Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

First-in-human prediction of chronic pain state using intracranial neural biomarkers

Abstract

Chronic pain syndromes are often refractory to treatment and cause substantial suffering and disability. Pain severity is often measured through subjective report, while objective biomarkers that may guide diagnosis and treatment are lacking. Also, which brain activity underlies chronic pain on clinically relevant timescales, or how this relates to acute pain, remains unclear. Here four individuals with refractory neuropathic pain were implanted with chronic intracranial electrodes in the anterior cingulate cortex and orbitofrontal cortex (OFC). Participants reported pain metrics coincident with ambulatory, direct neural recordings obtained multiple times daily over months. We successfully predicted intraindividual chronic pain severity scores from neural activity with high sensitivity using machine learning methods. Chronic pain decoding relied on sustained power changes from the OFC, which tended to differ from transient patterns of activity associated with acute, evoked pain states during a task. Thus, intracranial OFC signals can be used to predict spontaneous, chronic pain state in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-term ambulatory tracking of chronic pain metrics.
Fig. 2: Ambulatory neural recordings from ACC and OFC predict chronic pain state.
Fig. 3: Acute pain-state prediction with ACC and OFC neural recordings is unreliable.
Fig. 4: Decoding of chronic and acute pain states are differentially supported by ACC and OFC features across participants.
Fig. 5: Temporal dynamics of power features distinguish chronic from acute pain states.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study will be available in the NIH Brain Initiative data sharing platform within 1 month of publication at https://dabi.loni.usc.edu/. Datasets will include raw neurophysiology data including metadata.

Code availability

MATLAB and Python analytical software code used to generate the main results and figures is available on the NIH Brain Initiative platform above and at GitHub: https://github.com/shirvalkarlab/ChronicPain2023_NatNeuro.git/.

References

  1. Wide-Ranging Online Data for Epidemiologic Research (WONDER) (Centers for Disease Control and Prevention, 2016); https://wonder.cdc.gov/

  2. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource (FDA, 2016).

  3. Davis, K. D. et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat. Rev. Neurol. 16, 381–400 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coghill, R. C., McHaffie, J. G. & Yen, Y.-F. Neural correlates of interindividual differences in the subjective experience of pain. Proc. Natl Acad. Sci. USA 100, 8538–8542 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R. & Dostrovsky, J. O. Pain-related neurons in the human cingulate cortex. Nat. Neurosci. 2, 403–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ploner, M., Sorg, C. & Gross, J. Brain rhythms of pain. Trends Cogn. Sci. 21, 100–110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baliki, M. N. et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 26, 12165–12173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baliki, M. N. et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15, 1117–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corder, G. et al. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363, 276–281 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Tan, L. L. et al. A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nat. Neurosci. 20, 1591–1601 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J.-J. et al. A neuroimaging biomarker for sustained experimental and clinical pain. Nat. Med. 27, 174–182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, M. et al. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J. Neurosci. 35, 5247–5259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Boccard, S. G. J. et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain. World Neurosurg. 106, 625–637 (2017).

    Article  PubMed  Google Scholar 

  16. Kringelbach, M. L. & Rolls, E. T. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72, 341–372 (2004).

    Article  PubMed  Google Scholar 

  17. Kucyi, A. & Davis, K. D. The dynamic pain connectome. Trends Neurosci. 38, 86–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Kringelbach, M. L. The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6, 691–702 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Damasio, A. R. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Phils. Trans. R. Soc. B 351, 1413–1420 (1996).

    Article  CAS  Google Scholar 

  20. Becker, S., Gandhi, W., Pomares, F., Wager, T. D. & Schweinhardt, P. Orbitofrontal cortex mediates pain inhibition by monetary reward. Soc. Cogn. Affect Neurosci. 12, 651–661 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19, 973–980 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rao, V. R. et al. Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr. Biol. 28, 3893–3902.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Kohoutová, L. et al. Individual variability in brain representations of pain. Nat. Neurosci. 25, 749–759 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Čeko, M., Kragel, P. A., Woo, C.-W., López-Solà, M. & Wager, T. D. Common and stimulus-type-specific brain representations of negative affect. Nat. Neurosci. 25, 760–770 (2022).

    Article  PubMed  Google Scholar 

  25. Petrovic, P., Kalso, E., Petersson, K. M. & Ingvar, M. Placebo and opioid analgesia–imaging a shared neuronal network. Science 295, 1737–1740 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Swann, N. C. et al. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson’s disease. J. Neurosurg. 128, 605–616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Giordano, J. J. et al. Proceedings of the fourth annual deep brain stimulation think tank: a review of emerging issues and technologies. Front Integr. Neurosci. 10, 38 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Strand, L. I., Ljunggren, A. E., Bogen, B., Ask, T. & Johnsen, T. B. The short-form McGill pain questionnaire as an outcome measure: test–retest reliability and responsiveness to change. Eur. J. Pain. 12, 917–925 (2008).

    Article  PubMed  Google Scholar 

  29. Hawker, G. A., Mian, S., Kendzerska, T. & French, M. Measures of adult pain: visual analog scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short form-36 bodily pain scale (SF-36 BPS), and measure of intermittent and constant osteoarthritis pain (ICOAP). Arthritis Care Res. 63, S240–S252 (2011).

    Article  Google Scholar 

  30. Salgado, J. F. Transforming the area under the normal curve (AUC) into Cohen’s d, Pearson’s r pb, odds ratio, and natural log odds ratio: two conversion tables. Psy. Intervention 10, 35–47 (2018).

    Google Scholar 

  31. Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Hashmi, J. A. et al. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 2751–2768 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Reckziegel, D. et al. Deconstructing biomarkers for chronic pain: context- and hypothesis-dependent biomarker types in relation to chronic pain. Pain 160, S37–S48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boccard, S. G. J. et al. Targeting the affective component of chronic pain: a case series of deep brain stimulation of the anterior cingulate cortex. Neurosurgery 74, 628–637 (2014).

    Article  PubMed  Google Scholar 

  35. Kulkarni, B. et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur. J. Neurosci. 21, 3133–3142 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Derbyshire, S. W. G. et al. Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage 16, 158–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Shih, H.-C., Yang, J.-W., Lee, C.-M. & Shyu, B.-C. Spontaneous cingulate high-current spikes signal normal and pathological pain states. J. Neurosci. 39, 5128–5142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brodersen, K. H. et al. Decoding the perception of pain from fMRI using multivariate pattern analysis. Neuroimage 63, 1162–1170 (2012).

    Article  PubMed  Google Scholar 

  39. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Colgin, L. L. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, X.-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).

    Article  PubMed  Google Scholar 

  42. van Ede, F., Quinn, A. J., Woolrich, M. W. & Nobre, A. C. Neural oscillations: sustained rhythms or transient burst-events? Trends Neurosci. 41, 415–417 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Feingold, J., Gibson, D. J., DePasquale, B. & Graybiel, A. M. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc. Natl Acad. Sci. USA 112, 13687–13692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foss, J. M., Apkarian, A. V. & Chialvo, D. R. Dynamics of pain: fractal dimension of temporal variability of spontaneous pain differentiates between pain states. J. Neurophysiol. 95, 730–736 (2006).

    Article  PubMed  Google Scholar 

  45. Rothaug, J., Weiss, T. & Meissner, W. How simple can it get? Measuring pain with NRS items or binary items. Clin. J. Pain. 29, 224–232 (2013).

    Article  PubMed  Google Scholar 

  46. Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 39, 1078–1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Hamilton, L. S., Chang, D. L., Lee, M. B. & Chang, E. F. Semi-automated anatomical labeling and inter-subject warping of high-density intracranial recording electrodes in electrocorticography. Front. Neuroinform. 11, 62 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kubanek, J. & Schalk, G. NeuralAct: a tool to visualize electrocortical (ECoG) activity on a three-dimensional model of the cortex. Neuroinform 13, 167–174 (2015).

    Article  Google Scholar 

  51. Rich, A. Comparative pain scale. The Cluster Headache Support Group https://clusterheadachewarriors.org/wp-content/uploads/2017/03/0-10_Pain_Scale.pdf (2014).

  52. Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S. & Mitra, P. Chronux: a platform for analyzing neural signals. J. Neurosci. Methods 192, 146–151 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sani, O. G. et al. Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954–961 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Bishop, C. Pattern Recognition and Machine Learning (Springer, 2006).

  55. Stanslaski, S. et al. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 410–421 (2012).

    Article  PubMed  Google Scholar 

  56. Afshar, P. et al. A translational platform for prototyping closed-loop neuromodulation systems. Front. Neural Circuits 6, 117 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

  58. Shanechi, M. M. Brain–machine interfaces from motor to mood. Nat. Neurosci. 22, 1554–1564 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Yekutieli, D. & Benjamini, Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Stat. Plan. Inference 82, 171–196 (1999).

    Article  Google Scholar 

  60. Box, G. E. P., Jenkins, G. M. & Reinsel., G. C. Time Series Analysis: Forecasting and Control (Prentice Hall, 1994).

  61. North, B. V., Curtis, D. & Sham, P. C. A note on the calculation of empirical P Values from Monte Carlo procedures. Am. J. Hum. Genet 71, 439–441 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Fields, K. Sellers and J. Motzkin for advice during study design and data analysis and for critical editing of the paper. This study was funded by the National Institutes of Health (NIH) Brain Initiative Grant UH3NS109556 (to E.F.C., P. Shirvalkar, P. Starr), NIH HEAL Initiative Grant UH3NS115631 (to P. Shirvalkar) and DARPA grant W911NF-14-2-0043 (to E.F.C.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P. Shirvalkar, P. Starr and E.F.C. conceptualized and designed the study and acquired funding. P. Shirvalkar, G.C., M.D. and A.S. collected all data and maintained data integrity. P. Shirvalkar, J.P., G.C., P.A. and O.G.S. had full access to all the data and performed formal analysis. M.M.S. supervised the state space modeling of data. P. Shirvalkar drafted the paper. All authors participated substantially in the critical revision of the paper for intellectual content. H.D. performed project administration. Study supervision was conducted by P. Starr and E.F.C.

Corresponding author

Correspondence to Prasad Shirvalkar.

Ethics declarations

Competing interests

Medtronic provided research devices for use in this study and technical support through a research agreement with UCSF (with E.F.C. and P. Shirvalkar) but no financial support. Medtronic had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. All authors declare no other competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Ueli Rutishauser, Tor Wager, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–14, Tables 1–4 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirvalkar, P., Prosky, J., Chin, G. et al. First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nat Neurosci 26, 1090–1099 (2023). https://doi.org/10.1038/s41593-023-01338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01338-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing