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Neural dynamics and architecture of the 
heading direction circuit in zebrafish

Luigi Petrucco1,2,6, Hagar Lavian1,6, You Kure Wu1, Fabian Svara3, Vilim Štih4 & 
Ruben Portugues    1,5 

Animals generate neural representations of their heading direction. 
Notably, in insects, heading direction is topographically represented by 
the activity of neurons in the central complex. Although head direction 
cells have been found in vertebrates, the connectivity that endows them 
with their properties is unknown. Using volumetric lightsheet imaging, 
we find a topographical representation of heading direction in a neuronal 
network in the zebrafish anterior hindbrain, where a sinusoidal bump of 
activity rotates following directional swims of the fish and is otherwise 
stable over many seconds. Electron microscopy reconstructions show 
that, although the cell bodies are located in a dorsal region, these 
neurons arborize in the interpeduncular nucleus, where reciprocal 
inhibitory connectivity stabilizes the ring attractor network that encodes 
heading. These neurons resemble those found in the fly central complex, 
showing that similar circuit architecture principles may underlie the 
representation of heading direction across the animal kingdom and 
paving the way to an unprecedented mechanistic understanding of these 
networks in vertebrates.

In many animals, effective navigation in the world involves the use of 
cognitive maps that provide a representation of position and orienta-
tion with respect to the environment. Whereas position in space is 
encoded in place cells and grid cells in the mammalian hippocampal 
and entorhinal circuits1, allocentric orientation is represented by head 
direction cells, which are neurons that are active any time the animal 
faces a particular direction in space.

Head direction cells were originally described in the post-
subicular cortex2, but have since been observed in several other 
cortical and subcortical areas (reviewed in Taube3). The activity in 
these head direction networks can be understood in terms of ring 
attractor networks, where local recurrent excitation is combined 
with long-range, out-of-phase inhibition to create a stable, local-
ized bump of activity that encodes direction. This model received 
remarkable empirical validation with the observation of heading 
direction representations in the insect central complex, where key 

components of a ring attractor network were mapped onto its neuronal  
architecture4–9. However, such mechanistic understanding in verte-
brates is still lacking.

The lowest region of the vertebrate brain in which head 
direction-related signals have been found is the dorsal tegmental 
nucleus (DTN)10, a paired, GABAergic nucleus located in the brain-
stem that originates from rhombomere 1 (ref. 11). In rodents, the DTN 
is reciprocally connected with the interpeduncular nucleus (IPN), a 
hindbrain structure indirectly implicated in spatial navigation11,12 and 
in the generation of heading direction representations13. Additionally, 
recent studies in larval zebrafish suggest an important role for the IPN 
in directional behavior14,15. Therefore, we leveraged the optical acces-
sibility of the larval zebrafish as a model organism to comprehensively 
image the anterior hindbrain (aHB) of this vertebrate to identify any 
potential network activity that could be involved in the encoding of 
heading direction.
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of insects. Furthermore, we show that this inhibitory network in the 
aHB forms highly organized reciprocal connections in the dorsal 
IPN (dIPN). This architecture is in concordance with the connectiv-
ity scheme required by ring attractor models of head direction net-
works16,17 and can provide the substrate for a cognitive map in this  
vertebrate brain.

Using a combination of volumetric lightsheet imaging, two- 
photon imaging and electron microscopy (EM), we discover a cir-
cuit contained within rhombomere 1 that represents heading direc-
tion by a persistent and localized bump of activity. This activity 
profile smoothly translates across the neuronal population as the 
fish turns, mimicking the compass neurons in the central complex 
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Fig. 1 | A GABAergic network in the aHB of the larval zebrafish exhibits 
stable circular dynamics. a, Schematic of experimental setup in which a 
7–9-dpf larval zebrafish is embedded in agarose and imaged in a custom-built 
lightsheet microscope using a lateral excitation beam. b, Left, expression pattern 
of the Tg(gad1b:Gal4) line over a brain reference. Center, example view from 
an imaging experiment. The blue box indicates the area imaged in the light 
sheet experiments. r1π ROIs are highlighted in pink over the shades of all ROIs 
from the experiment. Right, example traces from one experiment. c, Frontal, 
horizontal and sagittal projections of the r1π neurons from all experiments 
registered in a common anatomical space (pink), visualized together with all of 
the ROIs extracted from the same experiments (gray). The ROIs are shown on the 
mapzebrain atlas (https://mapzebrain.org). d, Circular propagation of activity. 
Intensity of fluorescence for all ROIs in one fish in the course of a clockwise  

(cw, top) and anticlockwise (acw, bottom) propagation event. The arrow shows 
the direction of activity propagation. e, Trajectory in the first two PCs of the 
phase space of the network, color coded by time. f, Left, projection over the first 
two (rotated) PCs in time of all of the r1π neurons, color coded by angle around 
the circle (for rPC calculation, see Methods and Supplementary Fig. 1). Right, 
anatomical distribution of the same neurons, color coded by angle in PC space. 
g, Projection of ROIs pooled from all neurons in the registered rPC space, color 
coded by angle in rPC space (left) and their anatomical distribution (right).  
h, Traces of r1π neurons, sorted by angle in PC space for the neurons and phase of 
the network (green line). ΔF/F, relative change in fluoresence; Cau., caudal; Dors., 
dorsal; mhb, midbrain/hindbrain boundary; OT, optic tectum; post., posterior; 
rh, rhombomere; Ros. rostral; Z sc., Z score.
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Results
Ring attractor dynamics in the fish aHB
We performed volumetric lightsheet imaging (Fig. 1a) in 7–9-days post-
fertilization (dpf) zebrafish larvae expressing GCaMP6s in GABAergic 
neurons in the aHB (Fig. 1b and Extended Data Fig. 1a). Larvae were 
head restrained but free to move their tail, and were imaged either in 
darkness or while presented with a visual stimulus in either closed or 
open loop (see Visual stimuli and experimental groups in the Methods). 
We observed a population of 50–100 neurons (median = 74, quartile 1 
(Q1) = 48, Q3 = 115, n = 31 fish) with a sustained bump of activity propagat-
ing either clockwise or anticlockwise across the network in a horizontal 
plane (Fig. 1c,d and Supplementary Video 1). These GABAergic neurons 
were located in rhombomere 1 consistently across fish (Fig. 1c and 
Extended Data Fig. 1b; see Methods for a description of the selection 
process of this group of neurons). To further characterize the dynam-
ics of the network, we performed principal component analysis and 
observed that the first two principal components (PCs) captured over 
80% of the variance (median = 0.800, Q1 = 0.770, Q3 = 0.836, n = 31 fish) 
(Extended Data Fig. 1c,d). Moreover, the trajectory in the phase space 
defined by the first two PCs was constrained to a circle over the whole 
duration of the experiment which lasted tens of minutes (Fig. 1e). We 
named these cells r1π neurons because of their location in rhombomere 
1, the fact that they have an anticorrelated partner at a π angle on the 
PC space and on the basis of their morphological features described 
later in this paper.

To visualize how the activity and anatomical location of r1π neu-
rons were related, we projected the activity of each neuron onto a 
two-dimensional subspace by performing a different PC projection, 
now over the time axis. When projected over the first two PCs (variance 
explained, median = 0.858, Q1 = 0.827, Q3 = 0.868, n = 31 fish) (Extended 
Data Fig. 1e,f), r1π neurons were organized in a circle, with the angle 
around the circle, α, correlating with the neuron’s anatomical loca-
tion (Fisher–Lee circular correlation ρt, median = 0.549, Q1 = 0.298, 
Q3 = 0.696, n = 31 fish) (Fig. 1f,g, Extended Data Fig. 1g–j and Supplemen-
tary Figs. 1 and 2). This matches the observation from the raw data of a 
bump of activity propagating across the network: the circular dynamics 
we observe in phase space corresponds to the activity propagation 
across an anatomical circle of neurons. The activity of neurons from 
neighboring areas (optic tectum and rhombomere 2) did not show the 
same distribution when projected over the first PCs, suggesting that 
the circular distribution seen with r1π neurons is a specific feature of 
aHB neurons (Extended Data Fig. 2).

To visualize evolution of the network activity over time, the traces 
of neurons were sorted by their angle α (Fig. 1h and Extended Data Fig. 
3). This visualization showed how the phase marks the position of the 
bump peak as it translates across the network.

To describe the position of the bump of activity within the net-
work at any instance in time, we defined an instantaneous network 
phase φ(t) as the angle of the vector average over neurons, weighted 
by their activity at time t, over their first two rPC projections (Supple-
mentary Fig. 3a and Supplementary Video 2). This network phase φ(t) 
describes the angle along the circular trajectory in the network phase  
space (Fig. 2a).

We anchored φ by setting it to be zero when the posterior part 
of the ring was active and to increase with clockwise rotations of 
activity in the horizontal plane (Methods and Supplementary Figs. 1  
and 3a).

To further characterize how individual neurons contributed to 
the network activity, we computed the average network activity over 
time (Methods, Fig. 2a and Supplementary Fig. 4). The network activity 
profile approximated a sine wave, with a full width at half maximum 
of π radians (rad) (mean ± s.d. = 2.91 ± 0.115, n = 31 fish) over the circle 
of neurons (Fig. 2b and Supplementary Fig. 4b). The tuning curves of 
individual neurons over the network phase had a sinusoidal shape, with 
full width at half maximum of approximately π rad (Fig. 2c).

The r1π network integrates heading direction
Next, we investigated what was driving changes in the phase of the 
network. The phase was stable in periods when the fish was not moving, 
and it changed the most during sequences of left or right swims (Fig. 3a).

Furthermore, sequences of left or right turns were accompanied 
by respective clockwise or anticlockwise rotations of the network 
phase (activity), irrespective of the starting phase position (Fig. 3b 
and Extended Data Fig. 4a).

To quantify this relationship, we computed the swim-triggered 
change in phase and noticed that it was consistently increasing or 
decreasing after left and right swims (Fig. 3c); therefore, left swims 
(anticlockwise rotations of the fish) would produce clockwise rota-
tions in the network, and right swims (clockwise rotations of the fish) 
would produce anticlockwise rotations in the network. Forward swims 
did not produce any consistent change in the network phase. Impor-
tantly, when the fish was not actively swimming, the bump persisted 
over several tens of seconds over the same part of the network (Fig. 3c, 
right, and Extended Data Fig. 4c,d).
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Fig. 2 | Network activity profile. a, Phase-zeroing process: for every time point, 
a circular permutation of the (interpolated) activity matrix was computed so that 
the peak of activation, mapped by the phase (left), was always in the center of the 
matrix. Right, the matrix of traces after the centering. b, Profile of the activity 
bump. Left, matrix showing the average activation profile for all fish in the 
dataset (n = 31 fish). Right, mean ± s.d. over time for each fish (shaded areas) and 
population average (blue). c, Polar plots showing tuning curves for the activation 
of individual neurons as a function of network phase from one fish. Each panel 
shows the curve for a neuron, color coded by their angle in rPC space θ. The 
anatomical locations of the four neurons are shown in the central inset.
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Importantly, we observed that the probability for the network 
phase to be in any state between −π and π when a swim occurred was 
not different for left, right or forward swims (Extended Data Fig. 4b). 
This indicates that the absolute or instantaneous network phase does 
not correlate with a specific swim direction and suggests that these 
neurons are not coding for left or right turns, but rather for the heading 
direction of the animal.

To further investigate this hypothesis, we extended our analysis of 
swim-triggered changes in network phase (Fig. 3c, left). The magnitude 
of change in angle elicited by a single swim after 10 s was approximately 
π/4 (median = 0.828 rad, Q1 = 0.492 rad, Q3 = 1.28 rad, n = 31 fish), which 
is comparable in size to the angle turned by a swim performed by a 

freely swimming fish (Fig. 3c, middle, and Extended Data Fig. 4)18. 
Moreover, continuous turning in one direction resulted in several rota-
tions around the network (Extended Data Fig. 4e). This shows that the 
network could function as a heading direction integrator, shifting the 
position of its activity with every turn and keeping track of the heading 
direction of the animal, as illustrated in Fig. 3d.

To understand the degree at which the network could produce 
an estimate of heading direction over time, we reconstructed a fictive 
heading direction for the head-embedded fish, integrating the angle 
turned by each swim over time (Methods and Extended Data Fig. 5a). 
The reconstructed heading direction and the network phase were 
anticorrelated over a period of minutes (Fig. 3e).
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Fig. 3 | The aHB network tracks estimated heading angle over many minutes. 
a, Network phase and motor activity. Top, tail angle over time (gray). Colored 
vertical lines mark the occurrence and direction of swims. Bottom, unwrapped 
network phase (green) over time. b, Network trajectory during sequences of 
left and right swims. Top left, trajectory in phase space during a sequence of 
left swims (see tail angle in the inset on the right of each plot). Bottom left, state 
of activation of the network before and after the sequence. Right, a sequence 
of right swims. c, Left, swim-triggered average change in network phase for all 
fish (thin lines, n = 31 fish) and their overall average (thick lines). Center, swim-
triggered change in estimated heading. Right, histograms of the accumulated 
phase change 25 s after a swim (blue, red and gray lines), together with fish-wise 
histograms of the spontaneous drift of the network phase in 25 s when no swim 

occurred (thin green lines, individual fish; thick line, average). d, Schematic 
to show how the network phase changes during a turn, and keeps pointing in 
the same direction in allocentric coordinates. e, Top, network phase (green) 
and estimated fish heading (gold) for the entire duration of an experiment. 
Note the axes are different and have opposite signs. The inset shows the same 
traces, overlaid on the traces from the r1π neurons, tiled to match the phase 
unwrapping. f, Correlation (corr.) of heading and network phase for all fish in 
5-min chunks, compared with a shuffle of the same data. Bars report median and 
Q1 and Q3 for the data (green) and shuffle (gray). g, Distribution of P values for the 
comparison of correlation of phase and heading in the data and shuffle for each 
fish (Wilcoxon rank-sum test, P < 0.01 for n = 31 fish).
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Although some errors accumulated over time, the network phase 
around each time point could be used to estimate the current heading 
direction and these two variables were significantly anticorrelated 
(median correlation = −0.723, Q1 = −0.863, Q3 = −0.564, n = 31, P < 0.01 
compared with a control shuffle for each fish) (Fig. 3e–g and Extended 
Data Fig. 5).

The r1π network is not affected by visual input
Next, we asked whether sensory inputs are required for the observed 
heading direction integration. Because the zebrafish were head 
restrained (Fig. 1a), we ascertained that vestibular sensory inputs were 
not required, although they are known to contribute to the mammalian 
heading direction system19.

In our experiments, we tested a variety of visual stimuli conditions 
(Supplementary Fig. 6) and observed the integration of heading direc-
tion in both closed-loop (with visual reafference coherent with the 
direction of the swim) and in open-loop experiments (without visual 
reafference) (Fig. 4a and Extended Data Fig. 6a,b), indicating that visual 
feedback is not required for a stable heading direction representation. 
Furthermore, we performed closed-loop experiments with a range of 
gain conditions that provided different amounts of visual feedback. 
In these experiments, we observed no relationship between the rep-
resentation of heading direction and the experimental gain (Fig. 4b 

and Extended Data Fig. 6c). This shows that visual feedback is not 
required for this representation, and suggests that efference copies 
are the main driver.

Interestingly, the activity of left and right GABAergic clusters in 
rhombomeres 2 and 3, immediately caudal to the r1π neurons, show a 
remarkable degree of correlation with leftward and rightward swims, 
respectively (Fig. 4c and Extended Data Fig. 7a–d). These neurons 
might provide the motor efference input to the r1π network, although 
further experiments would be required to prove their involvement in 
the network.

The r1π network is modulated by eye movements
Subpopulations of cells in the aHB are known to represent eye-related 
variables, such as eye position and saccade timing20,21. Therefore, we 
investigated whether eye motion could also modulate the network phase.

To this end, we freed the eyes of the larvae in a subset of experi-
ments and tracked their motion together with that of their tails. In 
periods of no swimming, eye motion could explain some low-amplitude 
modulation in the network phase (Fig. 4d and Extended Data Fig. 7g–i); 
however, when swimming did occur, eye motion alone performed 
poorly compared with heading direction (Extended Data Fig. 7f).

Interestingly, the sign of the modulation was consistent with the 
changes in heading, with leftward saccades increasing the network 
phase as do leftward swims, and rightward saccades decreasing it as 
do rightward swims.

aHB neurons arborize in the dIPN
We proceeded to investigate the anatomy of neurons in the aHB. Ana-
tomical stacks of our GABAergic line show a prominent, bilaterally 
paired tract of fibers that extend ventromedially from the GABAer-
gic nuclei of rhombomere 1 toward the dIPN (Fig. 5a, red arrow, and 
Extended Data Fig. 8a).

To reconstruct individual neurons at high resolution, we traced 
neurons and their projections in a serial block-face EM (SBEM) dataset. 
We identified a neuron class in which the soma, located in the aHB, 
extended a single projection that bifurcated into a dendrite and axon, 
both of which terminated in the dIPN (Fig. 5a, Supplementary Video 3, 
Extended Data Fig. 8b and Supplementary Fig. 7).

The small dendritic tree covered a localized compartment in the 
ipsilateral IPN, whereas the axon projected contralaterally with minimal 
branching which occurred only in the terminal sections (Extended 
Data Fig. 8b,c).

To confirm that r1π neurons project into the dIPN, we imaged the 
same GABAergic line under a two-photon microscope to investigate 
neuropil activity. Performing the same analysis as for the r1π neurons 
presented in Fig. 1, we discovered a set of regions of interest (ROIs) that 
were mostly restricted to the dIPN, showed stable circular dynamics 
and displayed the same relationship to heading direction (Fig. 5b–d 
and Extended Data Fig. 9).

aHB projections map circular aHB activity to linear dIPN 
activity
It has been suggested that heading direction systems are neuronal 
implementations of ring attractor networks, where excitatory activity 
between neighboring cells is stabilized and localized by long-range 
inhibitory connections. Therefore, we wanted to investigate whether 
there is any evidence that the morphology and projections of the 
GABAergic r1π neurons could implement such a structure.

To this end, we returned to the SBEM reconstructions. The projec-
tions of different neurons occupy different locations in the mediolat-
eral axis and appear to cover the whole dIPN (Fig. 6a, Supplementary 
Video 3 and Extended Data Fig. 8b).

Furthermore, the distance of the dendrite from the midline 
was anticorrelated with the distance of the axon from the midline 
(r = −0.9, n = 19 neurons), meaning that a neuron with a lateral dendrite 
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would extend a medial axon and vice versa (Fig. 6a and Extended Data  
Fig. 10a). In addition, given the anatomical organization of the activity 
in the aHB, we expected a correlation between the anteroposterior posi-
tion of a cell’s soma and the distance of its dendrites from the midline. 
Indeed, this is what we observed (r = −0.65, n = 19 neurons) (Fig. 6b and 
Extended Data Fig. 10b).

Such an organization would predict that, in the activity recorded 
from the dIPN, pixels that are the most correlated with each other are 
at a fixed distance on the mediolateral axis, because their signal origi-
nates from the dendrites and axons of the same neurons. Indeed, we 
observed this pattern when examining data from a single fish (Fig. 6c) 
and across all fish (Fig. 6d, top, and Extended Data Fig. 10c).

The distance of the side lobes observed in the functional correla-
tion was associated with the distance of each neuron’s axon from its 
dendrite (Fig. 6d, bottom, and Extended Data Fig. 10d).

These observations suggest that a circular functional structure in 
the aHB, corresponding to angles from −π to π, is coupled to a linear 
structure in the dIPN (Fig. 6e). The axons of neurons whose somata are 
at opposite sides of the circular organization of the aHB target their 
respective opposing dendrites (Fig. 6f). In this way, a neuron is ideally 
placed to inhibit its corresponding out-of-phase neuron. This projec-
tion pattern could stabilize and localize the heading direction activity 
we observed in the aHB network by providing long-range inhibition.

Discussion
In this study, we describe a network of GABAergic neurons in rhom-
bomere 1 of the larval zebrafish hindbrain that encodes the heading 
direction of the fish. Because this representation persists even in 
the absence of external landmarks and salient sensory stimuli, it is 
likely generated by the integration of efference copies. We show that 
motor-related activity exists nearby that may be serving this purpose, 
in agreement with previous reports22,23. This observation confirms the 
existence of an internal model of turning in the zebrafish brain.

Remarkably, heading direction is represented by a bump of activity 
that propagates clockwise and anticlockwise in the horizontal plane 
with leftward and rightward movements of the fish. To our knowledge, 
this is the first evidence of an anatomical organization for the heading 
direction system in a vertebrate and suggests the existence of simple 
topographical principles in the wiring of the network. Indeed, our EM 
reconstructions suggest that heading direction neurons of the aHB 
connect to each other in a precise way, with neurons whose functional 
activation is in complete antiphase making reciprocal connections in 
the dIPN. On the basis of their location and their consistent antiphase 
projection pattern, we named these cells r1π neurons.

In mammals, the GABAergic24,25 DTN is considered to be one of the 
earliest subcortical structures within the heading direction pathway, 
and tracing studies have identified reciprocal connections between 
the DTN and the IPN26–28. The heading direction neurons observed in 
the DTN are broadly tuned10, similarly to the neurons we report in the 
fish aHB. Moreover, tegmental afferents to the mammalian (rostral) 
IPN form highly compartmentalized arborizations29,30, similar to what 
we observe in the reconstructions of aHB fibers.

Theoretical studies16,17,31,32 proposed the notion of ring attractor 
networks as a mechanism to encode heading direction information, 
and evidence of ring attractor-like dynamics was found in the rodent 
heading direction system12,33. However, a mechanistic understanding 
grounded on the neuronal connectivity that underlies such dynamics 
remains lacking in vertebrates.

This link between function and structure exists in the insect cen-
tral complex, where elegant studies described networks that encode 
heading direction and constitute a neuronal implementation of a ring 
attractor network4–7,9. The level of detail being uncovered in these 
circuits allows for a mechanistic understanding of how a brain can 
integrate external and internal sensory cues, efference copies and carry 
out coordinate transformations that are important for behavior. The 
network we observe has intriguing similarities with this system, and a 
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detailed comparative analysis of both may reveal important theoretical 
insights into persistent neuronal representations in general and head 
direction systems and ring attractors in particular33.

The network we describe here does not seem to be affected by 
visual reafference, in contrast with the insect heading direction sys-
tem4. It is unclear whether this is due to the statistics of the visual 
scenery we used, as was reported in flies34,35, or whether it indicates 
that visual inputs are combined with the heading representation at a 
downstream level of the network. We note that the sinusoidal shape 
of the bump could make it ideally suited for the vector arithmetic that 
is required for the integration of heading direction and optic flow, 
as was recently shown in flies9, although this will need to be further 
investigated in future studies.

We still need to address how external cues influence this network 
activity to determine whether the ‘north’ of the representation points 
in a behaviorally relevant direction in space. The heading direction 

network we describe here is not modulated by visual inputs, yet such 
input can affect heading representation downstream of the r1π neurons. 
Previous work showed that zebrafish larvae might use an internal rep-
resentation of heading direction to efficiently reorient in a phototaxis 
task36, and the IPN can be implicated in zebrafish directional behav-
ior14,15. Information from external cues37 and strong excitatory drive 
could be provided by the dense projections from excitatory habenular 
neurons38,39, which could form synapses with an all-to-all connectivity 
with the dendrites of the heading direction neurons40. Although previ-
ously overlooked, the aHB-IPN circuit could provide an inroad to under-
standing the mechanisms underpinning cognitive maps in vertebrates.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
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Methods
Zebrafish husbandry
All procedures related to animal handling were conducted in accord-
ance with protocols approved by the Technische Universität München 
and the Regierung von Oberbayern (animal protocol number 55-2-1-
54-2532-101-12). Adult zebrafish (Danio rerio) of the Tupfel long fin 
strain were kept at 27.5–28 °C on a 14:10 hour light:dark cycle in a fish 
facility that provided full recirculation of water with carbon, bio- and 
UV filtration and a daily exchange of 12% of water. Water pH was kept 
at 7.0–7.5 with a 20 g l−1 buffer and was conductivity maintained at 
750–800 µS using 100 g l−1. Fish were hosted in 3.5-l tanks in groups of 
10–17 animals. Adults were fed Gemma Micro 300 (Skretting) and live 
food (Artemia salina) twice per day, and larvae were fed Sera Micron 
Nature (Sera) and ST-1 (Aquaschwarz) three times per day.

All experiments were conducted on 6–9-dpf larvae of 
yet-undetermined sex. The week before the experiment, one male and 
one female or three male and three female animals were left breeding 
overnight in a Tecniplast Sloping Breeding Tank or Breeding Tank. On 
the next day, eggs were collected in the morning, rinsed with water 
from the facility water system and then kept in groups of 20–40 in 
90-cm petri dishes filled with 0.3× Danieau solution (17.4 mM NaCl, 
0.21 mM KCl, 0.12 mM MgSO4, 0.18 mM Ca(NO3)2, 1.5 mM HEPES; rea-
gents from Sigma-Aldrich) until hatching and in water from the fish 
facility thereafter. Larvae were kept in an incubator that maintained 
temperature at 28.5 °C and a 14:10 hour light:dark cycle; the solution 
was changed daily. At 4 or 5 dpf, animals were lightly anesthetized with 
tricaine mesylate (Sigma-Aldrich) and screened for fluorescence under 
an epifluorescence microscope. Animals positive for GCaMP6s, Dendra 
or mCherry fluorescence were selected for the imaging experiments.

Transgenic animals
Tg(gad1b/GAD67:Gal4-VP16)mpn155 (referred to as Tg(gad1b:Gal4)) was 
used for all experiments, which drives expression in a subpopulation 
of GABAergic cells under gad1b regulatory elements41. The animals for 
functional imaging and anatomical experiments were double trans-
genic with Tg(UAS:GCaMP6s)mpn101 (ref. 42) and Tg(UAS:Dendra-kras)
s1998t (ref. 43), respectively. In some anatomical experiments, the 
animals also had Tg(elavl3:H2B-mCherry), which was generated by Tol2 
transposon-mediated transgenesis. All of the transgenic animals were 
also mitfa−/− and thus lacked melanophores44.

Lightsheet experiments
Preparation. For lightsheet experiments, animals were embedded in 
2.2% low-melting-point agarose (Thermo Fisher) in a custom lightsheet 
chamber. The chamber consisted of a three-dimensional printed frame 
(https://github.com/portugueslab/hardware/blob/master/chambers/
lightsheet_chamber_v3.stl) with a glass coverslip sealed on the side, in 
the position where the lateral beam of the lightsheet enters the cham-
ber, and a square of transparent acrylic on the bottom, for behavioral 
tracking (Lightsheet microscope). The chamber was filled with water 
from the fish facility system and agarose was removed along the optic 
path of the lateral laser beam (to prevent scattering) and around the 
tail of the animal (to enable movements of the tail). In some larvae, the 
eyes were also freed from the agarose. After embedding, fish were left 
recovering for 1–6 hours before the imaging session. Before starting 
the imaging, we lightly tapped on the side of the chamber to select the 
most active fish for the experiment.

Lightsheet microscope. Imaging experiments were performed using a 
custom-built lightsheet microscope. A 473-nm wavelength laser source 
(modulated laser diodes; Cobolt) was used to produce an approxi-
mately 1.5-mm laser beam that was conveyed on the excitation scanning 
arm. The arm consisted of a pair of galvanometric mirrors that scanned 
vertically and horizontally, a line diffuser (Edmund Optics) to mini-
mize stripe artifacts45 and a 2× telescope with a 75- and 150-mm focal 

distance lens (Thorlabs). The telescope expanded the beam before it 
entered a low numerical aperture air objective (Olympus) that then 
focused the beam through the lateral glass coverslip of the lightsheet 
chamber onto the fish. The excitation lightsheet was generated by 
scanning the beam on the horizontal plane at 800 Hz. A paper screen 
was positioned in the conjugate focal plane within the telescope lens 
pair to protect the eyes of the fish from the lateral scanning of the 
laser beam. The emitted fluorescence was collected with a 20× water 
immersion objective (Olympus), filtered with a 525:50 band-pass filter 
(AHF Analysentechnik) and focused on a CMOS camera (Hamamatsu 
Photonics) with a tube lens (Thorlabs).

Imaging acquisition was run using custom Python-based soft-
ware46 to coordinate laser scanning, camera triggering and the piezo 
movement. The objective was moved using a sawtooth profile at a fre-
quency of 5 Hz in most experiments (frequency was adjusted to 3 Hz in 
experiments where a larger vertical span was scanned). Five-volt pulses 
locked with the scanning profile of the piezo were sent to the camera 
to trigger the acquisition of each plane at a fixed vertical position 
during the scanning. No pulse was sent during the descending phase 
of scanning, when the objective would cover a large vertical span in a 
short time. In most experiments, eight planes were acquired over a 
range of approximately 80–100 µm, with slight adjustments for each 
fish. The resulting imaging data had a resolution of approximately 
10 × 0.6 × 0.6 µm per voxel and a temporal resolution of 3–10 Hz.

Tail and eye tracking and stimulus presentation. To monitor tail 
movements during the imaging session, an infrared light-emitting 
diode (RS Components) was used to illuminate the larvae from above. 
A camera (Ximea) with a macro-objective (Navitar) was aimed at the 
animal through the transparent bottom of the lightsheet chamber, 
using a mirror placed at 45° below the imaging stage. A long-pass filter 
(Thorlabs) was placed in front of the camera. A projector (Optoma) was 
used to display visual stimuli; light from the projector was conveyed 
to the stage through a cold mirror that reflected the projected image 
on the 45° mirror placed below the stage. The stimuli were projected 
on a white paper screen positioned below the fish, with a triangular 
hole that kept the fish visible from the camera. The behavior-tracking 
part of the rig was very similar to the setup for restrained fish tracking 
described in Štih et al.47.

Frames from the behavioral camera were acquired at 400 Hz and 
tail movements were tracked online using Stytra47, using Stytra’s default 
algorithm to fit nine linear segments of the tail. During the experiment, 
the ‘tail angle’ quantity used for controlling the closed loop was com-
puted (online using Stytra) as the difference between the average angle 
of the first two and last two segments of the tail; this was saved with 
the rest of the log from Stytra. For eye tracking, a video of the entire 
acquisition was saved to be analyzed offline (see below).

The stimulus presentation and behavior tracking were synchro-
nized with imaging acquisition using a ZeroMQ-based trigger signal 
supported natively by Stytra.

Two-photon experiments
For two-photon experiments, animals were embedded in 2% 
low-melting-point agarose (Thermo Fisher) in 30-mm petri dishes. 
The agarose around the tail, caudal to the pectoral fins, was cut away 
with a fine scalpel to allow for tail movement. The dish was placed 
onto an acrylic support with a light-diffusing screen and imaged on 
a custom-built two-photon microscope previously described14. The 
custom Python package brunoise was used to control the microscope 
hardware48.

Full frames were acquired every 334.51 ms in four, 0.83-µm-spaced 
interlaced scans, which resulted in x- and y-pixel dimensions of 0.3–0.6 
µm (varying resolutions depended on field of view covered). After 
acquisition from one plane was complete, the objective was moved 
downward by 0.5–4 µm and the process was repeated.
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Two-photon functional experiments. Visual stimuli were generated 
using a custom-written Python script with the Stytra package. Stimuli 
were projected at 60 frames per second using an Asus P2E micro-
projector and a red long-pass filter (Kodak Wratten 25) to allow for 
simultaneous imaging and visual stimulation. Fish were illuminated 
using infrared light-emitting diodes (850-nm wavelength) and imaged 
from below at up to 200 frames per second using an infrared-sensitive 
charge-coupled device camera (Pike F032B, Allied Vision Technolo-
gies). Tail movements were tracked online using Stytra as described 
for the lightsheet experiments.

Two-photon anatomical experiments. High resolution (0.5 × 0.5 × 0.5) 
two-photon stacks of the aHB and IPN were acquired from fish express-
ing gad1b:Gal4 and UAS:Dendra-kras transgenes (n = 7, 6–7 dpf). The 
stacks were registered to one another using the Computational Mor-
phometry Toolkit (CMTK)49. The transformed stacks were then aver-
aged to generate an average brain stack showing the projections of 
GABAergic aHB neurons to the IPN.

Confocal experiments
For confocal experiments, larvae were embedded in 1.5% agarose and 
anesthetized with tricaine mesylate (Sigma-Aldrich). Whole-brain 
stacks of three 7-dpf fish expressing gad1b:Gal4, UAS:Dendra-kras 
and elavl3:H2B-mCherry transgenes were acquired using a 20× water 
immersion objective (numerical aperture of 1.0) with a voxel resolution 
of 1 × 0.6 × 0.6 (LSM 880, Carl Zeiss). The stacks were registered to one 
another using CMTK49. The transformed stacks were then averaged 
to generate an average brain stack showing the expression pattern of 
gad1b:Gal4 on top of pan-neuronal H2B-mCherry expression.

EM experiments
SBEM dataset acquisition. Details of the larval brain SBEM data-
set acquisition will be published elsewhere50. Briefly, a 5-dpf larval 
Tg(elavl3:GCaMP5G)a4598 transgenic zebrafish was fixed with extracel-
lular space preservation and stained as described previously51,52. The 
sample was embedded in an epoxy mixture containing 2.5% Carbon 
Black53. The brain was imaged at a resolution of 14 × 14 nm and sections 
were cut at a thickness of 25 nm. The long (y) axis of each image tile 
was scanned by gradually moving the stage, whereas the short axis (x) 
was scanned with the electron beam. The shape of the tile pattern was 
determined on the basis of a 4-µm voxel size X-ray micro-computed 
tomography scan (SCANCO Medical AG) of the embedded sample.

Visual stimuli and experimental groups
In our experiments, we presented different visual stimuli to the fish but 
the neuronal activity we describe was not modulated by the presented 
visual stimuli. Therefore, for Figs. 1 and 3, we combined our observa-
tions from the following experimental conditions:

•	 For experiments in darkness, no visual stimuli were presented, the 
projector was on and a static black frame was displayed.

•	 For open-loop experiments, a pink noise pattern was projected 
and moved in x- and θ-planes in a path that was computed from the 
trajectory of a freely swimming fish taken from a previous experi-
ment in the laboratory. The stimulus moved backward according 
to velocity of the fish, and rotated according to changes in its 
direction. As a result, the fish was presented with the optic flow 
that it would have perceived moving over a static pink noise pat-
tern with that trajectory.

•	 For closed-loop experiments, a pink noise pattern was projected 
below the fish. The pattern was static if the animal did not move, 
and it translated backward and rotated when the fish performed 
spontaneous movements. The stimulus moved backward accord-
ing to an estimate of the velocity of the fish computed using vigor, 
and rotated according to changes in its direction estimated using 

the swim bias. Therefore, right turns, that is, clockwise rotations 
of the fish, would be matched with clockwise rotations of the 
stimulus. The gain factor that transformed a given swim bias into 
an angular velocity was modulated with factors 0.5, 1 and 2 to 
observe if the slope of the aHB network and the estimated heading 
would be altered by visual feedback. An additional control gain 
of −1, where fish would receive a visual feedback opposite to the 
performed movements, was also included.

•	 For some directional motion experiments (n = 2), the animal was 
also shown a pink noise pattern moving in eight equally spaced 
directions on the plane, presented one after the other, first in a 
clockwise sequence (starting from forward) and then in an anti-
clockwise sequence.

To investigate the role of visual feedback (Fig. 4b and Extended 
Data Fig. 6b), we alternated 5 min of the closed-loop condition and 
5 min of the open-loop condition. To address the effect of changing 
gains (Fig. 4b and Extended Data Fig. 6c), we performed 5-min blocks 
of each gain condition, with two repetitions for each condition, in the 
following sequence of gains: 1, 0.5, 2, 1, 0.5, 2, −1 and −1. Supplementary 
Fig. 6 reports all experiment protocols that were used in this study, 
including the conditions described above. The Stytra scripts for con-
trol of the experimental stimuli are included with the rest of the code.

Data analysis and statistics
All data analysis was performed using Python 3.7 and Python librar-
ies for scientific computing, in particular Numpy54, Scipy55 and 
Scikit-learn56. The Python environment replicated the analysis in the 
paper, which can be found in the code repository. All figures were 
produced using Matplotlib57. All statistical tests used were nonpara-
metric, either Mann–Whitney U tests for unpaired comparisons (man-
nwhitneyu from scipy.stats) or Wilcoxon signed-rank tests for paired 
comparisons (wilcoxon from scipy.stats). All analysis code and source 
data are available. A report with the statistics of all reported numeri-
cal distributions and the exact P values for statistical comparisons is 
available in the Supplementary Information.

Lightsheet imaging data preprocessing
Imaging stacks were saved as hdf5 files and directly input into suite2p, 
a Python package for calcium imaging data registration and ROI extrac-
tion58. We did not use suite2p algorithms for spike deconvolution. 
Because the planes were spaced by roughly 10 µm, we ran the detection 
on individual planes and did not merge ROIs across planes. Parameters 
used for registration and source extraction in suite2p can be found 
in the shared analysis code. The parameter specifying the thresh-
old over noise that was used to detect ROIs (threshold_scaling) was 
adjusted differently from acquisition to acquisition to compensate for 
the variability in brightness that we observed from fish to fish. From 
the raw fluorescence traces saved from suite2p (F.npy file), change 
in fluorescence activity relative to baseline fluoresence (∆F/F) was 
calculated by taking the baseline fluorescence ΔF as the average fluores-
cence in a rolling window of 900 s to compensate for a small amount of 
bleaching that was observed in some acquisitions. The signal then was 
smoothed using a median filter from scipy (medfilt from scipy.signal), 
and Z-scored so that all traces were centered on zero and normalized 
to a standard deviation of 1. The coordinate of each ROI was taken as 
the centroid of its voxels. To obtain a common coordinate system for 
all lightsheet experiments, for each experiment, we manually defined 
a point, over three axes, corresponding to the midline of the fish on the 
anterior–inferior limit of the aHB, and transformed all coordinates so 
that this point was set to 0.

Behavior data preprocessing
The behavioral data were preprocessed using the bouter package to 
detect swims and extract their properties59. First, the tail trace was 
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processed with a function that reconstructed terminal tail segments 
that were mistracked during online tracking. This was performed using 
an interpolation based on an extrapolation from the reconstructed seg-
ments angles and the tail angles at previous time points. Then, tail angle 
was recomputed, and vigor was calculated as the standard deviation 
of the tail angle trace in a rolling window of 50 ms. Swims were defined 
as episodes when the vigor crossed a threshold of 0.1 for all fish. For 
all swims, we then computed the laterality index as the average angle 
of the tail during the first 70 ms of the swim. This value correlates well 
with the angle turned by a fish when swimming freely14,18. To classify 
right, left and forward swims, we fit a trimodal gaussian distribution to 
the histogram of swim laterality indexes, enforcing the two side curves 
to be symmetric. We then used the intercept of the central and lateral 
gaussians to determine the threshold used for the swim classification 
(± 0.239 rad).

For eye tracking, the video recording of the entire experiment was 
processed using DeepLabCut 2.0 (refs. 60,61), a Python pose estimation 
package based on DeeperCut62, to detect four points evenly spaced on 
each eye in each frame. Eye angle was defined as the median angle of 
the segments that connected the rostral-most point of the eye with all 
of the others. Gaze direction was defined as the average of the angles 
obtained for the two eyes.

Detecting r1π neurons
r1π ROIs were first observed to be the those with the highest anticor-
relation with other ROIs in the dataset. Therefore, for detection of r1π 
ROIs, in each experiment we computed the correlation matrix of all 
traces and selected ROIs that had a correlation below a given threshold 
with at least one other ROI in the dataset. The threshold was manually 
adjusted for each fish to include as many ROIs that were part of the 
network as possible, while excluding other signals. For all fish, this 
threshold was between −0.75 and −0.5. To confirm the selected ROIs 
were convincingly part of the r1π network and that we were including 
enough cells from it, we performed principal component analysis over 
time using only traces from the selected ROIs, and we then looked at 
the projection of all ROIs onto the first two PCs. When a satisfactory 
threshold was chosen, most included neurons formed a circular pattern 
in PC space (Extended Data Fig. 1g,h).

Because some additional ROIs were occasionally included, we per-
formed an additional manual selection step on the correlation matrix 
of the cells. We performed optimal sorting of the traces on the basis of 
their angle in PC space, and then plotted the correlation matrix using 
the same sorting. Some traces were then excluded on the basis of the 
amount of discontinuity they would produce in the matrix.

We note that other approaches could be used to parse out those 
cells, such as restricting the anatomical location in which to find them, 
or including cells on the basis of the proximity to a ring fit in PC space. 
We used only anticorrelation and exclusion from the correlation matrix 
to avoid circular reasoning in our reported observations. Future inves-
tigations on this system may involve procedures that use the highly 
constrained dynamics of r1π neurons to isolate them from the rest of 
the network.

With our strategy, we detected a r1π network in approximately 
20–30% of the imaged animals. In the remaining fish, behavior was 
sometimes very rare (a few swims over the entire experiment) or not 
very directional (only forward swims were performed). In other fish, 
even if their behavior was sufficient, the anticorrelation criterion could 
only locate a handful of strongly anticorrelated neurons. Although 
those neurons were likely to be of the described network because their 
activity state changed with the occurrence of directional swims, the 
low number of ROIs made it impossible to properly characterize their 
population dynamics. Finally, in some fish, the rotatory dynamics was 
observable only in a small temporal interval of the experiment, and 
they were not included in the dataset.

Calculation of rotated PCs. We developed a method of registering PC 
projections from one fish to the other in a manner that was consistent 
with the anatomical distribution of the r1π cells. After computing PCs 
over time for the r1π neurons, we (1) fit a circle to the projection of all 
cells using a Python hyper least square algorithm63 and (2) rescaled 
and translated the PCs to make the circle centered on (0, 0) with a 
radius of 1.

Then, we computed a weighted average across all of the vec-
tors representing ROIs in this two-dimensional space, weighted by 
their location in the rostrocaudal and the left–right anatomical axes 
(Supplementary Fig. 1a,b). As a result, we obtained two vectors, one 
pointing in the direction of the most-rostral ROIs, and the other in 
the direction of the rightmost ROIs. We then rotated and flipped each 
fish’s projection so that those two axes matched across fish, that 
is, the sum of the absolute magnitude of the two angles’ distances 
abs(θ1) + abs(θ2) visible in Supplementary Fig. 1b was minimized 
(Supplementary Fig. 1a,b). We call the axes of this space rotated  
PCs (rPCs).

After calculating rPCs for an experiment, all ROIs were assigned 
an angle α on the basis of their position over the circle in rPC space.  
The convention used for the angle was as follows:

•	 α ∈ (−π, π]
•	 Caudal neurons had α = 0
•	 α increased when moving clockwise in the anatomical location 

of the neurons

Therefore, looking from above the horizontal plane, leftmost ROIs 
had an α of π/2, and rightmost ROIs had an α of −π/2 (Supplementary 
Fig. 1c).

To test the hypothesis that the network is anatomically organized, 
we used the Fisher–Lee definition of a circular correlation coefficient64. 
We also fit a sinusoidal curve to the distribution of the ROI’s left–right 
and anterior–posterior coordinates over the ROI’s angle in rPC space, 
and compared the fit residuals to the residuals computed over a shuf-
fle computed by randomly reassigning ROI coordinates (Extended 
Data Fig. 1i).

Network phase calculation. We derived the phase φ(t) to describe 
which part of the circle in rPC space was the most active at every time 
point (Supplementary Fig. 3a and Supplementary Video 2). For each 
frame, we computed a vector average v of all the n ROI vectors rPCi in 
the two-dimensional rPC space, weighted by the state of activation of 
each ROI f(t) (the ∆F/F at time t):

v (t) = 1
n

n
∑
i=1

fi (t) rPCi

Note that for this vector averaging, the ∆F/F of all ROIs at time t 
were clipped to their second and 98th percentiles and normalized to 
have mean 0 across the ROIs at every time point:

n
∑
i=1

fi (t) = 0

where rPCi is the two-dimensional vector of rPC scores for the ith 
neuron, and fi(t) its (normalized) ∆F/F at time t.

The network phase φ(t) is then defined as the angle φ(t) subtended 
by this vector v(t) subject to the same conventions as αi defined above 
(Supplementary Fig. 1c):

•	 φ = 0 corresponds to caudal neurons being active
•	 Increments in φ correspond to activity rotating clockwise, and 

decrements of φ to activity rotating anticlockwise
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Therefore, φ = 0 corresponded to the activation of the network 
in the rostral part, φ = π/2 to activation of the left part, φ = π/−π to 
activation in the rostral part and φ = −2π to activation in the right part 
(Supplementary Fig. 1c).

For all further analyses, the unwrapped or cumulative phase was 
used (numpy.unwrap function), that is, every discontinuity at π/−π was 
removed by adding to parts of the trace an offset 2πk for some integer k.

Calculation of average activity profile. To estimate the average 
activation profile of the network across the ring of neurons (Supple-
mentary Fig. 3), we first interpolated the neuron’s traces to a matrix 
spanning the interval −π to +π in 100 bins (Supplementary Fig. 4a). We 
then circularly shifted each column of the matrix so that the phase, and 
hence the network activation peak, was always positioned at the center 
of the matrix (Fig. 2a). Finally, we calculated the average and standard 
deviation of the matrix across the time axis. To ensure the result was not 
the consequence of the resampling procedure, we also performed the 
circular shift of the raw matrix of traces, sorted according to neurons’ 
α, and we obtained consistent results (Supplementary Fig. 4b). The 
interpolation used for the average activation profile calculation has 
not been used for other visualizations of raw traces, such as Figs. 1, 3 
and 5 and Extended Data Fig. 3.

Estimated heading calculation and correlation with phase. To 
compute estimated heading for the analysis reported in Fig. 3, we 
estimated the instantaneous angular velocity as the laterality index 
value for each individual swim (Behavior data preprocessing) and 
integrated it over time to obtain an estimated heading direction for 
the head-restrained fish.

We note that, although the relationship between the laterality 
index and the fish orientation change in freely swimming animals is 
highly linear, the slope of the linearity is not necessarily one. Further-
more, the precise extent of the tail that is tracked, the embedding 
procedure and the fact that the head is immobilized in agarose for 
our head-restrained imaging experiments are all parameters that can 
affect the precise kinematics of the tail movements and make a precise 
numerical comparison between head-restrained and freely swimming 
experiments difficult. Therefore, we did not aim at reconstructing a 
fully realistic estimated heading direction and we relied on quantifi-
cations that either captured only the correlation between estimated 
heading changes and network phase changes, or quantified the slope 
coefficient between the two quantities in relative comparisons within 
one experiment (for the visual feedback and gain change experiments).

For the results reported in Fig. 3f, we calculated, for each fish, the 
correlation between heading and phase in a rolling window of 300 s 
(ten overlaps for each window), and the same correlation but using 
a nonoverlapping 5-min epoch of the heading trace for the shuffle 
distribution. The moments reported in Fig. 3f refer to this population 
of intervals and shuffle intervals for each fish.

Swim-triggered and saccade-triggered analyses. For the direc-
tional swim-triggered and saccade-triggered analysis of Fig. 3c and 
Extended Data Fig. 7i, we cropped, for each fish, the phase around 
each event, computed a fish average for all curves with at least n = 3 
cropped samples and we subtracted the mean of the 10-second interval 
before the event.

Heading and phase slope fitting for visual feedback experiments. In 
the experiments reported in Fig. 4a–c, we wanted to quantify whether 
the presence of closed-loop visual feedback or the effect of different 
gain parameters of the closed-loop visual feedback had an effect on 
the relationship between the change in heading and the phase of the 
network. Because swims often happen in sequences and the aver-
age network phase change seemed to plateau after approximately 
10 s from the focal swim, we observed the relationship between the 

amount of phase changed in a window between 15 and 20 s after the 
swim (Δphase15–20s), and the amount of estimated heading change in 
the same interval (Δheading15–20s) (which will potentially accumulate 
the effect of other swims in the sequence). The choice of window size 
was arbitrary, and all of the results are similar using other intervals in 
the 5–20-s range. To quantify the heading and phase relationship, we 
performed linear regression on the points (Δphase15–20s, Δheading15–20s) 
points for all swims in each experimental condition (Extended Data 
Fig. 6a shows this calculation for all fish) and we compared the values 
of the regression slope across conditions (Fig. 4a,b).

Left and right swim and gaze angle regression. We performed a 
regression analysis to understand whether there was activity in the neu-
ral region related to left and right swims. Using an exponential decay 
function, we established a set of regressors by convolving an array that 
was zero everywhere and one in correspondence with either left or 
right swims (Extended Data Fig. 7a) along with an array for gaze direc-
tion (Extended Data Fig. 7e). The time constant used was 3 s; although 
this value was higher than the GCaMP6s time constant, it was chosen 
because it more closely matched the experimentally observed curves. 
The exact value of the time constant was not critical for the reported 
results. Each cell’s fluorescence trace was then correlated with both 
regressors, and the correlation values were used for the analysis and 
visualizations in Fig. 4c and Extended Data Fig. 7b–d,g,h. In the maps 
of Fig. 4c and Extended Data Fig. 7c,d, left and right swim-related cells 
were classified as such if their correlation with the left or right swim 
regressor was more than 0.7, and correlation with the other regressor 
was less than 0.7.

Multilinear regression of eye and tail to network phase. To address 
the relationship between network phase and eye motion, we used gaze 
direction, computed as the average between the angles of the two 
eyes. For regression analysis, we used gaze velocity or the instantane-
ous fish angular velocity estimated from the swim laterality indexes 
(both convolved using the same τ as in left and right swim regression), 
either alone or in combination, to fit the temporal derivative of the 
(unwrapped) network phase. Because a multilinear regression will 
probably outperform the regression using only one of the two regres-
sors just by overfitting, we crossvalidated the analysis by first calculat-
ing the regression values on a randomly drawn epoch of 5 min of the 
experiment, and calculated the correlation of the phase derivative and 
the predicted phase derivative in a test 5-min epoch, drawn randomly 
by making sure it did not overlap with the fit window. The random 
sampling procedure was repeated 500 times to obtain 500 draws, and 
the plot in Fig. 3 freports, for each fish, the moments of the correlation 
values obtained over the population of such draws.

SBEM data skeletonization. The first reconstructions of cells in the 
aHB with processes in the IPN were observed by seeding dendrites or 
axons in the IPN for reconstruction and then tracing toward the somata 
in the aHB, in the context of a (still unpublished) broader reconstruc-
tion effort. The IPN location in the EM stack was first inferred by the 
recognizable organization of the neuropil and cell somata in the rhom-
bomere 1 ventral region. Then, the location was confirmed by tracing 
axons that could be reconstructed back to the habenulae through a 
long bundle of fibers unambiguously identifiable as the fasciculus 
retroflexus by its course (unpublished data). After these first observa-
tions, additional cells with somata in the aHB were seeded on the basis 
of the similarity of their processes with already reconstructed cells. 
Skeletonization was performed manually by a team of annotators at 
ariadne.ai AG. Annotators were instructed to flag difficult locations 
without extending the skeleton at those locations, and to stop tracing 
after a total time of 2 hours was reached. At that point, or when a cell 
was completed, a quality check was performed by an expert anno-
tator. Difficult locations were then decided by the expert, and sent 
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back to the annotator team for additional tracing if necessary. This 
procedure was iterated until all cells were fully traced. The skeletons 
were then annotated to distinguish the dendrite and the axon by their 
morphological features (process thickness and presence of presynaptic 
boutons) independently by Ariadne expert annotators or the authors, 
with convergent results. All further analyses and quantifications of 
the reconstructions were performed using Python. To calculate the 
centroid position of dendrite and axon for the analyses in Fig. 6a,b, we 
took the average coordinate of the coordinates (in IPN reference space) 
of all of the branching points of dendrites and axons. To generate the 
distance plot in the bottom of Fig. 6d, we calculated, for every branch-
ing point of every neuron, the distance along the frontal and sagittal 
axis of all of the other branching points (of both axons and dendrites) 
and showed the distribution of such distances.

Although the SBEM dataset comes from a younger animal, the 
neuronal morphologies we observed appear to be mature, with exten-
sive and structured arborizations; the fiber tracts that connect the r1π 
neurons to the IPN, very prominent in the EM reconstructions, also 
appear very clearly in confocal stacks from the 7–9-dpf animal. Moreo-
ver, parts of the IPN circuitry, such as the axonal arborization from the 
habenulae, appear to be morphologically and functionally mature 
even at 5 dpf (refs. 38,40). Therefore, it is reasonable to assume that 
the morphologies observed in the 5-dpf animal from the SBEM dataset 
would be maintained at the later stages of functional experiments.

Anatomical registrations. To work with the anatomical spaces and 
their annotations, we used the BrainGlobe bg-atlasapi package65 and 
either the larval zebrafish brain reference mapZebrain66, or a custom 
laboratory reference of the aHB and IPN region created by morphing 
together stacks from different lines using either dipy67 or CMTK49. To 
visualize functional data in the references, an average anatomy was 
computed after centering all stacks with the centering point described 
in Lightsheet imaging data preprocessing, and then a manual affine 
registration was performed to the IPN reference. A similar procedure 
was used to map the EM data. From the skeletons, a density stack was 
computed in which the shape and features of the IPN were prominently 
visible. An affine matrix transformation was found to match this stack 
on the IPN reference, and this was used for transforming the neuron’s 
coordinates. The masks delimiting the IPN and the dIPN were drawn 
in the IPN reference atlas by considering the localization of habenular 
axon afferents to the region.

Two-dimensional autocorrelation of neuronal activity. For the plots 
reported in Fig. 6, two-photon microscopy images from a single plane 
in the IPN were aligned to the frontal and sagittal axes of the brain. The 
dIPNs in the images were masked by manual drawing. The area inside of 
the mask was divided into 3.5 × 3.5-µm2 bins. The average fluorescence 
signal at each bin was Z-scored. For each bin, the Pearson correlation of 
the signal traces between the focal bin and all other bins was computed 
and sorted in two dimensions by the distances between two bins in 
the frontal and sagittal axes. The correlation coefficients at the same 
distance were averaged across bins for each animal, and then averaged 
across all animals.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All of the source data used in the functional imaging analysis (raw ∆F/F 
traces, ROI maps/coordinates, behavioral traces and stimulus log from 
Stytra) and for the anatomical observations (confocal/two-photon 
stacks, EM skeletons) are available at https://doi.org/10.5281/
zenodo.6847130. Raw functional imaging data can be made available 
upon request.

Code availability
All of the scripts for stimuli generation, data preprocessing, anal-
ysis and figure generation are available at https://doi.org/10.5281/
zenodo.7715409.
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Extended Data Fig. 1 | Anatomical location of r1π neurons and PCA 
decomposition of their activity. a, Frontal, horizontal and sagittal projection of 
the expression pattern of the gad1b:Gal4 used in the imaging experiments from 
one fish. In the gray background, the expression pattern of elavl3:H2B-mCherry, 
on a second channel in the same fish. The blue shades indicate the slices of the 
stack that were averaged to obtain the views, and are centered on the location of 
the imaged GABAergic nuclei in the aHB. b, The same views for the r1π neurons 
in the imaging experiments registered in a common anatomical space (pink), 
visualized together with all the ROIs extracted from the same experiments 
(gray). OT: optic tectum, mhb: midbrain/hindbrain boundary, rh: rhombomere. 
c, Cumulative relative variance explained by the first 15 components of PCA 
decomposition over population for r1π neurons (purple) and a population 
of randomly drawn neurons from the same imaging experiments matching 
in number the r1π neurons (gray). Light lines: individual fish, dark thick line: 
population average. d, Variance explained by the first two PC components 
in the plot in (a), compared between r1π and control neurons (Wilcoxon test, 

p < 0.0001). e, Cumulative variance explained by the first 15 components of PCA 
decomposition over the time dimension, legend as in (a). f, Variance explained by 
the first two PC components in the plot in (c), compared between r1π and control 
neurons (Wilcoxon test, p < 0.0001). g, Projections over first two principal 
components calculated over the r1π neurons (in pink) of all neurons (in gray) for 
each fish, for all fish in the dataset. h, Projection of ROIs pooled from all neurons 
in the registered rPC space, color coded by their angle in the anatomical space. i, 
Fit of a sinusoidal wave to the anatomical position on the right-left position, as a 
function of the ROI phase in rPC space (left), and distribution of square distances 
of ROIs from the fit (right) (p < 0.001, Mann-Whitney U test, n = 1330 ROIs from 
31 fish). The fit was computed over 50% of the ROIs, and the residuals calculation 
over the left-out 50%. The box plot spans the range between the first and the third 
quartile, and the median is marked; the whiskers extend to the 5th and the 95th 
percentiles of the distribution. j, As in (i), for the antero-posterior axis (p < 0.001, 
Mann-Whitney U test, n = 1330 ROIs from 31 fish).
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Extended Data Fig. 2 | Circular distribution of PC projections is a feature of 
aHB. a, ROIs coarsely grouped into anatomical regions using manually defined 
borders for optic tectum, anterior hindbrain and rhombomere 2. b, For every 
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the paper.
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Extended Data Fig. 4 | Phase dynamics during directional swims. a, Network 
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examples.). Top, trajectory in phase space during a sequence of left swims (see 
tail angle in the insert). Bottom, state of activation of the network before and 
after the sequence. The four columns show four sequences of left and right 
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phase given that a forward, left, or right swim occurred (shaded areas: individual 
fish; line: population average, n = 31 fish). The distribution is flat, suggesting that 
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c, Average activation profile, interpolated and phase-centered as shown in S8, 
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averaged across all fish (bottom). d, (bottom), Quantification of the bump 
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Extended Data Fig. 7 | Motor related signals in the aHB. a, Example traces for 
right and left swims-selective neurons together with the fish tail trace (left), and 
their anatomical location (right), shown on top of a scatter plot of all ROIs from 
the same fish. The regressors are shaded below the traces, and the correlations 
of the traces with the regressors are reported in the plot. b, Correlations of all 
ROIs and r1π ROIs with left and right swims regressors. c, Horizontal, sagittal and 
frontal view showing all ROIs that have a correlation > 0.7 with a regressor for 
swims in one direction and < 0.7 with the regressor for swims to the opposite side 
(blue: left swims; golden: right swims). d, Same plot as in c, showing also all the 
r1π neurons. e, Illustration of the procedure for fitting the phase. We performed 
either linear regression or multiple linear regression to fit the network phase 
from heading and/or gaze. For the fit we used the time derivatives of those 

quantities (right). See Methods. f, Correlation of the reconstructed test phase 
and the actual phase when the prediction was performed using only the gaze 
information, using only the heading information, or a combination of both. Gaze: 
median = 0.0507, Q1 = −0.0155, Q3 = 0.125; heading: median = 0.348, Q1 = 0.139, 
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Wilcoxon test, n = 7 fish. g, Histogram of the correlation of r1π neurons with a 
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with a gaze position regressor. i, Saccade-triggered phase changes in the network 
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is shown in green. b, Individual plots of EM reconstructed neurons. Frontal 
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Extended Data Fig. 9 | r1π neuron-like activity in the dIPN. Three example 
datasets are shown. a, d, g, Traces of ROIs in the dIPN showing r1π-like dynamics, 
sorted by angle in PC space, and phase of the network (green line). The tail 
trace is shown in gray on top. b, e, h, Estimated heading direction (gold) and the 

unwrapped network phase (green). c, f, i, left, projection over the first 2 PCs in 
time of all the ROIs showing r1π-like activity, color coded by angle around the 
circle. right, anatomical distribution of the same ROIs, color coded by angle in PC 
space. The anatomy of the recorded plane is shown in the background.
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Extended Data Fig. 10 | The organization of IPN projecting neurons of the 
aHB. a, Complete frontal, horizontal and side view for the data presented in 
Fig. 6a. b, The same views, now showing only the soma locations. c, 2D auto-
correlation of the activity in the dIPN for all fish in the dataset. Each matrix shows 

the mean correlation between a focal bin and the other bins at different distances 
in a two-photon plane for each fish. The lines on the side show the means across 
each axis. d, Plots of node distances for each reconstructed neuron; those data 
were summed to obtain the panel in Fig. 6d (bottom).
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