation for MIND and MSNs 
and then calculated the P value as the fraction of samples for which 
this value fell below 0. We used a significance threshold of α = 0.01 cor-
responding to a Bonferroni correction for the five connectomes used.

Gene expression analysis
Data and pre-processing. The AHBA contains high-resolution spatial 
genome transcriptional data in the cortex from six postmortem brains 
(male/female = 4/2, mean age = 45 years). We focused our analysis 
of the AHBA on the DK parcellation of human brain gene expression 
maps, given prior work on standardizing the pre-processing pipeline 
for this atlas (Arnatkevičiūtė et al.9,38,81) and because the coarse-grained 
DK parcellation ensures high donor coverage for all regions. Only two 
brains provided data from the right hemisphere, so we focused on 
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the left hemisphere only, and we used the abagen package (version 
0.1.3) developed by Markello et al.81 with default settings to fetch (the 
get_expression_data command) and manipulate the AHBA data. 
These pre-processing steps included aggregating probes across all 
available donors, selecting probes using an intensity-based filtering 
threshold of 0.5, normalizing microarray expression values for each 
sample and donor using the scaled robust sigmoid function and com-
bining gene probes for each region within each donor before combin-
ing across donors.

Transcriptional similarity metric. We used an angular similarity metric 
based on cosine distance (rather than raw cosine similarity or Pearson 
correlation) to measure transcriptional similarity between regions. 
If gx and gy are the vectors of gene expression for regions X and Y, the 
transcriptional similarity, τ, between the two regions is defined as:

τ𝒩gx,gy) = (1 − arccos (
gx ⋅ gy

∥ gx ∥∥ gy ∥
) /π) (7)

The choice of this metric was informed by the previous finding82 
that it more precisely measures differences between high-dimensional 
vectors with high average similarity, which is the case for regional 
transcription data. In this formulation, the ∥ ⋅ ∥ operator represents 
the length of the vector (the square root of the sum of squares of all 
elements). In the case of no gene filtration, all 15,633 genes are used 
for each region.

Cell-type-specific gene enrichment analysis. To perform enrich-
ment analysis of the genes most highly co-located with MIND degree, 
we first performed a PLS regression between the {15,633 × 34} matrix of 
AHBA gene expression and the {34 × 1} vector of MIND weighted node 
degree and then ranked each gene based on their position in the list 
of PLS1 loadings, with lower rank corresponding to genes with higher 
positive correlation with MIND degree. We then leveraged the extensive 
meta-analysis performed by Seidlitz et al.10 to assign 4,110 genes to one 
of seven major classes of cells in the central nervous system: excitatory 
neurons, inhibitory neurons, endothelial cells, astrocytes, microglia, 
oligodendrocytes and oligodendroglial precursor cells. To measure the 
cell type enrichment in the loadings of the first component of the PLS, we 
calculated the median rank of each set of cell-typical genes (as in refs. 10, 
11,83). Then, we used a permutation test to account for both the intrin-
sic correlation structure in the AHBA expression data as well as spatial 
autocorrelation in the cortical map of MIND degree, as detailed below.

Spin permutation tests
We adopted the widely used ‘spin’ test to measure for significance of 
association between two cortical maps while correcting for spatial 
autocorrelation84,85. This test uses the (x,y,z) coordinates of each parcel 
to generate permutations of parcellated data that maintains its spatial 
embedding. We used the implementation by the gen_spinsamples 
command from the netneurotools Python package with the parameter 
method set to hungarian, which ensures that each index is used only 
once per permutation and uses the Hungarian algorithm to minimize 
the global cost of reassignment. The same spatial permutations were 
applied to the left and right hemispheres to maintain bilateral sym-
metry. When testing for significance between network edges (that is,  
the relationship between MIND edge heritability and mean edge 
strength), we used the same permutation scheme and simply applied 
spatial permutations to both node sources and targets (that is, the 
rows and columns of a connectivity matrix), thus, in effect, rotating the 
entire network. All such statistical tests used were two-sided, such that 
the null hypothesis was that the variance explained (r2) between two 
cortical maps or edges was not greater than the r2 expected by chance, 
accounting for spatial autocorrelation. We used 1,000 permutations 
for all tests.

To test for the significance of cell-typical gene set enrichment in 
the loadings from the PLS component between gene expression and 
MIND degree, we generated 1,000 spin test permutations of the vec-
tor of MIND degrees while keeping the gene expression data intact. 
For each spatial permutation of MIND degree, we fit a new PLS model 
and ensured that lower loading rank corresponded with a positive 
correlation with the permuted brain map. For each new model, we 
calculated the median gene rank within each set of cell-type-specific 
genes. The two-sided null hypothesis of our permutation test was that 
the median gene rank of a cell-typical gene set was not significantly 
different from the median position of all genes (rank 7,816). We, thus, 
calculated the P value as the fraction of all permutations for which each 
set of cell-typical genes had a median rank farther away from rank 7,816 
than the true median rank. We false discovery rate (FDR) corrected the 
resulting seven P values. In this scheme, gene sets with median PLS rank 
significantly lower than the median position were positively associated 
with MIND degree.

Statistics and reproducibility
To ensure reproducibility of our results, we replicated our central 
findings from the ABCD (Fig. 2) in the HCP-YA dataset (Supplementary 
Fig. 8), replicated our age prediction results from the HCP-D dataset 
in the HCP-YA dataset (Fig. 4) and replicated the performance of age 
prediction using DTI connectomes in HCP-YA using data processed 
through two separate pipelines (Supplementary Fig. 9). No statistical 
method was used to predetermine sample size in our analyses, but our 
sample sizes are similar to those reported in previous publications19–21. 
Subject exclusion criteria are described in the dataset descriptions 
(Methods) and Supplementary Fig. 2. Data distributions in Figs. 4b,c 
and 6a,b and Supplementary Fig. 9 were assumed to be normal, but 
this was not formally tested.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The pre-processed macaque data29,30 can be accessed at https://balsa.
wustl.edu/reference/976nz. Tract-tracing connectomes based on the 
Markov parcellation can be accessed at https://core-nets.org. The 
multimodal connectome using the RM parcellation (as well as the RM 
atlas itself) can be accessed at https://zenodo.org/record/1471588#.
YqBt5S2ca_U. Data from the ABCD cohort require access to the NIMH 
Data Archive and can be applied for at https://nda.nih.gov/abcd. HCP-YA 
data can be accessed and downloaded at https://www.humanconnec-
tome.org. Individual DTI connectomes provided by Arnatkevičiūtė 
et al.24 for the HCP-YA dataset can be downloaded at https://zenodo.
org/record/4733297#.Y8wVoS-l368. HCP-YA connectomes used for rep-
lication, processed by Rosen et al.25, can be accessed at https://zenodo.
org/record/4060485#.Y858GS-l0Q0. HCP-D data can be accessed and 
downloaded by following the instructions at https://www.human-
connectome.org/study/hcp-lifespan-development/data-releases. 
Consensus HCP-YA DTI connectivity in DK parcellation can be down-
loaded directly from the ENIGMA toolbox at https://enigma-toolbox.
readthedocs.io/en/latest/. Expression data from the Allen Human Brain 
Atlas can be downloaded using the abagen package81 at https://abagen.
readthedocs.io/en/stable/.

Code availability
Python code for MIND calculation (using subjects processed through 
FreeSurfer) is publicly available at https://github.com/isebenius/
MIND and https://doi.org/10.5281/zenodo.7974716. The supplied 
code supports the use of standard surface-level features as well as 
custom features in surface format. The repository includes additional 
functionality to include volumetric features into MIND computation.
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Code used for downstream data analysis was performed using Python 
version 3.6 using publicly available packages, including sklearn 
(0.24.1), numpy (1.17.1), scipy (1.5.4) and pandas (0.25.1)69,86–88.
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Software and code
Policy information about availability of computer code

Data collection No software was used for data collection as no novel data were collected as part of this study.

Data analysis Python code for MIND calculation is available at https://github.com/isebenius/MIND and https://doi.org/10.5281/zenodo.7974716. 
FreeSurfer v5.3 was used to process T1w MRI images from the ABCD and HCP-YA datasets, v6.0 for the HCP-D dataset. The abagen v1.0.3 
python package was used for Allen Human Brain Atlas analysis. We used the umx package (version 2.10.0) using R (version 4.1.3) to 
implement the structural equation model of the ACE model for heritability analysis. GCTA software (v1.93) was used to conduct SNP-based 
heritability analysis. The NeuroCombat v0.2.12 python package was used to correct site effects in the neuroimaging data. Data analysis was 
conducted in Python v3.6 using corresponding standard python packages including sklearn (v0.24.1), numpy (v1.17.1), scipy (v1.5.4), and 
pandas (v0.25.1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The preprocessed macaque data can be accessed at https://balsa. wustl.edu/reference/976nz. Tract-tracing connectomes based on the Markov parcellation can be 
accessed through https://core-nets.org. The multimodal connectome using the RM parcellation (as well as the RM atlas itself) can be accessed at https://
zenodo.org/record/1471588#.YqBt5S2ca U. Data from the ABCD cohort requires access to the NIMH data archive (NDA) and can be applied for at https://
nda.nih.gov/abcd. Our work is registered as study #1796 on the NIMH data archive, DOI 10.15154/1528079. HCP-YA data can be accessed and downloaded at 
https://www.humanconnectome.org. Individual DTI connectomes provided by Arnatkevičiūtė et al. (2020) for the HCP-YA dataset can be downloaded at https://
zenodo.org/record/4733297# .Y8wVoS-l368. HCP-YA connectomes used for replication, processed by Rosen et al. (2021), can be accessed at https://zenodo.org/
record/4060485#.Y858GS-l0Q0. HCP-Development data can be accessed and downloaded by following the instructions at https://www.humanconnectome.org/
study/ hcp-lifespan-development/data-releases. Consensus HCP-YA DTI connectivity in DK parcellation can be downloaded directly from the ENIGMA toolbox at 
https://enigma-toolbox.readthedocs.io/en/latest/. Expression data from the Allen Human Brain Atlas can be downloaded using the abagen package at https://
abagen.readthedocs.io/en/stable/.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Data on biological sex for the ABCD cohort was determined by the demographic data received from the NIMH data archive. 
Data on biological sex for the HCP-YA and HCD-D cohorts was determined based on the demographic data provided by the 
publicly available metadata. Sex was not considered in any of the analyses concerning group-level networks, which we 
constructed using data from both male and female subjects. For the SNP-based heritability analysis, biological sex was 
included (alongside age*sex and age^2*sex) as a covariate. In the twin-based analyses, all dizygotic twins were sex-matched, 
hence sex was not further considered here. All macaque data were derived from female macaques. For the age prediction 
analyses, sex was not considered during the training phase, but was included as a covariate (binarized as 0/1) when 
evaluating model performance.

Population characteristics The participants in the ABCD cohort, at the baseline scan sessions we considered, were between 9-11 years of age (48% 
female). The data were collected to form a representative, diverse population sample to study longitudinal brain and 
cognitive development, and hence reflected a wide range of ethnicities. Diagnostic information about the population were 
not considered, although the ABCD cohort includes subjects with diverse neurodevelopmental profiles. Further details on 
ABCD population characteristics can be found in Garavan et al., 2018. 
 
We additionally used data from the HCP-Development (HCP-D) cohort (N=655,  aged 8-21, 49% male), and the HCP-Young 
Adult cohort (N=960, aged 21-35, 46% male). 

Recruitment No participants were recruited for this study – we only used publicly available data.

Ethics oversight This study used only publicly available data. Approval for use of  the ABCD data fell under an NDA agreement, reflected in 
study #1796 on the NDA website.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 11,449 subjects from the ABCD cohort were available with neuroimaging data, of which 10,367 were used as the primary cohort (for the 
analyses based on the DK-318 parcellation). 1,282 twin subjects (641 pairs) were used for the twin based analyses, and 4,085 (unrelated) 
subjects of primarily European ancestry were used for SNP-based heritability analyses. Of these two sub-cohorts, 432 subjects overlapped. We 
additionally used data from the HCP-Development (HCP-D) cohort (N=655,  aged 8-21, 49% male), and the HCP-Young Adult cohort (N=960, 
aged 21-35, 46% male). Sample sizes were not predetermined; we used all available samples that met the inclusion criteria. For our analyses, 
these sample sizes were sufficient as evidenced for example by a) the high correlation between group networks across ABCD (N>11,000) and 
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HCP-YA (N=960) cohorts and b) the replication of the age prediction results across HCP-YA (N=960) and HCP-D (N=655) cohorts. Moreover, 
the sample sizes used for twin heritability and SNP heritability analysis were comparable to the sample sizes used in recent studies using ABCD 
to study the heritability (Bethlehem et al., 2022) and genetics (Warrier et al., 2022) of  brain structure.

Data exclusions Data from the ABCD cohort were excluded based on two reasons: if they had poor quality scans (Euler index below -120), or if any regions in 
the DK-318 parcellation were not assigned any vertices in the cortical surface reconstruction. For the twin-based heritability analyses, triplets 
were excluded. For the SNP heritability analyses, subjects were excluded if they failed to meet the genetic quality control criteria: if their 
genotyping rate was less than 95%, if their genetic sex did not match their reported sex, or if they were determined not to be of primarily 
European genetic ancestry, measured using multidimensional scaling after including subjects from the 1000 Genomes phase 3 data. For the 
HCP-YA and HCP-Development cohorts, subjects were excluded if they did not have corresponding DTI connectivity data as published by 
Arnatkevičiūtė et al (2020) or Rosen et al (2021).

Replication Generalization of the main findings was tested based on extensive sensitivity analyses. The main finding regarding the Allen Human Brain Atlas 
was replicated using each of the six individual donor brains separately, rather than aggregating across all donors. Cross-cohort replication of 
the major findings from the ABCD cohort was achieved in the HCP-YA cohort. 

Randomization No data were collected in this study and no experimental groups were constructed in this study. 

Blinding There were no group comparisons in our study, nor was it an interventional study – hence no blinding was necessary. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Publicly available structural data (T1w for ABCD, HCP-YA, and HCP-Development, T1w/T2w for macaque data, and 
preprocessed DTI connectomes for HCP-YA data) alone were used, hence no design type was applicable.

Design specifications Only structural images were used, so no design specifications were needed.

Behavioral performance measures No performance measures were taken.

Acquisition

Imaging type(s) Structural (T1w for ABCD, HCP-YA and HCP-D datasets, and T1w/T2w for macaque data) and preprocessed diffusion 
(HCP-YA)

Field strength 3T

Sequence & imaging parameters Human data: T1-weighted images were 1 mm isotropic, EPI, RF-spoiled gradient echo using prospective motion 
correction if available, and from one of three (3T) scanner models: Siemens (Prisma VE11B-C), Philips (Achieva dStream, 
Ingenia), or GE (MR750, DV25-26). Matrix size 256x256, flip angle 8° for all scanners. Field of view (FOV) 256x256 for 
Siemens and GE scanners, 256x240 for Philips scanner. 
 
Macaque data: The animals were anesthetized and scanned on a Siemens Skyra 3T MRI with a 4-channel clamshell coil 
with 0.3 isotropic resolution (T1 images: TR = 2500ms, T2 images: TR=3000ms). Flip angle: 7°. Other relevant scanning 
sequence data were not reported in the public release of the data we used. 
 
HCP-Development: The data used in this work were part of Release 1.0, containing cross-sectional images 
(preprocessed using FreeSurfer version 6.0) from 655 subjects aged 8-21 (49% male). All 3T images were acquired on a 
Siemens Prisma scanner 80 mT/m gradient coil, multi-echo, and with 0.8 mm isotropic resolution. Full imaging 
acquisition parameters are described in detail in Harms et al. [38] and Somerville et al. [70].  
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HCP-Young Adult: We used data from the HCP-1200 release of the HCP-Young Adult (HCP-YA) cohort. This release 
provides cross sectional 3T images (preprocessed using FreeSurfer version 5.3.0-HCP as described in Glasser et al. [33]) 
from 1113 young adults ages 21-35. Images were 0.7mm isotropic, FOV 224x224 mm, TI=1000ms, TR=2400 ms, flip 
angle 8 degrees. 

Area of acquisition Whole brain

Diffusion MRI Used Not used

Parameters Connectivity based on diffusion tractography were published by Arnatkevičiūtė et al. (2020). Diffusion images were Spin echo EPI, 
TR=5520 ms, TE=89.5 ms, flip angle 78 degrees, FOV 210x180, b-values 1000, 2000, and 3000 s/mm2. Detailed preprocessing steps 
are provided in the original publication; in summary, processing of DWI images were performed by Arnatkevičiūtė et al. (2020) using 
MRtrix3 [73], FSL with FMRIB Software Library [44], iFOD2 [72], and Anatomical Constrained Tractography (ACT). Connectivity 
strengths were based on the mean fractional anisotropy within the voxels of streamlines between cortical areas. 

Preprocessing

Preprocessing software FreeSurfer v5.3 was used to preprocess images from HCP-YA and ABCD cohorts, and v6.0 for the HCP-D cohort. The recon-all 
command was applied to the raw T1w nifti files with default parameters. All diffusion data was published as derived 
connectivity matrices; we performed no preprocessing on this data.

Normalization Normalization steps were defined by the default recon-all pipeline from FreeSurfer v5.3. These included linear and non-linear 
registration to the fsaverage template and intensity normalization.

Normalization template The fsaverage (MNI305) template was used.

Noise and artifact removal Euler index was used as a measure of image quality, but was not regressed from data. Rather, data below a threshold of -120 
were excluded. 

Volume censoring Volume censoring was not applied to structural data.

Statistical modeling & inference

Model type and settings The only modelling and statistical tests were post-hoc analyses of derived MIND networks - voxel or cluster based analyses 
were not considered. Linear models did not apply.

Effect(s) tested No effects were tested in the experimental design - only structural data were considered.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Locations were based on three predefined parcellations – the Desikan Killiany (DK), DK-318, and HCP 
parcellations described in the main text.

Statistic type for inference
(See Eklund et al. 2016)

No voxel-wise or cluster-wise analyses were performed.

Correction FDR correction and Bonferroni correction were used to correct for the main analytical results, but no correction related to 
voxel-wise or cluster-wise brain activation applies to this study. 

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Graph analysis The connectivity measures used were network edge weights derived from MIND networks, MSNs, or DTI-
derived connectivity networks (each entry in the region-by-region structural similarity matrices), or the 
weighted nodal degreed calculated as the sum (or equivalently, the average) of all edges connected to each 
regional node. 

Multivariate modeling and predictive analysis Any modeling was multivariate insofar as multiple structural features were included into the construction of 
MIND network and MSN phenotypes. To construct MIND networks and MSNs, we used vertex-level and 
regional estimates of grey matter volume, surface area, sulcal depth, mean curvature, and cortical thickness. 
To relate regional gene expression patterns to the distribution of MIND network degrees, we cross-
decomposed the {1x34] matrix of MIND network degrees with the {34x15,633} matrix of regional gene 
expression signatures from the Allen Human Brain Atlas using partial least squares regression. 
 
We trained machine learning models to predict the age of participants in either the HCP-D and HCP-YA 
cohorts using node degree or edge weights of MSNs, MIND networks, and DTI connectivity matrices. To align 
with the majority of the other analyses in the paper, the DK-318 parcellation was used for the HCP-D cohort, 
where DTI was not available. For the HCP-YA cohort, we used the HCP 360-region parcellation to match the 
parcellation scheme provided by Arnatkevičiūtė et al. (2020) and Rosen et al. (2021). All models were trained 
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on 10 train/test splits (90% train data, 10% test data) with nonoverlapping test sets. Models were 
implemented in Python 3.6 using sklearn. Models trained on node degree used 5-fold cross validation for 
each training set over a set of non-linear and linear models: specifically, a support vector machine with an 
RBF kernel (sklearn specification: SVR(kernel = ‘rbf’)) and C regularization values of 0.1, 1.0, 10, or 100, and a 
linear Gaussian process (GP) regression model with a summed linear and noise kernel (sklearn specification: 
GaussianProcessRegressor(kernel=DotProduct() + WhiteKernel(noise level bounds=(1e-10, np.inf)). The 
linear GP is equivalent to a Bayesian linear regression, with the noise kernel modelling the presence of i.i.d 
noise. All training sets were standardized using sklearn’s StandardScaler() function; test sets were accordingly 
transformed using the normalization function estimated on the training set. For models trained on all 
individual edges, due to the very large number of features (> 50,000 features) we used the GP regression 
model alone, as in Morgan et al. (2021). 
 
To ensure that model predictions were not biased by the presence of confounds related to subject age, to 
evaluate model performance we used the partial Spearman correlation of predicted versus true age, 
controlling for the effect of sex, Euler number (a measure of scan quality which is known to have a strong 
relationship with age), and a global matrix coefficient (defined as the sum over the entire connectivity 
matrix). This post-hoc confound adjustment ensures proper correction for the potential effect of confounds 
by avoiding the statistical issues that arise when regressing confounds from feature space before model 
training (Dinga et al. 2020). 
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