Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A neuromarker for drug and food craving distinguishes drug users from non-users

Abstract

Craving is a core feature of substance use disorders. It is a strong predictor of substance use and relapse and is linked to overeating, gambling, and other maladaptive behaviors. Craving is measured via self-report, which is limited by introspective access and sociocultural contexts. Neurobiological markers of craving are both needed and lacking, and it remains unclear whether craving for drugs and food involve similar mechanisms. Across three functional magnetic resonance imaging studies (n = 99), we used machine learning to identify a cross-validated neuromarker that predicts self-reported intensity of cue-induced drug and food craving (P < 0.0002). This pattern, which we term the Neurobiological Craving Signature (NCS), includes ventromedial prefrontal and cingulate cortices, ventral striatum, temporal/parietal association areas, mediodorsal thalamus and cerebellum. Importantly, NCS responses to drug versus food cues discriminate drug users versus non-users with 82% accuracy. The NCS is also modulated by a self-regulation strategy. Transfer between separate neuromarkers for drug and food craving suggests shared neurobiological mechanisms. Future studies can assess the discriminant and convergent validity of the NCS and test whether it responds to clinical interventions and predicts long-term clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Study design and analytic approach.
Fig. 2: Thresholded display of the NCS.
Fig. 3: Predictive performance of the NCS.
Fig. 4: Classification of drug users versus non-users based on NCS responses to drugs and food.
Fig. 5: Cross-prediction of drug craving and food craving based on drug-based and food-based brain patterns.
Fig. 6: The NCS partially mediates the effects of intrinsic visual craving features on craving ratings.

Data availability

Data, meta-data and NCS weight maps are available for non-commercial aims at https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2022_Koban_NCS_Craving and at https://doi.org/10.6084/m9.figshare.21174256.

Code availability

MATLAB code for analyses is available at https://github.com/canlab. Custom code to train and apply the NCS is available at https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2022_Koban_NCS_Craving.

References

  1. O’Brien, C. P., Childress, A. R., Ehrman, R. & Robbins, S. J. Conditioning factors in drug abuse: can they explain compulsion? J. Psychopharmacol. 12, 15–22 (1998).

    Google Scholar 

  2. Janssen, F., Trias-Llimós, S. & Kunst, A. E. The combined impact of smoking, obesity and alcohol on life-expectancy trends in Europe. Int. J. Epidemiol. 50, 931–941 (2021).

    Google Scholar 

  3. Diagnostic and Statistical Manual of Mental Disorders 5th ed. https://dsm.psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596 (2013).

  4. Vafaie, N. & Kober, H. Association of drug cues and craving with drug use and relapse: a systematic review and meta-analysis. JAMA Psychiatry 79, 641–650 (2022).

    Google Scholar 

  5. Boswell, R. G. & Kober, H. Food cue reactivity and craving predict eating and weight gain: a meta-analytic review. Obes. Rev. 17, 159–177 (2016).

    Google Scholar 

  6. Sayette, M. A. The role of craving in substance use disorders: theoretical and methodological issues. Annu. Rev. Clin. Psychol. 12, 407–433 (2016).

    Google Scholar 

  7. Jasinska, A. J., Stein, E. A., Kaiser, J., Naumer, M. J. & Yalachkov, Y. Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci. Biobehav. Rev. 38, 1–16 (2014).

    Google Scholar 

  8. Heilig, M. et al. Addiction as a brain disease revised: why it still matters, and the need for consilience. Neuropsychopharmacology 46, 1715–1723 (2021).

  9. Berridge, K. C. & Robinson, T. E. Liking, wanting, and the incentive-sensitization theory of addiction. Am. Psychol. 71, 670–679 (2016).

    Google Scholar 

  10. Bedi, G. et al. Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol. Psychiatry 69, 708–711 (2011).

    Google Scholar 

  11. Schoenbaum, G. & Shaham, Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol. Psychiatry 63, 256–262 (2008).

    CAS  Google Scholar 

  12. Everitt, B. J., Dickinson, A. & Robbins, T. W. The neuropsychological basis of addictive behaviour. Brain Res. Brain Res. Rev. 36, 129–138 (2001).

    CAS  Google Scholar 

  13. Lüscher, C., Robbins, T. W. & Everitt, B. J. The transition to compulsion in addiction. Nat. Rev. Neurosci. 21, 247–263 (2020).

    Google Scholar 

  14. Farr, O. M., Li, C.-S. R. & Mantzoros, C. S. Central nervous system regulation of eating: insights from human brain imaging. Metabolism 65, 699–713 (2016).

    CAS  Google Scholar 

  15. Plassmann, H., Schelski, D. S., Simon, M.-C. & Koban, L. How we decide what to eat: toward an interdisciplinary model of gut-brain interactions. Wiley Interdiscip. Rev. Cogn. Sci. 13, e1562 (2022).

    Google Scholar 

  16. Schmidt, L. et al. Resting-state connectivity within the brain’s reward system predicts weight loss and correlates with leptin. Brain Commun. 3, fcab005 (2021).

    Google Scholar 

  17. Lawrence, N. S., Hinton, E. C., Parkinson, J. A. & Lawrence, A. D. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage 63, 415–422 (2012).

    Google Scholar 

  18. Ekhtiari, H. et al. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: a consensus paper on the present state of the science and the road ahead. Neurosci. Biobehav. Rev. 104, 118–140 (2019).

    Google Scholar 

  19. Venniro, M., Banks, M. L., Heilig, M., Epstein, D. H. & Shaham, Y. Improving translation of animal models of addiction and relapse by reverse translation. Nat. Rev. Neurosci. 21, 625–643 (2020).

    CAS  Google Scholar 

  20. Whelan, R. & Garavan, H. When optimism hurts: inflated predictions in psychiatric neuroimaging. Biol. Psychiatry 75, 746–748 (2014).

    Google Scholar 

  21. Krishnan, A. et al. Somatic and vicarious pain are represented by dissociable multivariate brain patterns. eLife 5, e15166 (2016).

    Google Scholar 

  22. Woo, C.-W. et al. Separate neural representations for physical pain and social rejection. Nat. Commun. 5, 5380 (2014).

    Google Scholar 

  23. Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    CAS  Google Scholar 

  24. Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from human brain activity. Nature 452, 352–355 (2008).

    CAS  Google Scholar 

  25. Huth, A. G., Nishimoto, S., Vu, A. T. & Gallant, J. L. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76, 1210–1224 (2012).

    CAS  Google Scholar 

  26. Rissman, J., Greely, H. T. & Wagner, A. D. Detecting individual memories through the neural decoding of memory states and past experience. Proc. Natl Acad. Sci. USA 107, 9849–9854 (2010).

    CAS  Google Scholar 

  27. Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171 (2016).

    CAS  Google Scholar 

  28. Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).

    Google Scholar 

  29. Eisenbarth, H., Chang, L. J. & Wager, T. D. Multivariate brain prediction of heart rate and skin conductance responses to social threat. J. Neurosci. 36, 11987–11998 (2016).

    CAS  Google Scholar 

  30. Kragel, P. A., Koban, L., Barrett, L. F. & Wager, T. D. Representation, pattern information, and brain signatures: from neurons to neuroimaging. Neuron 99, 257–273 (2018).

    CAS  Google Scholar 

  31. Reddan, M. C., Lindquist, M. A. & Wager, T. D. Effect size estimation in neuroimaging. JAMA Psychiatry 74, 207–208 (2017).

    Google Scholar 

  32. Gabrieli, J. D. E., Ghosh, S. S. & Whitfield-Gabrieli, S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85, 11–26 (2015).

    CAS  Google Scholar 

  33. Davis, K. D. et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat. Rev. Neurol. 16, 381–400 (2020).

    Google Scholar 

  34. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools). https://www.ncbi.nlm.nih.gov/books/NBK326791/ (US Food & Drug Administration, 2016).

  35. Knutson, B. & Genevsky, A. Neuroforecasting aggregate choice. Curr. Dir. Psychol. Sci. 27, 110–115 (2018).

    Google Scholar 

  36. Volkow, N. D., Koob, G. & Baler, R. Biomarkers in substance use disorders. ACS Chem. Neurosci. 6, 522–525 (2015).

    CAS  Google Scholar 

  37. Steele, V. R. et al. Machine learning of functional magnetic resonance imaging network connectivity predicts substance abuse treatment completion. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 141–149 (2018).

    Google Scholar 

  38. Noori, H. R., Cosa Linan, A. & Spanagel, R. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: a comprehensive meta-analysis. Eur. Neuropsychopharmacol. 26, 1419–1430 (2016).

    CAS  Google Scholar 

  39. Volkow, N. D., Wise, R. A. & Baler, R. The dopamine motive system: implications for drug and food addiction. Nat. Rev. Neurosci. 18, 741–752 (2017).

    CAS  Google Scholar 

  40. Tang, D. W., Fellows, L. K., Small, D. M. & Dagher, A. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol. Behav. 106, 317–324 (2012).

    CAS  Google Scholar 

  41. Ziauddeen, H., Farooqi, I. S. & Fletcher, P. C. Obesity and the brain: how convincing is the addiction model? Nat. Rev. Neurosci. 13, 279–286 (2012).

    CAS  Google Scholar 

  42. Čeko, M., Kragel, P. A., Woo, C.-W., López-Solà, M. & Wager, T. D. Common and stimulus-type-specific brain representations of negative affect. Nat. Neurosci. 25, 760–770 (2022).

    Google Scholar 

  43. Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    Google Scholar 

  44. Cosme, D., Zeithamova, D., Stice, E. & Berkman, E. T. Multivariate neural signatures for health neuroscience: assessing spontaneous regulation during food choice. Soc. Cogn. Affect. Neurosci. 15, 1120–1134 (2020).

    Google Scholar 

  45. Whelan, R. et al. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 512, 185–189 (2014).

    CAS  Google Scholar 

  46. Kühn, S. et al. Predicting development of adolescent drinking behaviour from whole brain structure at 14 years of age. eLife 8, e44056 (2019).

    Google Scholar 

  47. Potenza, M. N., Sofuoglu, M., Carroll, K. M. & Rounsaville, B. J. Neuroscience of behavioral and pharmacological treatments for addictions. Neuron 69, 695–712 (2011).

    CAS  Google Scholar 

  48. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427 (2013).

    Google Scholar 

  49. Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

    CAS  Google Scholar 

  50. Kühn, S. & Gallinat, J. Common biology of craving across legal and illegal drugs—a quantitative meta‐analysis of cue‐reactivity brain response. Eur. J. Neurosci. 33, 1318–1326 (2011).

    Google Scholar 

  51. Hanlon, C. A. et al. What goes up, can come down: novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain Res. 1628, 199–209 (2015).

    CAS  Google Scholar 

  52. Naqvi, N. H., Gaznick, N., Tranel, D. & Bechara, A. The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Ann. N Y Acad. Sci. 1316, 53–70 (2014).

    Google Scholar 

  53. Naqvi, N. H., Rudrauf, D., Damasio, H. & Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 315, 531–534 (2007).

    CAS  Google Scholar 

  54. Garavan, H. Insula and drug cravings. Brain Struct. Funct. 214, 593–601 (2010).

    Google Scholar 

  55. Bud Craig, A. D. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    Google Scholar 

  56. de Araujo, I. E., Schatzker, M. & Small, D. M. Rethinking food reward. Annu. Rev. Psychol. 71, 139–164 (2020).

    Google Scholar 

  57. Buhle, J. T. et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb. Cortex 24, 2981–2990 (2014).

    Google Scholar 

  58. Kober, H. et al. Prefrontal–striatal pathway underlies cognitive regulation of craving. Proc. Natl Acad. Sci. USA 107, 14811–14816 (2010).

    CAS  Google Scholar 

  59. Suzuki, S. et al. Regulation of craving and negative emotion in alcohol use disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 239–250 (2020).

    Google Scholar 

  60. Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011).

    CAS  Google Scholar 

  61. Yokum, S. & Stice, E. Cognitive regulation of food craving: effects of three cognitive reappraisal strategies on neural response to palatable foods. Int. J. Obes. 37, 1565–1570 (2013).

    CAS  Google Scholar 

  62. Giuliani, N. R., Mann, T., Tomiyama, A. J. & Berkman, E. T. Neural systems underlying the reappraisal of personally craved foods. J. Cogn. Neurosci. 26, 1390–1402 (2014).

    Google Scholar 

  63. Silvers, J. A. et al. Curbing craving: behavioral and brain evidence that children regulate craving when instructed to do so but have higher baseline craving than adults. Psychol. Sci. 25, 1932–1942 (2014).

    Google Scholar 

  64. Hutcherson, C. A., Plassmann, H., Gross, J. J. & Rangel, A. Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. J. Neurosci. 32, 13543–13554 (2012).

    CAS  Google Scholar 

  65. Steele, V. R. Transcranial magnetic stimulation as an interventional tool for addiction. Front. Neurosci. 14, 592343 (2020).

    Google Scholar 

  66. Rosenberg, M. D. & Finn, E. S. How to establish robust brain–behavior relationships without thousands of individuals. Nat. Neurosci. 25, 835–837 (2022).

    CAS  Google Scholar 

  67. Franken, I. H. A., Hulstijn, K. P., Stam, C. J., Hendriks, V. M. & van den Brink, W. Two new neurophysiological indices of cocaine craving: evoked brain potentials and cue modulated startle reflex. J. Psychopharmacol. 18, 544–552 (2004).

    Google Scholar 

  68. Creswell, K. G. et al. Assessing cigarette craving with a squeeze. Clin. Psychol. Sci. 7, 597–611 (2019).

    Google Scholar 

  69. Lopez, R. B., Ochsner, K. N. & Kober, H. Brief training in regulation of craving reduces cigarette smoking. J. Subst. Abuse Treat. 138, 108749 (2022).

    CAS  Google Scholar 

  70. Naqvi, N. H. et al. Cognitive regulation of craving in alcohol-dependent and social drinkers. Alcohol. Clin. Exp. Res. 39, 343–349 (2015).

    Google Scholar 

  71. Boswell, R. G., Sun, W., Suzuki, S. & Kober, H. Training in cognitive strategies reduces eating and improves food choice. Proc. Natl Acad. Sci. USA 115, E11238–E11247 (2018).

    CAS  Google Scholar 

  72. Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).

    CAS  Google Scholar 

  73. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267–288 (1996).

    Google Scholar 

  74. Wager, T. D., Atlas, L. Y., Leotti, L. A. & Rilling, J. K. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. J. Neurosci. 31, 439–452 (2011).

    CAS  Google Scholar 

  75. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    CAS  Google Scholar 

  76. Pauli, W. M., O’Reilly, R. C., Yarkoni, T. & Wager, T. D. Regional specialization within the human striatum for diverse psychological functions. Proc. Natl Acad. Sci. USA 113, 1907–1912 (2016).

    CAS  Google Scholar 

  77. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage 46, 39–46 (2009).

    Google Scholar 

  78. Schaefer, A. et al. Local–global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the National Institute on Drug Abuse (R01DA043690 to H.K.) and a Campus France Marie Sklodowska Curie co-fund fellowship (PRESTIGE-2018-2-0023 to L.K). Collection of the datasets included herein was funded by R01DA022541 (principal investigator (PI): K. Ochsner), P50AA012870 (PI: J. Krystal) and P20DA027844 (PI: M. Potenza). We thank everyone who supported the collection of these data. We also thank N. Vafaie for help with data management and transfer.

Author information

Authors and Affiliations

Authors

Contributions

H.K. designed the experiments and collected the data. L.K. analyzed the data, created the figures and wrote the first draft of the manuscript. H.K. and T.W. conceived the project, obtained funding and supervised the project. All authors contributed to the writing and editing of the paper.

Corresponding authors

Correspondence to Leonie Koban, Tor D. Wager or Hedy Kober.

Ethics declarations

Competing interests

None of the authors has competing financial or non-financial interests.

Peer review

Peer review information

Nature Neuroscience thanks Elliot Stein, Sonja Yokum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Supplementary Tables 1–4

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koban, L., Wager, T.D. & Kober, H. A neuromarker for drug and food craving distinguishes drug users from non-users. Nat Neurosci 26, 316–325 (2023). https://doi.org/10.1038/s41593-022-01228-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01228-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing