Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale encoding of emotion concepts becomes increasingly similar between individuals from childhood to adolescence

An Author Correction to this article was published on 27 July 2023

This article has been updated

Abstract

Humans require a shared conceptualization of others’ emotions for adaptive social functioning. A concept is a mental blueprint that gives our brains parameters for predicting what will happen next. Emotion concepts undergo refinement with development, but it is not known whether their neural representations change in parallel. Here, in a sample of 5–15-year-old children (n = 823), we show that the brain represents different emotion concepts distinctly throughout the cortex, cerebellum and caudate. Patterns of activation to each emotion changed little across development. Using a model-free approach, we show that activation patterns were more similar between older children than between younger children. Moreover, scenes that required inferring negative emotional states elicited higher default mode network activation similarity in older children than younger children. These results suggest that representations of emotion concepts are relatively stable by mid to late childhood and synchronize between individuals during adolescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mean activation (model coefficients or betas) to each emotion category across both videos.
Fig. 2: Activation classification analysis results.
Fig. 3: Similarity analysis results.
Fig. 4: Group-level dynamic synchrony results for Despicable Me.
Fig. 5: Dynamic synchrony analysis results in the oldest children for Despicable Me.
Fig. 6: Qualitative examination of the scenes eliciting higher synchrony in the oldest children for each video.

Similar content being viewed by others

Data availability

MRI data: The first nine releases of the Healthy Brain Network Biobank, an open dataset, were used in these analyses. These data are available at http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/sharing_neuro.html.

Video codes: The codes for the videos obtained using the EmoCodes system are available at https://emocodes.org/datasets/.

Code availability

Pre-processing was carried out using the Human Connectome Project minimal processing pipeline (available at https://github.com/Washington-University/HCPpipelines). Additional processing, analyses and plotting were carried out using custom scripts written in Python 3.7.2 (available at https://github.com/catcamacho/hbn_analysis) using the numpy version 1.21.6, scipy version 1.7.3, nibabel version 3.2.1 and pandas version 1.1.2 libraries. Analyses were carried out using the pliers version 0.4.1, statsmodels version 0.13.2 and scikit-learn version 0.24.2 libraries. Plotting was carried out using the seaborn version 0.11.1 and matplotlib version 3.4.2 libraries.

Change history

References

  1. Alba, J. W. & Hasher, L. Is memory schematic? Psychol. Bull. 93, 203–231 (1983).

    Google Scholar 

  2. Masís-Obando, R., Norman, K. A. & Baldassano, C. Schema representations in distinct brain networks support narrative memory during encoding and retrieval. eLife 11, e70445 (2022).

    PubMed  PubMed Central  Google Scholar 

  3. van Kesteren, M. T. R., Ruiter, D. J., Fernández, G. & Henson, R. N. How schema and novelty augment memory formation. Trends Neurosci. 35, 211–219 (2012).

    PubMed  Google Scholar 

  4. Darley, J. M. & Fazio, R. H. Expectancy confirmation processes arising in the social interaction sequence. Am. Psychol. 35, 867–881 (1980).

    Google Scholar 

  5. Ruba, A. L. & Pollak, S. D. The development of emotion reasoning in infancy and early childhood. Annu. Rev. Dev. Psychol. 2, 503–531 (2020).

    Google Scholar 

  6. Mills, K. L. et al. Structural brain development between childhood and adulthood: convergence across four longitudinal samples. Neuroimage 141, 273–281 (2016).

    PubMed  Google Scholar 

  7. Giedd, J. N. & Rapoport, J. L. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67, 728–734 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Grayson, D. S. & Fair, D. A. Development of large-scale functional networks from birth to adulthood: a guide to the neuroimaging literature. Neuroimage 160, 15–31 (2017).

    PubMed  Google Scholar 

  9. Malsert, J., Palama, A. & Gentaz, E. Emotional facial perception development in 7, 9 and 11 year-old children: the emergence of a silent eye-tracked emotional other-race effect. PLoS ONE 15, e0233008 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Batty, M. & Taylor, M. J. The development of emotional face processing during childhood. Dev. Sci. 9, 207–220 (2006).

    PubMed  Google Scholar 

  11. Lemerise, E. A. & Arsenio, W. F. An integrated model of emotion processes and cognition in social information processing. Child Dev. 71, 107–118 (2000).

    CAS  PubMed  Google Scholar 

  12. Crick, N. R. & Dodge, K. A. A review and reformulation of social information-processing mechanisms in children’s social adjustment. Psychol. Bull. 115, 74–101 (1994).

    Google Scholar 

  13. Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

    Google Scholar 

  14. Dehaene-Lambertz, G., Hertz-Pannier, L. & Dubois, J. Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends Neurosci. 29, 367–373 (2006).

    CAS  PubMed  Google Scholar 

  15. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 215–229 (2002).

    Google Scholar 

  16. Sadaghiani, S. & D’Esposito, M. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cereb. Cortex 25, 2763–2773 (2015).

    PubMed  Google Scholar 

  17. Barrett, L. F. & Satpute, A. B. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 23, 361–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    CAS  PubMed  Google Scholar 

  19. Satpute, A. B. & Lindquist, K. A. The default mode network’s role in discrete emotion. Trends Cogn. Sci. 23, 851–864 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Marek, S. & Dosenbach, N. U. F. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin. Neurosci. 20, 133–140 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Lindquist, K. A. & Barrett, L. F. A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn. Sci. 16, 533–540 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Park, A. T. et al. Early stressful experiences are associated with reduced neural responses to naturalistic emotional and social content in children. Dev. Cogn. Neurosci. 57, 101152 (2022).

    PubMed  PubMed Central  Google Scholar 

  24. Gruskin, D. C., Rosenberg, M. D. & Holmes, A. J. Relationships between depressive symptoms and brain responses during emotional movie viewing emerge in adolescence. Neuroimage 216, 116217 (2020).

    PubMed  Google Scholar 

  25. Camacho, M. C., Karim, H. T. & Perlman, S. B. Neural architecture supporting active emotion processing in children: a multivariate approach. Neuroimage 188, 171–180 (2019).

    PubMed  Google Scholar 

  26. Widen, S. C. Children’s interpretation of facial expressions: the long path from valence-based to specific discrete categories. Emot. Rev. 5, 72–77 (2013).

    Google Scholar 

  27. Nook, E. C., Sasse, S. F., Lambert, H. K., McLaughlin, K. A. & Somerville, L. H. The nonlinear development of emotion differentiation: granular emotional experience is low in adolescence. Psychol. Sci. 29, 1346–1357 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Nook, E. C. et al. Charting the development of emotion comprehension and abstraction from childhood to adulthood using observer-rated and linguistic measures. Emotion 20, 773–792 (2020).

    PubMed  Google Scholar 

  29. Motta-Mena, N. V. & Scherf, K. S. Pubertal development shapes perception of complex facial expressions. Dev. Sci. 20, e12451 (2017).

    Google Scholar 

  30. Thomas, K. M. et al. Amygdala response to facial expressions in children and adults. Biol. Psychiatry 49, 309–316 (2001).

    CAS  PubMed  Google Scholar 

  31. Wiggins, J. L. et al. Developmental differences in the neural mechanisms of facial emotion labeling. Soc. Cogn. Affect. Neurosci. 11, 172–181 (2016).

    PubMed  Google Scholar 

  32. Marusak, H. A., Carré, J. M. & Thomason, M. E. The stimuli drive the response: an fMRI study of youth processing adult or child emotional face stimuli. Neuroimage 83, 679–689 (2013).

    PubMed  Google Scholar 

  33. Ladouceur, C. D., Schlund, M. W. & Segreti, A.-M. Positive reinforcement modulates fronto-limbic systems subserving emotional interference in adolescents. Behav. Brain Res. 338, 109–117 (2018).

    PubMed  Google Scholar 

  34. Hoehl, S., Brauer, J., Brasse, G., Striano, T. & Friederici, A. D. Children’s processing of emotions expressed by peers and adults: an fMRI study. Soc. Neurosci. 5, 543–559 (2010).

    PubMed  Google Scholar 

  35. Haller, S. P. et al. Reliability of neural activation and connectivity during implicit face emotion processing in youth. Dev. Cogn. Neurosci. 31, 67–73 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Lobaugh, N. J., Gibson, E. & Taylor, M. J. Children recruit distinct neural systems for implicit emotional face processing. Neuroreport 17, 215–219 (2006).

    PubMed  Google Scholar 

  37. Guyer, A. E. et al. A developmental examination of amygdala response to facial expressions. J. Cogn. Neurosci. 20, 1565–1582 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Pagliaccio, D. et al. Functional brain activation to emotional and nonemotional faces in healthy children: evidence for developmentally undifferentiated amygdala function during the school-age period. Cogn. Affect. Behav. Neurosci. 13, 771–789 (2013).

    PubMed  Google Scholar 

  39. Hare, T. A. et al. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol. Psychiatry 63, 927–934 (2008).

    PubMed  PubMed Central  Google Scholar 

  40. Somerville, L. H., Fani, N. & McClure-Tone, E. B. Behavioral and neural representation of emotional facial expressions across the lifespan. Dev. Neuropsychol. 36, 408–428 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. Widen, S. C. & Russell, J. A. Children acquire emotion categories gradually. Cogn. Dev. 23, 291–312 (2008).

    Google Scholar 

  42. Widen, S. C. & Russell, J. A. Children’s scripts for social emotions: causes and consequences are more central than are facial expressions. Br. J. Dev. Psychol. 28, 565–581 (2010).

    PubMed  Google Scholar 

  43. Wu, Y., Schulz, L. E., Frank, M. C. & Gweon, H. Emotion as information in early social learning. Curr. Dir. Psychol. Sci. 30, 468–475 (2021).

    Google Scholar 

  44. Cantlon, J. F. The balance of rigor and reality in developmental neuroscience. Neuroimage 216, 116464 (2020).

    PubMed  Google Scholar 

  45. Vanderwal, T., Eilbott, J. & Castellanos, F. X. Movies in the magnet: naturalistic paradigms in developmental functional neuroimaging. Dev. Cogn. Neurosci. 36, 100600 (2019).

    PubMed  Google Scholar 

  46. Eickhoff, S. B., Milham, M. & Vanderwal, T. Towards clinical applications of movie fMRI. Neuroimage 217, 116860 (2020).

    PubMed  Google Scholar 

  47. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    PubMed  Google Scholar 

  48. Camacho, M. C. et al. EmoCodes: a standardized coding system for socio-emotional content in complex video stimuli. Affect. Sci. 3, 168–181 (2022).

    PubMed  PubMed Central  Google Scholar 

  49. Sander, D., Grandjean, D. & Scherer, K. R. An appraisal-driven componential approach to the emotional brain. Emot. Rev. 10, 219–231 (2018).

    Google Scholar 

  50. Pessoa, L. Understanding emotion with brain networks. Curr. Opin. Behav. Sci. 19, 19–25 (2018).

    PubMed  Google Scholar 

  51. Lindquist, K. A. & MacCormack, J. K. Comment: Constructionism is a multilevel framework for affective science. Emot. Rev. 6, 134–135 (2014).

    Google Scholar 

  52. Skerry, A. E. & Saxe, R. Neural representations of emotion are organized around abstract event features. Curr. Biol. 25, 1945–1954 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tracy, J. L. & Randles, D. Four models of basic emotions: a review of Ekman and Cordaro, Izard, Levenson, and Panksepp and Watt. Emot. Rev. 3, 397–405 (2011).

    Google Scholar 

  54. Panksepp, J. & Watt, D. What is basic about basic emotions? Lasting lessons from affective neuroscience. Emot. Rev. 3, 387–396 (2011).

    Google Scholar 

  55. Ogren, M. & Johnson, S. P. Factors facilitating early emotion understanding development: contributions to individual differences. Hum. Dev. 64, 108–118 (2020).

    PubMed  Google Scholar 

  56. Ogren, M. & Sandhofer, C. M. Emotion words link faces to emotional scenarios in early childhood. Emotion 22, 167–178 (2022).

    PubMed  PubMed Central  Google Scholar 

  57. Camras, L. A. & Allison, K. Children’s understanding of emotional facial expressions and verbal labels. J. Nonverbal Behav. 9, 84–94 (1985).

    Google Scholar 

  58. Lawrence, K., Campbell, R. & Skuse, D. Age, gender, and puberty influence the development of facial emotion recognition. Front. Psychol. 6, 761 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Keulers, E. H. H., Evers, E. A. T., Stiers, P. & Jolles, J. Age, sex, and pubertal phase influence mentalizing about emotions and actions in adolescents. Dev. Neuropsychol. 35, 555–569 (2010).

    PubMed  Google Scholar 

  60. Dai, J. & Scherf, K. S. Puberty and functional brain development in humans: convergence in findings? Dev. Cogn. Neurosci. 39, 100690 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Hoemann, K., Xu, F. & Barrett, L. F. Emotion words, emotion concepts, and emotional development in children: a constructionist hypothesis. Dev. Psychol. 55, 1830–1849 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Richardson, H., Lisandrelli, G., Riobueno-Naylor, A. & Saxe, R. Development of the social brain from age three to twelve years. Nat. Commun. 9, 1027 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Fan, F. et al. Development of the default-mode network during childhood and adolescence: a longitudinal resting-state fMRI study. Neuroimage 226, 117581 (2021).

    PubMed  Google Scholar 

  64. Gordon, E. M. et al. Three distinct sets of connector hubs integrate human brain function. Cell Rep. 24, 1687–1695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brandman, T., Malach, R. & Simony, E. The surprising role of the default mode network in naturalistic perception. Commun. Biol. 4, 79 (2021).

    PubMed  PubMed Central  Google Scholar 

  66. da Silva, P. H. R., Rondinoni, C. & Leoni, R. F. Non-classical behavior of the default mode network regions during an information processing task. Brain Struct. Funct. 225, 2553–2562 (2020).

    PubMed  Google Scholar 

  67. Gordon, E. M. et al. Default-mode network streams for coupling to language and control systems. Proc. Natl Acad. Sci. USA 117, 17308–17319 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder. JAMA Psychiatry 72, 603 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Vargas, C., López-Jaramillo, C. & Vieta, E. A systematic literature review of resting state network—functional MRI in bipolar disorder. J. Affect. Disord. 150, 727–735 (2013).

    PubMed  Google Scholar 

  70. Broyd, S. J. et al. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–296 (2009).

    PubMed  Google Scholar 

  71. Williams, L. M. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress. Anxiety 34, 9–24 (2017).

    PubMed  Google Scholar 

  72. Lettieri, G. et al. Emotionotopy in the human right temporo-parietal cortex. Nat. Commun. 10, 5568 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lettieri, G. et al. Default and control network connectivity dynamics track the stream of affect at multiple timescales. Soc. Cogn. Affect. Neurosci. 17, 461–469 (2022).

    PubMed  Google Scholar 

  74. Kragel, P. A. & LaBar, K. S. Multivariate neural biomarkers of emotional states are categorically distinct. Soc. Cogn. Affect. Neurosci. 10, 1437–1448 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Kragel, P. A., Knodt, A. R., Hariri, A. R. & Labar, K. S. Decoding spontaneous emotional states in the human brain. PLoS Biol. 14, e2000106 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Kragel, P. A. & Labar, K. S. Decoding the nature of emotion in the brain. Trends Cogn. Sci. 20, 444–455 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Chang, L. J. et al. Endogenous variation in ventromedial prefrontal cortex state dynamics during naturalistic viewing reflects affective experience. Sci. Adv. 7, eabf7129 (2021).

  78. Alexander, L. M. et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 4, 170181 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Nook, E. C., Sasse, S. F., Lambert, H. K., McLaughlin, K. A. & Somerville, L. H. The nonlinear development of emotion differentiation: granular emotional experience is low in adolescence. Psychol. Sci. 29, 1346–1357 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Nook, E. C. et al. Charting the development of emotion comprehension and abstraction from childhood to adulthood using observer-rated and linguistic measures. Emotion 20, 773–792 (2020).

    PubMed  Google Scholar 

  81. Motta-Mena, N. V. & Scherf, K. S. Pubertal development shapes perception of complex facial expressions. Dev. Sci. 20, e12451 (2017).

    Google Scholar 

  82. Thomas, L. A., De Bellis, M. D., Graham, R. & LaBar, K. S. Development of emotional facial recognition in late childhood and adolescence. Dev. Sci. 10, 547–558 (2007).

    PubMed  Google Scholar 

  83. Durand, K., Gallay, M., Seigneuric, A., Robichon, F. & Baudouin, J.-Y. The development of facial emotion recognition: the role of configural information. J. Exp. Child Psychol. 97, 14–27 (2007).

    PubMed  Google Scholar 

  84. Wu, M. et al. Age-related changes in amygdala-frontal connectivity during emotional face processing from childhood into young adulthood. Hum. Brain Mapp. 37, 1684–1695 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016).

    PubMed  Google Scholar 

  88. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    PubMed  Google Scholar 

  89. Robinson, E. C. et al. Multimodal surface matching with higher-order smoothness constraints. Neuroimage 167, 453–465 (2018).

    PubMed  Google Scholar 

  90. Siegel, J. S. et al. Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points. Hum. Brain Mapp. 35, 1981–1996 (2014).

    PubMed  Google Scholar 

  91. Siegel, J. S. et al. Data quality influences observed links between functional connectivity and behavior. Cereb. Cortex 27, 4492–4502 (2017).

    PubMed  Google Scholar 

  92. Greene, D. J. et al. Behavioral interventions for reducing head motion during MRI scans in children. Neuroimage 171, 234–245 (2018).

    PubMed  Google Scholar 

  93. Vanderwal, T., Kelly, C., Eilbott, J., Mayes, L. C. & Castellanos, F. X. Inscapes: a movie paradigm to improve compliance in functional magnetic resonance imaging. Neuroimage 122, 222–232 (2015).

    PubMed  Google Scholar 

  94. Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    PubMed  Google Scholar 

  95. Seitzman, B. A. et al. A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. Neuroimage 206, 116290 (2020).

    PubMed  Google Scholar 

  96. Camacho, M. C. et al. EmoCodes: a standardized coding system for socio-emotional content in complex video stimuli. Affect. Sci. 3, 168–181 (2022).

    PubMed  PubMed Central  Google Scholar 

  97. McNamara, Q., De La Vega, A. & Yarkoni, T. Developing a comprehensive framework for multimodal feature extraction. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds Matwin, S. et al.) 1567–1574 (Association for Computing Machinery, 2017).

  98. Nastase, S. A., Gazzola, V., Hasson, U. & Keysers, C. Measuring shared responses across subjects using intersubject correlation. Soc. Cogn. Affect. Neurosci. 14, 669–687 (2019).

    Google Scholar 

  99. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of cortical activity during natural vision. Science 303, 1634–1640 (2004).

    CAS  PubMed  Google Scholar 

  100. Aviyente, S., Bernat, E. M., Evans, W. S. & Sponheim, S. R. A phase synchrony measure for quantifying dynamic functional integration in the brain. Hum. Brain Mapp. 32, 80–93 (2011).

    PubMed  Google Scholar 

  101. Glerean, E., Salmi, J., Lahnakoski, J. M., Jääskeläinen, I. P. & Sams, M. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect. 2, 91–101 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Petersen, A. C., Crockett, L., Richards, M. & Boxer, A. A self-report measure of pubertal status: reliability, validity, and initial norms. J. Youth Adolesc. 17, 117–133 (1988).

    CAS  PubMed  Google Scholar 

  103. Finn, E. S. et al. Idiosynchrony: from shared responses to individual differences during naturalistic neuroimaging. Neuroimage 215, 116828 (2020).

    PubMed  Google Scholar 

  104. Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS  PubMed  Google Scholar 

  105. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank A. Witherspoon for assistance with video coding, the families who participated in the Healthy Brain Network study and the Child Mind Institute for sharing the data publicly. This work was funded by the National Science Foundation (DGE-1745038 to M.C.C.) and the National Institutes of Health (HD102156 to M.C.C. and MH109589 to D.M.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.C.C.: conceptualization, methodology, software, validation, formal analysis, data curation, writing—original draft, writing—review and editing, visualization and project administration. A.N.N.: conceptualization, methodology, supervision and writing—review and editing. D.B.: conceptualization, investigation and writing—review and editing. E.F.: conceptualization, writing—original draft and writing—review and editing. D.C.S.: conceptualization, investigation and writing—review and editing. L.F.: conceptualization, investigation and writing—review and editing. J.P.C.: conceptualization, supervision and writing—review and editing. C.M.S.: conceptualization, supervision and writing—review and editing. D.M.B.: conceptualization, methodology, resources, supervision, writing—review and editing and funding acquisition.

Corresponding author

Correspondence to M. Catalina Camacho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Erik Nook, Heini Saarimäki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Emotion-specific activation differences maps.

(a) Difference maps for general emotions (column minus row). Mean activation maps are shown on the diagonal. (b) Difference maps for specific emotions (column minus row). Mean activation maps are shown on the diagonal.

Extended Data Fig. 2 Parcel-wise Pearson Correlations between chronological age and activation to each emotion.

Age explained at most 3.8% of the variance in parcel-level activation (Age-Activation r2 range: Negative 0-0.017, Positive 0-0.030, Anger 0-0.020, Happy 0-0.026, Sad 0-0.023, Excited 0-0.028, Fearful 0-0.023; Puberty-Activation r2 range: Negative 0-0.029, Positive 0-0.030, Anger 0-0.024, Happy 0-0.038, Sad 0-0.014, Excited 0-0.030, Fearful 0-0.021).

Extended Data Fig. 3 Significant parcels and similarity coefficients for each model of maturation after FDR correction.

(a) Average inter-subject correlations for each parcel for each movie. Significant parcels (one-sided Pearson’s r; permutation based and FDR-corrected p < 0.05) are outlined in black. (b) Significant parcels and their coefficient magnitudes for the Convergence similarity model of maturation. (c) Significant parcels for the Nearest Neighbor and (d) Divergence models of maturation across chronological age and puberty.

Extended Data Fig. 4 Full sample dynamic analysis results for The Present.

(a) Dynamic synchrony across the full sample with replicating peaks in synchrony shaded purple. Peaks at least 5 seconds wide and with a prominence higher than the 95th percentile value for that network (permutation-based p < 0.001). Parcels were limited to those that were significantly correlated across the sample at the group level after FDR correction. (b) Video feature means within the peaks were compared to features outside of the peaks using a two-sided t-test to test if specific video features elicited increased synchronization. Plotted features were those that were significantly different (FDR-corrected p < 0.05). Bars are plotted at the mean with dots indicating each measure used in computing the mean. (C) Violin plots of mean synchrony values by network. White dots indicate median value, the box the 50% interquartile range, and the whiskers each the upper and lower 25%. The dashed horizontal line indicates the value at permuted p < 0.05 after FDR correction.

Extended Data Fig. 5 Dynamic Synchrony analysis results in the oldest children for The Present.

(a) Network dynamic activation similarity (synchrony) for each the oldest and youngest children in the sample. Included parcels are shown to the left of each trace. Shaded areas denote significant increases in synchrony (1.5 standard deviations above the mean) in the oldest children. (b) Bar plots of the mean value show the results from the video feature analysis comparing portions of the video within peaks of inter-subject synchrony to outside the peaks. Dots overlaid on the bar plots indicate each measure used in computing the mean Only features that significantly differed after FDR-correction are plotted.

Extended Data Fig. 6 Network-wise dynamic similarity plots for 3 age groups: oldest, middle, and youngest, for each movie. Included parcels are shown to the left of each trace.

Shaded areas denote significant increases in synchrony (1.5 standard deviations above the mean) in the oldest children.

Supplementary information

Supplementary Information

Supplementary Methods and Analyses (Appendix A and Appendix B) and Figures and Tables (Appendix C).

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho, M.C., Nielsen, A.N., Balser, D. et al. Large-scale encoding of emotion concepts becomes increasingly similar between individuals from childhood to adolescence. Nat Neurosci 26, 1256–1266 (2023). https://doi.org/10.1038/s41593-023-01358-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01358-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing