Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The human brain reactivates context-specific past information at event boundaries of naturalistic experiences

Abstract

Although we perceive the world in a continuous manner, our experience is partitioned into discrete events. However, to make sense of these events, they must be stitched together into an overarching narrative—a model of unfolding events. It has been proposed that such a stitching process happens in offline neural reactivations when rodents build models of spatial environments. Here we show that, while understanding a natural narrative, humans reactivate neural representations of past events. Similar to offline replay, these reactivations occur in the hippocampus and default mode network, where reactivations are selective to relevant past events. However, these reactivations occur, not during prolonged offline periods, but at the boundaries between ongoing narrative events. These results, replicated across two datasets, suggest reactivations as a candidate mechanism for binding temporally distant information into a coherent understanding of ongoing experience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis pipeline.
Fig. 2: Within-participant reactivation of remote past events at event boundaries.
Fig. 3: Between-participant reactivation of remote past events at event boundaries.
Fig. 4: Reactivation is specific to event boundaries—replication across datasets.
Fig. 5: Relevant past events are preferentially reactivated at event boundaries.

Similar content being viewed by others

Data availability

Data underlying the findings of this study are available at https://dataspace.princeton.edu/handle/88435/dsp01nz8062179 and https://openneuro.org/datasets/ds002345/versions/1.1.4.

Code availability

Matlab code is available at https://osf.io/crmdb/.

References

  1. Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S. & Reynolds, J. R. Event perception: a mind-brain perspective. Psychol. Bull. 133, 273 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Radvansky, G. A. & Zacks, J. M. Event perception. Wiley Interdiscip. Rev. Cogn. Sci. 2, 608–620 (2011).

    Article  PubMed  Google Scholar 

  3. Zwaan, R. A. & Radvansky, G. A. Situation models in language comprehension and memory. Psychol. Bull. 123, 162 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Bird, C. M. How do we remember events? Curr. Opin. Behav. Sci. 32, 120–125 (2020).

    Article  Google Scholar 

  5. Stawarczyk, D., Bezdek, M. A. & Zacks, J. M. Event representations and predictive processing: the role of the midline default network core. Top. Cogn. Sci. 13, 164–186 (2021).

    Article  PubMed  Google Scholar 

  6. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    Article  CAS  PubMed  Google Scholar 

  7. Eichenbaum, H. A cortical–hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Holland, P. C. Acquisition of representation-mediated conditioned food aversions. Learn. Motiv. 12, 1–18 (1981).

    Article  Google Scholar 

  9. Chen, J. et al. Accessing real-life episodic information from minutes versus hours earlier modulates hippocampal and high-order cortical dynamics. Cereb. Cortex 26, 3428–3441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeshurun, Y., Nguyen, M. & Hasson, U. The default mode network: where the idiosyncratic self meets the shared social world. Nat. Rev. Neurosci. 22, 181–192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keidel, J. L., Oedekoven, C. S., Tut, A. C. & Bird, C. M. Multiscale integration of contextual information during a naturalistic task. Cereb. Cortex 28, 3531–3539 (2018).

    Article  PubMed  Google Scholar 

  12. Cohn-Sheehy, B. I. et al. The hippocampus constructs narrative memories across distant events. Curr. Biol. 31, 4935–4945. e4937 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Findlay, G., Tononi, G. & Cirelli, C. The evolving view of replay and its functions in wake and sleep. Sleep. Adv. 1, zpab002 (2020).

    Article  PubMed  Google Scholar 

  15. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Singer, A. C. & Frank, L. M. Rewarded outcomes enhance reactivation of experience in the hippocampus. Neuron 64, 910–921 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Silva, M., Baldassano, C. & Fuentemilla, L. Rapid memory reactivation at movie event boundaries promotes episodic encoding. J. Neurosci. 39, 8538–8548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sols, I., DuBrow, S., Davachi, L. & Fuentemilla, L. Event boundaries trigger rapid memory reinstatement of the prior events to promote their representation in long-term memory. Curr. Biol. 27, 3499–3504. e3494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ben-Yakov, A., Eshel, N. & Dudai, Y. Hippocampal immediate poststimulus activity in the encoding of consecutive naturalistic episodes. J. Exp. Psychol. Gen. 142, 1255 (2013).

    Article  PubMed  Google Scholar 

  20. Ben-Yakov, A. & Henson, R. N. The hippocampal film editor: sensitivity and specificity to event boundaries in continuous experience. J. Neurosci. 38, 10057–10068 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng, J. et al. Neurons detect cognitive boundaries to structure episodic memories in humans. Nat. Neurosci. 25, 358–368 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Speer, N. K., Zacks, J. M. & Reynolds, J. R. Human brain activity time-locked to narrative event boundaries. Psychol. Sci. 18, 449–455 (2007).

    Article  PubMed  Google Scholar 

  24. Zacks, J. M., Speer, N. K., Swallow, K. M. & Maley, C. J. The brain’s cutting-room floor: segmentation of narrative cinema. Front. Hum. Neurosci. 4, 168 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whitney, C. et al. Neural correlates of narrative shifts during auditory story comprehension. Neuroimage 47, 360–366 (2009).

    Article  PubMed  Google Scholar 

  26. Abadchi, J. K. et al. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. eLife 9, e51972 (2020).

    Article  CAS  Google Scholar 

  27. Higgins, C. et al. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron 109, 882–893. e887 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Norman, Y., Raccah, O., Liu, S., Parvizi, J. & Malach, R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron 109, 2767–2780. e2765 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaplan, R. et al. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr. Biol. 26, 686–691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pedrosa, R. et al. Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Proc. Natl Acad. Sci. USA 119, e2204959119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tambini, A. & Davachi, L. Awake reactivation of prior experiences consolidates memories and biases cognition. Trends Cogn. Sci. 23, 876–890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gupta, A. S., van der Meer, M. A., Touretzky, D. S. & Redish, A. D. Hippocampal replay is not a simple function of experience. Neuron 65, 695–705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karlsson, M. P. & Frank, L. M. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12, 913–918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. Human replay spontaneously reorganizes experience. Cell 178, 640–652. e614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwartenbeck, P. et al. Generative replay for compositional visual understanding in the prefrontal-hippocampal circuit. Preprint at bioRxiv https://doi.org/10.1101/2021.06.06.447249 (2021).

  37. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis–connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Chen, J. Sherlock movie watching dataset. DataSpace http://arks.princeton.edu/ark:/88435/dsp01nz8062179 (2016).

  39. Nastase, S. et al. The ‘Narratives’ fMRI dataset for evaluating models of naturalistic language comprehension. Sci. Data 8, 250–250 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang, C. H., Lazaridi, C., Yeshurun, Y., Norman, K. A. & Hasson, U. Relating the past with the present: Information integration and segregation during ongoing narrative processing. J. Cogn. Neurosci. 33, 1106–1128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen, J. et al. Shared memories reveal shared structure in neural activity across individuals. Nat. Neurosci. 20, 115–125 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Zadbood, A., Chen, J., Leong, Y. C., Norman, K. A. & Hasson, U. How we transmit memories to other brains: constructing shared neural representations via communication. Cereb. Cortex 27, 4988–5000 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chien, H.-Y. S. & Honey, C. J. Constructing and forgetting temporal context in the human cerebral cortex. Neuron 106, 675–686. e611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pfeiffer, B. E. The content of hippocampal ‘replay’. Hippocampus 30, 6–18 (2020).

    Article  PubMed  Google Scholar 

  45. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  46. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  47. Yeshurun, Y. et al. Same story, different story: the neural representation of interpretive frameworks. Psychol. Sci. 28, 307–319 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709–721. e705 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stephens, G. J., Honey, C. J. & Hasson, U. A place for time: the spatiotemporal structure of neural dynamics during natural audition. J. Neurophysiol. 110, 2019–2026 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shohamy, D. & Wagner, A. D. Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron 60, 378–389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schlichting, M. L., Zeithamova, D. & Preston, A. R. CA1 subfield contributions to memory integration and inference. Hippocampus 24, 1248–1260 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Collin, S. H., Milivojevic, B. & Doeller, C. F. Memory hierarchies map onto the hippocampal long axis in humans. Nat. Neurosci. 18, 1562–1564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eichenbaum, H. The hippocampus and mechanisms of declarative memory. Behav. Brain Res. 103, 123–133 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Miller, A. M., Vedder, L. C., Law, L. M. & Smith, D. M. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front. Hum. Neurosci. 8, 586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee, H. & Chen, J. Predicting memory from the network structure of naturalistic events. Nat. Commun. 13, 4235 (2022).

  56. Singer, A. C., Carr, M. F., Karlsson, M. P. & Frank, L. M. Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron 77, 1163–1173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jai, Y. Y. & Frank, L. M. Hippocampal–cortical interaction in decision making. Neurobiol. Learn. Mem. 117, 34–41 (2015).

    Article  Google Scholar 

  58. Gillespie, A. K. et al. Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice. Neuron 109, 3149–3163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article  PubMed  Google Scholar 

  60. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).

    Article  PubMed  Google Scholar 

  62. Hahamy, A. et al. Representation of multiple body parts in the missing-hand territory of congenital one-handers. Curr. Biol. 27, 1350–1355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hahamy, A. & Behrens, T. E. Measuring the spatial scale of brain representations. In 2019 Conference on Cognitive Computational Neuroscience (CNN, Berlin, 2019). https://doi.org/10.32470/CCN.2019.1174-0

  64. Oedekoven, C. S., Keidel, J. L., Berens, S. C. & Bird, C. M. Reinstatement of memory representations for lifelike events over the course of a week. Sci. Rep. 7, 14305 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bird, C. M., Keidel, J. L., Ing, L. P., Horner, A. J. & Burgess, N. Consolidation of complex events via reinstatement in posterior cingulate cortex. J. Neurosci. 35, 14426–14434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of cortical activity during natural vision. Science 303, 1634–1640 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Fisher, R. A. Statistical Methods for Research Workers (Genesis Publishing, 1925).

  68. Fisher, R. Questions and answers# 14. Am. Stat. 2, 30–31 (1948).

    Google Scholar 

  69. Zarahn, E., Aguirre, G. & D'Esposito, M. Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage 5, 179–197 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Behrmann, A. Ben-Yakov and T. Makin for their valuable insights, which greatly contributed to the manuscript. This work was supported by the European Molecular Biology Organization nonstipendiary Long-Term Fellowship (848–2017), Human Frontier Science Program (LT000444/2018), Israeli National Postdoctoral Award Program for Advancing Women in Science, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 789040 (to A.H.), the Blavatnik Postdoctoral Fellowship and the research program Change is Key! of the Riksbankens Jubileumsfond (M21-0021) (to H.D.), and a Wellcome collaborator award (214314/Z/18/Z), a Wellcome Trust Senior Research Fellowship (104765/Z/14/Z) and a Principal Research Fellowship (219525/Z/19/Z), together with a James S. McDonnell Foundation Award (JSMF220020372) (to T.E.J.B.). This research was funded in whole, or in part, by the Wellcome Trust (Grant number 214314/Z/18/Z and 219525/Z/19/Z). For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

A.H. conducted all analyses. H.D. assisted with natural language processing analyses. A.H., H.D. and T.E.J.B. interpreted the results. A.H. and T.E.J.B. wrote the manuscript. T.E.J.B. supervised the project.

Corresponding author

Correspondence to Avital Hahamy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Steven Nelson and Kenneth Norman for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–13.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahamy, A., Dubossarsky, H. & Behrens, T.E.J. The human brain reactivates context-specific past information at event boundaries of naturalistic experiences. Nat Neurosci 26, 1080–1089 (2023). https://doi.org/10.1038/s41593-023-01331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01331-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing