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Hippocampal representations of foraging 
trajectories depend upon spatial context

Wan-Chen Jiang    1 , Shengjin Xu1,2 & Joshua T. Dudman    1 

Animals learn trajectories to rewards in both spatial, navigational contexts 
and relational, non-navigational contexts. Synchronous reactivation of 
hippocampal activity is thought to be critical for recall and evaluation of 
trajectories for learning. Do hippocampal representations differentially 
contribute to experience-dependent learning of trajectories across spatial 
and relational contexts? In this study, we trained mice to navigate to a hidden 
target in a physical arena or manipulate a joystick to a virtual target to 
collect delayed rewards. In a navigational context, calcium imaging in freely 
moving mice revealed that synchronous CA1 reactivation was retrospective 
and important for evaluation of prior navigational trajectories. In a 
non-navigational context, reactivation was prospective and important for 
initiation of joystick trajectories, even in the same animals trained in both 
contexts. Adaptation of trajectories to a new target was well-explained 
by a common learning algorithm in which hippocampal activity makes 
dissociable contributions to reinforcement learning computations 
depending upon spatial context.

A critical problem for an animal, or, in general, an agent, is to learn 
how to forage for desired outcomes such as water or food (more gen-
erally, a ‘reward’). Learning how to refine behavior so as to reliably 
obtain reward through experience is the core question addressed by 
reinforcement learning (RL) theory1. The problem is particularly acute 
when rewards are sparse and/or distal—for example, problems requir-
ing navigation to intercept a distant spatial reward location or when 
a specific, non-navigational action or sequence of actions is required 
for reward.

Neural activity in the dorsal hippocampus is thought to provide 
rich and flexible representations of recent experience critical for 
learned spatiotemporal associations among locations, stimuli and 
outcomes2. Neural activity in dorsal CA1 (dCA1), a key node in the 
hippocampal–entorhinal circuit, is organized at multiple spatiotem-
poral scales. Individual principal cells in dCA1 tend to be active in 
circumscribed regions of space (‘place cells’ with ‘place fields’)3 with a 
broadly distributed propensity for activation4 that allows for efficient 
representation of spaces differing by orders of magnitude5. On a time 
scale of seconds, ensembles of place cells are organized into brief 

sequential bouts of activation as an animal actively navigates through 
an environment6. Similar temporal patterns of activity are associated 
with non-spatial dimensions in tasks requiring an animal to associate 
distinct stimuli7, track changing sensory input8,9 or measure elapsed 
time10,11. In both spatial/navigational and non-spatial contexts, these 
representations on the order of seconds are proposed to reflect a 
cognitive map—a representation of the relations between states of 
the environment12,13.

When animals are not actively moving14,15 or are asleep16, large 
ensembles of dCA1 neurons burst in brief synchronous population 
events (SPEs) that occur for durations on the order of 150 ms and tend 
to be associated with sharp-wave ripples (SWRs) in the local field poten-
tial17. SPEs have been shown to reactivate populations of dCA1 neurons 
that were recruited during active navigation14,15,18 or states of active 
behavior while stimuli were encoded in non-spatial tasks19. In diverse 
memory tasks and species, perturbation experiments have implicated 
each of these components of the dCA1 spatiotemporal representa-
tion in aspects of learned behavior20–23. SWRs have been associated 
with functions ranging from memory recall24 to consolidation22 to 
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A common algorithm accounts for learning across task 
contexts
To understand how mice shifted their foraging trajectories to inter-
cept more eccentric targets after a change in location, we extracted 
individual foraging runs made by the animal immediately after a target 
transition. In individual sessions and across the data in aggregate, mice 
smoothly shifted their trajectories to take longer paths that were more 
likely to intercept the new target location (Fig. 2a–d). We found little 
evidence for a sudden jump in trajectory length as would be expected 
from undirected (biased random walk) search (Extended Data Fig. 1). 
The gradual change in trajectory amplitude, fluctuations even after 
tens of trials and absence of a large, discrete switch after transition  
(Fig. 2a–d) argues against the possibility that mice were switching 
between two fixed trajectories/policies. Rather, these data suggest 
that updates to the foraging trajectory depend upon recent experience 
evaluating outcomes of a trajectory.

The challenge in designing RL models of spatial navigation that 
match animal learning stems from two key issues. First, if the space of 
possible target locations is large, then RL agents can be slow to update 
due to the ‘curse of dimensionality’36. An agent needs to sample all36 
or a sufficient number31 of discrete locations (states) to optimize its 
behavioral policy—a direct trajectory to the target. This limitation has 
typically been addressed using methods that generalize across state 
space even without sampling all states—from relatively local generali-
zation among neighboring states, such as the ‘successor representa-
tion’31, to the use of deep learning to approximate functions that span 
high-dimensional state space37. Alternatively, distinct representations 
of the task can be considered13. Second, RL methods typically use a 
stochastic behavioral policy at each moment to explore. Approaches 
that add structure to an agent’s exploration of environmental state 
space can lead to substantial performance improvements38.

Although these refinements improve performance of RL mod-
els, there are still intriguing differences from observed navigational 
behavior in animals39. For example, the highly structured trajecto-
ries in the STF task both before and after a target switch (Figs. 1 and 
2a–d and Extended Data Fig. 1a–d) are dissimilar from trajectories 
expected from agents with stochastic exploration policies and 
perseverative exploration of the prior target location (Extended 
Data Fig. 1e–g). This prompted us to consider alternative model 
representations that plausibly model animal agents but address 
these key challenges and more closely match observed behavioral 
learning after a target switch.

What might account for smooth changes in trajectory after a shift 
in target location? We previously described an RL formulation that 
exhibits smooth, continuous changes in forelimb trajectory amplitude 
consistent with behavioral learning in the NTF task (‘mean shift plus 
homeostasis’ (MeSH))35. Rather than using random exploration of 
trajectory kinematics, MeSH searches a continuous, low-dimensional 
space of trajectory amplitude. This approach successfully explained 
the relatively rapid time course of learning during closed-loop optoge-
netic feedback35, the bidirectional learning in a task very similar to 
the NTF task here40, and was consistent with a plausible biological 
implementation35. Nonetheless, it was unclear whether or how this 
approach could be modified to model foraging trajectories, especially 
navigational trajectories.

Here we describe a simple RL agent with a behavior representation 
and learning rule that can more closely match key features of observed 
foraging trajectories and their reward-dependent adaptations to a 
target switch in both task contexts (trajectory MeSH learning, ‘tML’ 
for simplicity; Fig. 2e and Methods). The tML agent uses recent reward 
experience to update two continuous parameters (speed and heading 
angle) governing the generation of dynamics that implement trajecto-
ries (Fig. 2e,f). A tML agent learned to smoothly change foraging trajec-
tory amplitude to adapt to a new target location in tens of trials (Fig. 2g)  
analogous to our behavioral observations (Fig. 2c,d). Optimizing a 

decision-making25 and are thought to act as a compressed readout of 
an underlying cognitive map representation19,26.

Several studies have observed changes in the hippocampal–
entorhinal representation of space in the vicinity of rewarded spatial 
targets27–29. This has led to influential proposals that the hippocampus 
represents a map of locations that may be used to store location of 
rewards30, and this map can be read out via SWR reactivation for plan-
ning of future reward-seeking actions or consolidation of recent experi-
ence17,25. Such models provide an elegant solution for the construction 
of cognitive maps representing reward either as a location in a spatial 
environment or a specific state in a non-spatial environment, suggest-
ing the possibility of a universal computational role of hippocampal 
cognitive maps across contexts13,31. However, the spatial context of 
an environment can also specify unique behavioral requirements. 
Executing a navigational foraging trajectory and a non-navigational 
action sequence are distinct behaviors thought to depend upon largely 
separable brain circuits for their control. Thus, although it is clear that 
hippocampal representations in navigational and non-navigational 
contexts are similar9,32, to date it is much less clear how these repre-
sentations can differ and whether they make distinct contributions 
to learning dependent upon behavioral demands.

These questions have been difficult to address because hippocam-
pal activity, behavior and targeted manipulations of hippocampal 
function have not been directly compared in animals trained in distinct 
contexts (for example, navigational and non-navigational) but with 
shared relational structures (for example, execute a foraging trajectory, 
wait for reward feedback and update parameters of future trajectories). 
To overcome this barrier, we studied two tasks in which mice had to 
execute foraging trajectories to intercept a hidden reward target in 
distinct navigational and non-navigational contexts. Imaging of popu-
lation activity in behaving mice revealed partially dissociable neuronal 
representations of foraging trajectories across spatiotemporal scales 
in dCA1. Despite the highly similar structure, the timing of task-related 
SPEs remapped from retrospective timing in a navigational context 
to prospective timing in a non-navigational context, even in the same 
animal trained in both contexts. We extend previous work to describe 
an RL algorithm that learns to adapt foraging trajectories in both con-
texts highly similar to those observed in animals. Using model-based 
analysis, we provide multiple lines of evidence that dCA1 SPEs are a 
key but context-dependent component of reinforced adaptations in 
foraging trajectories.

Results
Paired navigational and non-navigational foraging tasks
First, we describe here a self-paced foraging task in which freely moving 
mice run to an unmarked target location tens of centimeters away from 
a reward collection area (spatial target foraging (STF) task; Fig. 1a–d 
and Supplementary Video 1). Second, we modified a head-fixed operant 
task33 in which a mouse must displace a spring-loaded joystick from a 
center position to a target distance on the order of 10 mm away from 
its central resting location (non-navigational34 target foraging (NTF) 
task; Fig. 1e–h). In both tasks, the delivery of reward was dissociated 
from movement into the target location that triggered reward. In the 
STF task, this was accomplished by delivering a reward via a water port 
at a specific ‘home’ location on a wall ~30 cm away from the target loca-
tion. In contrast, in the NTF task, this was accomplished by delivering 
water reward with a 1-second delay after movement to the target area 
(forelimb movement duration ~0.5 seconds35). As the target location 
shifted, mice reliably scaled their movement trajectories to a similar 
relative extent in both tasks (Fig. 1b,f). Performance, assessed as the 
probability of collecting a reward given that a foraging attempt was 
initiated, was high in both tasks and exceeded 0.6 even for distant tar-
get locations (Fig. 1c,g). In both tasks, interception trajectories were 
variable in their angle and heading when the same animal was trained 
in both contexts (Fig. 1d,h).
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forward learning rate and a trajectory variance parameter was capable 
of producing very good agreement with behavioral data in both STF 
(Fig. 2h) and NTF (Fig. 2i) tasks, indicating that a common algorithmic 
description could be sufficient to capture behavior as mice adapted 
trajectories around a target location switch (Extended Data Fig. 1h).

Common hippocampal activity patterns independent of 
context
We next examined neural activity during performance of these 
tasks using epifluorescence imaging of dCA1 principal neuron activ-
ity with genetically encoded calcium indicators (GCamp6f) and a 
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Fig. 1 | Navigational (STF) and non-navigational (NTF) foraging tasks. a, 
Schematic representation of the freely moving STF task. Upper right inset 
shows the trial structure. Lower traces show continuous running speed traces 
and average speed trace of multiple trials from an example session. Halfway 
through a session, the original target (1, blue) was moved to a more distal 
location (2, green) without any cue. b, Change in path length of foraging runs 
as a function of target distance in STF task (1: close (blue); 2: far (green)) for all 
mice and sessions. c, Performance was estimated as the probability of correctly 
intercepting the target given that a foraging attempt was initiated (Methods). 
Average performance for the two target locations across all animals and sessions 
(1: close (blue); 2: far (green)). n = 25 sessions and N = 3 mice in b and c. d, All 
trajectories that intercepted the target (1: close (blue); 2: far (green)) are shown 
for a representative STF session. e, Schematic of the head-fixed NTF task in which 
mice moved a joystick to a hidden target location. Brief occupancy of the target 

area (~100 ms) yields an unsignaled, delayed (1-second) water reward through a 
spout. Upper right inset shows the trial structure of the NTF task. Lower traces 
show continuous joystick speed traces and average speed trace of multiple trials 
from an example session. f, Path length of joystick trajectories in the NTF task 
(1: close (blue); 2: far (green)) for two blocks that switched from a near to a far 
target location. g, Performance was estimated as the probability of correctly 
intercepting the target given that a foraging attempt was initiated (Methods). 
Average performance for the two target locations across all animals and sessions 
(1: close (blue); 2: far (green)). n = 26 sessions and N = 5 mice in f and g. h, All 
trajectories that intercepted the target (1: close (blue); 2: far (green)) are shown 
for a representative NTF session from the same animal in d. Statistical testing: 
two-tailed rank-sum test, ***P < 0.001. Box plot properties: center: median; edges: 
25th–75th percentiles; whiskers: extrema; outliers plotted individually.
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head-mounted miniscope41,42 (Methods). Many dCA1 neurons exhibit 
clear place fields within circumscribed regions of the environment. 
When an animal navigates along a reliable trajectory, this leads to a 
sequential activation of place cells6,43 that depends upon the spatial 
context44. We observed dCA1 place field activity distributed along the 
foraging trajectories (Extended Data Fig. 2). The reliable trajectories 
taken in the STF task (Fig. 1) resulted in reliable, sequentially ordered 
activity across a population of dCA1 principal neurons (n = 5,133 regions 
of interest (ROIs) × sessions; Fig. 3a–e) as revealed in an alignment of 
peri-movement time histograms (PMTHs) of activity (Fig. 3f) and appar-
ent in individual trials (Fig. 3g). Activity of a subset of individual dCA1 
neurons could be stable across days (Extended Data Fig. 3).

We observed a number of analogous properties in CA1 ensemble 
activity during the STF and NTF tasks. For example, in the head-fixed 
NTF task, the activity of dCA1 cells exhibited a similar heavy-tailed 
distribution4,5, although the calcium event rate was reduced (Fig. 3c,j; 
P ≪ 0.001, rank-sum test). The duration and peak rates of active cells 
were very similar (Fig. 3c,j,e,l). We next examined the responses of 
individual dCA1 neurons aligned to when the forelimb movement 
triggered the water reward. Alignment revealed robust time-locked 
responses in a subset of cells and sequential activation of hippocampal 
neuronal ensemble (Fig. 3m). Similarly to the freely moving STF task, 
sequential activity was robustly observed in single-trial activity during 
task performance (Fig. 3g,n).
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Fig. 2 | An RL account of trajectory changes after target switch in STF and 
NTF tasks. a, Example trajectories in STF are plotted as distance × time curves 
with intervals of immobility removed. The point of target interception is denoted 
by a green dot, and color intensity reflects whether a given trajectory attempt 
was correct (‘target’) or an error. b, Maximum amplitude of individual foraging 
trajectories aligned to the target switch in an example session. Large dots denote 
correct attempts, and small dots denote errors for a single session. c, Mean 
amplitude of foraging trajectory attempts aligned to target switch for all sessions 
(n = 25 sessions and N = 3 mice); red dot: target 1; blue dot: target 2. d, Average 
probability of a correct target interception per attempt aligned around the 
target switch. Smooth curve is a Savitzky–Golay filtered estimate. e, Schematic 
representation of the tML model (Methods). The foraging trajectory is governed 
by two dynamical outputs: heading (pink) and speed (cyan) simulated as 
functions {Θ(t) and S(t)} (Methods) as indicated and used for simulations herein. 

A learning rule is used to update the heading offset and speed scaling dependent 
upon performance feedback (‘reward’, red). f, Examples of the time-varying 
heading (pink) and speed signals (cyan) plus a learned shift (Δ). g, A simulation of 
the STF task was run exhibiting smooth adjustment of trajectory amplitude (left, 
compared to c) and probability of intercepting the target aligned to target switch 
(right, compared to d). h,i, The tML model was tested in a simulated version 
of the STF (h) and NTF (i) tasks. Left: top, a schematic of the task is shown with 
trajectories from an example simulation across the close (blue) and far (green) 
blocks; bottom, heavy line indicates the mean, and thin traces are individual 
trials. Right: best fit model (pink) performance compared to behavioral data 
(black) for the block 1 to block 2 (blue to green) transition. Shaded areas in c,d 
and g–i indicate s.e.m.; n = 10 simulations at optimal parameters (25 parameter 
pairs tested) in g–i. a.u., arbitray units; Pr, probability.
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To evaluate whether the trial-by-trial consistency of individual 
dCA1 neuron responses was related to movement, we calculated the 
reliability of a response (Methods) as a function of the instantane-
ous velocity of the body (freely moving STF task; Fig. 3d) or the limb 
(head-fixed NTF task; Fig. 3k). In both cases. we found that the reli-
ability of dCA1 responses was significantly correlated with movement 
(STF task: Fig. 3d, Pearson’s r = 0.21, P ≪ 0.001; NTF task: Fig. 3k, Pear-
son’s r = 0.41, P ≪ 0.001). Reliability of activity was lowest during the 
inter-trial interval (ITI) before movement onset (Fig. 3d,k) but elevated 
throughout the active behavior of a trial ( joystick/navigational move-
ment through anticipatory licking and reward consumption) in both 
task contexts (Fig. 3d,k). Although not possible to resolve in calcium 
imaging due to low temporal resolution, theta frequency modulation of 
forebrain local field potential was associated with performance of the 

NTF task in previously reported dorsal striatal recordings33 (Extended 
Data Fig. 4) and has been associated with related non-navigational 
behavior in hippocampus45. This suggests that forelimb movements 
reflect an active state distributed across multiple forebrain circuits46, 
perhaps analogous to freely moving navigation47.

Trajectory decoding depends upon spatial context
As noted above, place fields in dCA1 activity are apparent as sequential 
patterns of activity observed on individual trials in both tasks (Fig. 3g,n). 
There is substantial evidence that, in navigational foraging behaviors, 
dCA1 place cells tile the environment and, thereby, allow for an accurate 
encoding of allocentric position along a trajectory and the potential 
to represent target and reward locations30. A similar argument might 
be made for joystick trajectories; however, it is less clear whether the 
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sequential patterns of dCA1 activity observed during head-fixed fore-
limb movements encode joystick position.

To address this question, we trained continuous-time linear decod-
ers to examine whether trajectories could be reliably decoded in both 
task contexts (Methods). We found that navigational foraging trajec-
tories could be very accurately decoded from dCA1 activity inferred 
from calcium imaging as expected (Fig. 4) and exemplified in activa-
tion of neurons with place fields along the trajectory (Extended Data  
Fig. 2). In contrast, there was little ability to decode forelimb trajecto-
ries using inferred spiking activity in dCA1 (Fig. 4b). One concern is that 
the shorter duration of forelimb movements might render decoding 
impossible. As a positive control, we used an electrophysiological 
dataset recorded from the primary motor cortex in the same task 
and shown to provide excellent decoding48. We downsampled and 
smoothed the electrophysiological data to approximate inferred spike 
rates in calcium imaging and found that decoding performance was 
largely maintained (Fig. 4b).

dCA1 synchronous population activity remaps across contexts
Previous RL models of navigational tasks invoked a computation in 
which a given location is associated with reward receipt. Place fields 
and specialized reward responses are a critical neural representation 
for such associations30. The tML model postulates a distinct repre-
sentation in which the obtained reward is used to update a generative 
parameter governing future trajectories—a computation that could 
be well-suited to updates during an SWR-like event. The probability of 
observing SWR events is correlated with active recall of remembered 
(non-navigational) items and retrospective replay of experience in 
non-navigational contexts in human subjects19,24; however, SPEs in a 
non-navigational context have yet to be described in mice. Moreover, 
in navigational tasks, SWR events are proposed to be a mechanism for 
prospective planning of future navigational trajectories49 and retro-
spective replay of recent experience14,21; however, the extent to which 
SPEs might also encode egocentric information about navigational 
trajectories (as expected in the tML model) remains unclear 44.

Several lines of evidence suggest that SPEs observed with cal-
cium imaging correspond to SWR-associated population events 
observed in electrophysiological recordings50,51. Here we define SPEs 
as near-simultaneous activation of a significant fraction of the imaged 
population (Extended Data Fig. 5; roughly 15% of the imaged population 

within ~200 ms). Using this conservative detection approach, we 
observed SPEs at a rate of roughly 0.5 Hz throughout all of our imaging 
datasets (Fig. 5a,e), consistent with previous observations using imag-
ing50,51 or inferred SWR-associated events19. In both tasks, and analogous 
to previous observations with imaging51, we observed multiple clusters 
of dCA1 ensembles active during SPEs. On average, we observed similar 
numbers of SPE clusters per session (silhouette method): 3.6 ± 0.98 and 
3.7 ± 1.92 (s.d.) in the STF and NTF tasks, respectively.

SPEs occurred largely in the absence of movement; however, there 
was a clear difference in the timing of SPEs across spatial contexts 
even in the same mouse trained on both STF and NTF tasks. In the 
STF foraging task, we observed SPEs primarily at the termination of 
a foraging run as the mouse returned to the reward collection area 
(Fig. 5a–c), similarly to previous reports with electrophysiological 
recordings14. In contrast, in the same mouse during a non-navigational 
NTF task, SPEs were primarily observed just before initiation of a trial 
(Fig. 5e–g). The probability of observing SPEs before trial initiation 
was strongly correlated with the quality of task performance in the 
non-navigational task (Fig. 5h; ⍴ = 0.6 and P ≪ 0.001). In the navigational 
STF task, the probability of observing an SPE was enhanced on correct 
foraging runs that yielded reward as compared to incorrect attempts 
(0.77 ± 0.18 versus 0.49 ± 0.08 (s.d.); P ≪ 0.001, rank-sum test) but 
was not significantly correlated with overall performance accuracy  
(Fig. 5d; ⍴ = −0.3 and P = 0.13).

We next asked whether SPE ensembles could provide information 
about the scaling of navigational trajectories in the STF task. Neuronal 
ensembles active in SPEs tended to be recruited during execution of 
navigational and non-navigational forelimb trajectories (Extended 
Data Fig. 6); however, there was substantial variance in this relationship, 
and SPE ensembles could also contain additional information about 
the trajectory critical for learning (such as in ‘non-replay’ events52). 
Moreover, in the NTF task, ensembles recruited during the trajectory 
were insufficient to decode kinematics, suggesting that additional 
information in SPE ensembles might be critical. To capture the variance 
of individual SPEs, we projected the population vector onto its first 
principal component (PCSPE). First, by sorting imaging data according 
to loading weight on this PCSPE, one can observe distinct patterns of 
active cells during SPEs at the end of foraging trajectories. For exam-
ple, classifying trajectories into those that were counterclockwise and 
clockwise reveals distinct ensemble clusters associated with distinct 
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Fig. 4 | Decoding of behavior trajectory with dCA1 ensemble activity. a, 
Example traces showing amplitude (upper) and angle (lower) of concatenated 
foraging runs (black traces) and the performance of a linear ensemble decoder 
trained on simultaneous dCA1 activity for a single session of STF task (red 
traces). b, Summary data showing consensus decoder (Methods) performance 
(coefficient of determination, R2) in the STF (red, left) and NTF (cyan, right) 
tasks compared against a shuffled (permuted decoder weights) control (gray). 
A positive control for decoding was estimated from data in ref. 48 recorded 
in the motor cortex during performance of an NTF task variant. Data were 

downsampled to imaging rates, and decoding performance was assessed (gray 
shaded box; see Methods for details). Two-tailed rank-sum tests confirmed 
significant differences between data and shuffled controls as well as between the 
NTF and STF groups (STF: n = 25 sessions and N = 3 mice; NTF: n = 26 sessions and 
N = 5 mice) (P ≪ 0.01). c, Population imaging decoder performance in the STF task 
is plotted as a function of the number of ROIs imaged in a given session. Dashed 
line reflects the best-fit linear approximation reflecting a significant Pearson’s 
correlation (P < 0.001). Box plot properties: center: median; edges: 25th–75th 
percentiles; whiskers: extrema; outliers plotted individually.
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trajectory headings (Fig. 5i). All imaging sessions had a significant cor-
relation between PCSPE and return trajectory heading (⍴2: 0.38 ± 0.17 
(s.d.); P: 3 × 10−3 ± 6.8 × 10−4), indicating that SPE ensembles in the STF 
task encode parameters of recently taken trajectories (Fig. 5j,k).

For a forelimb movement, the amplitude of the movement is also 
thought to be represented before and at initiation of movement execu-
tion at least in cortico-basal ganglia circuits. This suggests that the 
hippocampal SPE activity before movement might also encode aspects 
of the upcoming movement. To assess this possibility, we considered 
the potential encoding of the current target block and an estimate 
of the current speed scaling parameter—a parameter of an inferred 

behavioral policy distinct from kinematics of the current movement. 
In both cases, we observed significant correlations in all mice (N = 5) 
and in 100% and 76% of individual sessions, respectively (Fig. 5l,m and 
Extended Data Fig. 7).

Effects of dCA1 perturbation depend upon context
Replay of hippocampal activity has been proposed to play a critical 
role in updating representations of value in non-navigational19 and 
spatial, navigational tasks26. Most computational work has argued 
that hippocampal activity represents environment state (location, 
time, stimulus identity, etc.30), which is then associated with inferred 
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Fig. 5 | Distinct timing of SPEs in navigational and non-navigational contexts. 
a, Example data from a session of STF task. Raster plot shows inferred spikes from 
sorted ROIs during foraging trajectories (Methods). Lower traces: running speed 
(blue) overlaid with summed spike counts across the population (red). Vertical 
dashed lines indicate detected SPEs. b, Average position aligned to trajectory 
start (blue) is overlaid with the probability of observing an SPE event (black) 
for an example session. c, For all mice (3) and sessions (25), the mean amplitude 
(distance from reward port, blue) and probability of observing an SPE (black) 
are plotted aligned to trajectory stop. d, Fraction of successful trials across the 
entire session plotted against max P (SPE) per trial for all sessions of STF task. 
Colors indicate individual animals. e, Example data from a session of NTF task as 
in a. f, The average joystick position aligned to movement start (blue) is overlaid 
with the probability of observing an SPE event (black) for an example session. 
g, For all mice (5) and sessions (26), the mean amplitude (dislocation of joystick 

from the origin, blue) and probability of observing an SPE (black) aligned to start 
of trial-initiating forelimb movement. Shaded areas in c and g indicate s.e.m. h, 
Analogous plot as d but for NTF task. i, ΔF/F transients are plotted for an example 
session and sorted according to loading onto the principal component that 
best captured ensemble activity during SPEs (PCSPE). Lower traces: the position 
relative to the reward port (gray) overlaid with color-coded lateral position 
(blue: negative; red: positive) from the water port. Distinct SPE populations were 
observed around the end of clockwise (CW; cyan) and counterclockwise (CCW; 
magenta) trajectories. j, For an example session, the return angle is plotted 
as a function of loading on PCSPE. k, Pearson correlation coefficients between 
return angle (theta) and loading onto PCSPE for all sessions. l,m, For the NTF 
task, correlations between target block (l) or mean trajectory speed (Methods; 
m) and loading on PCSPE for all sessions. Shaded bars in k–m indicate statistical 
significance.
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value. SWR-associated replay events are then argued to provide efficient 
generalization across states and/or planning future trajectories26,31,49. 
Although, it should also be noted that most SWR-associated events 
may not be replay of spatial trajectories49, and ‘non-replay’ events con-
tain information that may also be as or more critical for learning new 
goals52. The tML model exploits a lower-dimensional representation of 
non-navigational and navigational actions and, thus, invokes a distinct 
(additional) computation in which a foraging trajectory is generated 
from parameters that are updated dependent upon reward receipt. 
Consistent with this model, we found that SPE events in both STF and 
NTF task contexts encoded information about the amplitude and head-
ing of recently completed or intended foraging trajectories and were 
correlated with reward receipt (STF; Fig. 5a–c) or task performance 
(NTF; Fig. 5h) across spatial contexts, respectively. Thus, we next asked 
whether there is causal evidence that dCA1 activity at the time of SPEs 
was critical for learned updates to foraging trajectories.

We first consider the predicted changes in behavior using simula-
tions of impaired updating in the tML model in the context of the STF 
task (Table 1). An important feature of the tML model is that, even dur-
ing stable performance with a fixed target, reward receipt still actively 
stabilizes parameters35. This can be seen by comparing the change in 
trajectory parameters conditioned on whether the previous trial was 
rewarded or unrewarded (Fig. 6a; ‘no reward’ versus ‘reward’) even 
during stable behavioral performance (Fig. 6a; P(correct|attempt)). 
Given the absence of a tight correlation between STF task performance 
and SPE probability, one would expect no deficit in performance from 
optogenetic manipulations. However, if place cell sequences were 
critical for ongoing navigation, a deficit in performance or altered 
trajectories might be expected during acute inactivation. To assess 
the predicted behavioral consequences of dCA1 inactivation, we con-
sidered several possible implementations of impaired updating to 
generate a family of predictions inspired by distinct interpretations 
of neural correlates (Table 1 and Extended Data Fig. 8d).

To examine the contributions of dCA1 activity at specific phases 
of task performance required the precise control of optogenetics. 
We took advantage of a mouse line that expresses the optogenetic 
activator channelrhodopsin-2 (ChR2) in inhibitory neurons (using 
VGAT-ChR2-EYFP mice; Methods) to suppress activity of principal 
cells in dCA1 at modest light intensities53. We first performed a pair of 
manipulations in the STF task using online detection of performance. 

First, we targeted the period when the mouse returned to the reward 
collection port—that is, when SPEs occurred (Fig. 6b). We compared 
this to the period of time around when the mouse intercepted the 
target location during active navigation (Fig. 6c)—that is, when place 
cell sequences occurred—but SPEs were not detected.

The experimental manipulations targeted to the time of SPEs 
were uniquely consistent with simulations in which inactivation was 
simulated as a reversion toward a default policy on subsequent trials  
(Fig. 6a,b, Table 1 and Extended Data Fig. 8). In contrast, dCA1 inac-
tivation during active navigation around the target location did not 
produce any significant alteration in reward-dependent updating on 
a subsequent trial, nor did it produce a clear perturbation of ongoing 
movement during inactivation (Fig. 6c). These data thus provide causal 
evidence that SPEs in dCA1 at the time of reward collection are likely 
critical for updating of future trajectory parameters.

We observed distinct SPE timing in the freely moving STF 
task compared to the head-fixed NTF task. Previous work using 
lesions and pharmacological inactivation demonstrated key 
roles for dCA1 in non-navigational tasks7,54,55. The reliable timing 
of SPEs before trial initiation in the NTF task suggests that they 
could play a prospective role (planning or initiation) in forelimb 
trajectories (Fig. 5f,g). It has long been proposed that forelimb 
movement requires a ‘go’ signal specific for the timing of move-
ment initiation56 and apparent in motor cortical activity57. Thus, 
we next simulated a version of the tML model in which movement 
initiation was a probabilistic function of an inferred internal hazard 
function governing action initiation and our measured statistics 
(timing and probability; Fig. 5g) of SPE events in behaving animals  
(Fig. 7a). This model implementation yielded predicted distributions 
of initiation latency very similar to those observed in control trials  
(Fig. 7a, middle and right). However, action initiation was systemati-
cally delayed as a function of the duration of blocked SPE events in 
simulation (Fig. 7a, middle and right). These simulations thus provide 
some further quantitative evidence that observed SPE statistics are 
consistent with a role in action initiation in the NTF task.

We next examined the effect of optogenetic inactivation of dCA1 
(Fig. 7b) for two durations (brief, Fig. 7b1 and Extended Data Fig. 9a; and 
sustained, Fig. 7b2), similar to those used in tML simulations. On trials 
with optogenetic inactivation, mice substantially reduced the probabil-
ity of initiating a joystick movement and biased toward initiation after 

Table 1 | Summary of tML simulations of optogenetic perturbation effects on behavior

Simulation name Adjusted 
parameters

Logic of the adjustment Results in figure 
panels

Default policy µk+1 = µ1 Observation: Trajectory encoding in SPE ensemble and reward-dependent SPE 
occurrence and inactivation during behavior has no effect on executed trajectories 
(indicating a putative additional extra-CA1 control of navigation).

Fig. 6 and Extended 
Data Fig. 8a–c

Interpretation: No CA1-dependent updating of trajectory and behavior reverts back to a 
default (possibly extra-hippocampal) policy.

Reward not detected target_hit == 0 Observation: reward-dependent SPE occurrence. Extended Data Fig. 8d

Interpretation: Animal needs the SPE in CA1 to detect presence of reward.

Learning bias (large gain) µk+1 = µk + 10*∂µ Observation: trajectory encoding in SPE ensemble and reward-dependent SPE 
occurrence.

Extended Data Fig. 8d

Interpretation: Inhibition of CA1 SPE leads to gross misrepresentation of prior trajectory 
and, thus, an exaggerated MeSH (error-based) update.

Reduced learning (low or 
0 gain)

µk+1 = µk + [0,0.1]*∂µ Observation: trajectory encoding in SPE ensemble and reward-dependent SPE 
occurrence.

Extended Data Fig. 8d

Interpretation: Inhibition of CA1 SPE leads to inaccurate estimate of error and, thus, a 
reduced or non-existent MeSH update.

To assess potential roles of SPE-timed dCA1 inactivation, we considered several possible implementations of impaired updating summarized in the table. Parameters of MeSH update 
manipulated (see Methods and codebase) used to generate predictions are shown as well as connection to experimental data and proposed interpretation.
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and impaired update (n = 15 simulations). b, Top: schematic of optogenetic 
perturbations during different phases of STF task. Bottom left: Optogenetic 
inactivation was delivered on catch trials (≤30% of trials) in closed-loop between 
entry (reward consumption) and exit to the collection area (when SPEs were 
observed; Methods). Bottom middle: the change in trajectory amplitude 
(ΔScaling) conditioned upon whether the previous trial was unrewarded (left), 
rewarded (middle) or rewarded + laser (right) for all mice and all sessions (n = 4 
mice an N = 13 sessions per mouse). Bottom right: Probability that a given 

attempt was rewarded (P(correct|attempt)) is plotted conditioned upon whether 
the previous trial was inhibited by laser activation. Colors indicate different 
animals. c, Left: schematic of STF task and scheme for optogenetic inactivation 
experiments during navigational trajectories. Inactivation was delivered only 
on catch trials (≤30% of trials) in closed-loop after exiting the collection area and 
ceased upon exit from peri-target area (when place cell activity, but not SPEs, 
were observed). Middle: same as b (n = 4 mice and N = 7 sessions per mouse). 
Direct comparison of laser trials across conditions was also significant (Kruskal–
Wallis test, P < 0.01). Right: Trajectories summarized by mean distance from 
port aligned to trajectory start are shown for control (black) and inactivated 
(blue) trials; shaded area indicates s.e.m. The average timing of laser activation 
is shown in yellow on the right axis. There was no effect on trajectories during 
laser activation. ***P < 0.001, Kruskal–Wallis test with multiple comparison 
corrections. Box plot properties: center: median; edges: 25th–75th percentiles; 
whiskers: extrema; outliers plotted individually. NS, not significant.
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the end of optogenetic illumination (Fig. 7b1–2). When movements 
were initiated—upon release of or, rarely, during inactivation—mice 
were still capable of making coordinated movements of the joystick 
to trigger reward (Extended Data Fig. 9b), indicating an absence of a 
block of movement per se similar to perturbation during navigation 
in the STF task (Fig. 6c) and distinct from inactivation of an obligate 
structure for movement48,58.

We performed a set of controls to assess how specific this optoge-
netic inactivation effect was to dCA1. For example, we considered 
whether the modest amount of illumination could alter initiation 
or become a cue; however, visual distractor flashes and inactivation 
during reward collection in control experiments did not affect trial 

initiation (Fig. 7b3–4). Previous work demonstrated that even weak 
illumination that penetrates below the hippocampus can produce 
modest changes in activity in the underlying thalamus59. Although 
motor thalamic nuclei are located >2 mm below our fiber tips where 
blue light power is substantially reduced58, we performed an additional 
control experiment. We implanted fibers below the hippocampus and 
directly applied ~10% peak power to control for partial effects due to 
light spread. We found that this illumination, replicating potential light 
spread although at a substantially higher intensity than predicted from 
scattering60, produced no effect on movement initiation in the NTF 
task context (Extended Data Fig. 9c,d). At the same time, high-intensity 
illumination of motor thalamic nuclei can produce a profound and 
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‘go’ signal for trial initiation. Initiation is primarily determined by a standard 
assumption of an intertrial hazard function70 adapted to the average ITI and 
governing timing of self-initiation of a forelimb movement. In addition, we 
postulate that the occurrence of an SPE can increase the probability of initiation 
(see Methods for details). Using a continuous approximation to the empirical 
distribution of SPE onset times during the ITI, this model approximately 
recapitulates the distribution of initiation times in control conditions (black lines 
at middle and right). Laser inactivation was simulated as a strong reduction in 
SPE probability, with a spike in SPE probability around the offset of inactivation 
(consistent with previous observations in VGAT-ChR2 mice58). Expected timing of 
initiation during inactivation trials is plotted in blue (middle, brief inactivation; 

right, sustained inactivation). b, Schematic of the head-fixed NTF task used 
for optogenetic inactivation experiments (N = 3; also see replicate in Extended 
Data Fig. 9). Preparation was similar to Fig. 6b. On individual catch trials (≤30% 
of trials), inactivation was delivered in closed-loop 1 (b1) or 0 (b2) seconds after 
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(uncued trial start; see Fig. 1 for task details). Shaded areas in b1–b4 are the mean 
movement rates, and 0.025–0.975 CIs from 1,000-fold shuffles. Red lines indicate 
times in which a significant difference between control and inactivation were 
observed (permutation test).
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complete suppression of forelimb movements, as described previously 
for reach-to-grasp movements61.

Discussion
Many lines of evidence indicate that the CA1 region of the hippocampus 
plays a critical role in RL in both navigational12,30 and non-navigational13 
contexts. Although it is generally agreed that CA1 is a critical compo-
nent of a cognitive map of the environment, there are diverse proposals 
for the specific role of hippocampal representations in spatial memory, 
social behavior, foraging, decision- making and/or RL15,17,25,26,31,49,62. One 
critical outstanding question is whether a putative cognitive map in the 
hippocampus represents the relational structure of the environment 
independent of the spatial/behavioral context. We studied two foraging 
tasks that are highly similar in their relational structure—execute a for-
aging trajectory and wait for reward feedback and update parameters 
of future trajectories—but differ in their spatial/behavioral context. 
Although dCA1 exhibited qualitatively similar representations across 
task contexts consistent with prior observations9, direct quantitative 
comparison of the encoding of spatial information, timing of SPEs and 
effects of optogenetic inactivation point to dissociable functional roles 
for dCA1 in navigational and non-navigational contexts.

The hippocampal circuit sequentially activates a sparse ensemble 
pattern during active behavior and ‘reactivates’ these and other poten-
tial ensemble patterns as a synchronous burst of activity (SPE)17,52. These 
SPE events are thought to be a critical window into the underlying cog-
nitive map in hippocampus17,19,25,26, and it is known that SPEs can play a 
critical role in learning navigational trajectories via reinforcement20–23. 
However, it was not known whether SPEs play an analogous role in a 
non-navigational RL context in rodents, despite evidence in human 
subjects19,24. We found that SPEs were time locked to trial initiation 
in the non-navigational NTF task and time locked to successful trial 
completion in the navigational STF task, even in the same mice trained 
on each task. This difference in the timing of SPEs was consistent with 
differential effects of dCA1 inactivation at the time of SPEs in the NTF 
and STF tasks. In the NTF task, inactivation attenuated the initiation 
of target-directed forelimb movements. In the STF task, inactivation 
impaired updating of navigational trajectories on subsequent trials. 
These data provide key causal evidence for the proposed role of SWRs 
(here indexed by SPEs) in immediate (this trial or next) use for updating 
behavior19,24,25. This complements the now well-established, necessary 
role of SWRs in learning and consolidation over minutes to hours in 
navigational tasks20–22.

What might explain the difference in SPE timing and effect of 
dCA1 inactivation across task contexts? The initiation of a navigational 
trajectory involves an orienting response and locomotion initiated 
in a circuit thought to include (at least) superior colliculus and mes-
encephalic locomotor areas63. As might be expected from mutually 
exclusive actions, skilled forelimb movements are thought to be initi-
ated via distinct cortical and subcortical areas, including the premotor 
and primary motor cortical regions, motor thalamus (Extended Data 
Fig. 9c,d) and reticular nuclei48,61. dCA1 projects directly to frontal 
(premotor) cortical areas in rodents64 and may, thus, be a critical node 
in the thalamocortical circuit dynamics61 underlying the initiation 
of goal-directed forelimb movements but not a critical node in the 
midbrain structures critical for locomotion initiation. Along these 
lines, our optogenetic perturbations replicate prior work in which 
disruption of dCA1 activity does not grossly disrupt performance of 
navigational trajectories20,21.

The tasks used here require a change in trajectory after a target 
shift that, in this case, is primarily an adjustment in trajectory ampli-
tude. This implies a challenging problem for a computational solu-
tion in which key components of reward seeking are associated with a 
position in space because the sequence of place cell activity is highly 
overlapping across target locations. Hippocampal representations, 
specifically in CA1, are thought to allow for conjunctive coding of a 

reward location (that is, spatial position ⋂ reward27–29). The reward 
is in a constant (distal) location in our tasks, and, thus, it would seem 
that additional features are required in addition to a reward represen-
tation per se28 to provide a sufficient representation for learning in 
these foraging tasks. Unlike tasks that deliver reward at fixed target 
location(s)27–29 and consistent with prior work with multiple goal loca-
tions52,65, we did not find clear evidence for an enrichment of place 
fields nor enhanced decoding resolution27 in the vicinity of the target 
and little capacity to decode position during non-navigational limb 
movements. Moreover, inactivation of dCA1 activity around the time 
of target interception had no clear effect on performance in either task 
context, nor did it alter updating of subsequent foraging trajectories 
in the STF task. Taken together, our data are difficult to reconcile with 
a model in which a putative target or reward location code30 in dCA1 
place cell activity is sufficient to guide navigational trajectories in our 
tasks and suggest that alternative, complementary representations13 
and/or navigational strategies may be at play66.

Our data are, however, well-explained by a model, tML, based upon a 
prior model developed to explain learned changes in forelimb trajectory 
amplitude35. The tML model postulates that the parameters (heading and 
speed) of future navigational trajectories are updated after completion 
of a successful foraging trajectory. This may be consistent with prior 
work arguing for independent direction and amplitude encoding for 
forelimb movements48,67 and vector representations in spatial navigation 
problems in bats68 and bees69. Our model exploits a representation of 
parameters governing the generation of trajectories rather than (only) 
a representation of the spatial location of targets per se. We observed 
‘evaluative’ SPEs that carried information about the completed trajec-
tory and, thus, could be relevant for such a learning update in the STF 
task15. Inactivation of dCA1 at the time of trajectory completion indeed 
impaired the normal reinforcement-dependent updating of future 
trajectories in a manner well accounted for by the tML model. If this 
model articulated here is correct, it would suggest that SPEs participate 
in updating the parameters of a generative model for trajectories that 
may complement or further clarify previously described roles of SPEs 
in generalization or planning in a spatial cognitive map17,25.

Our study provides a computational perspective on rapid learn-
ing of trajectories that may complement spatial map-based learning 
models30,66 and could be an important component to further close the 
gap between existing RL model predictions and observed navigational 
trajectories in multiple mammalian species39. In a richer environment 
or in a distinct context, animals will also presumably use more explicitly 
spatial cognitive maps. Moreover, the change in trajectory could appear 
quite rapid in some sessions, indicating that future modeling work may 
gain further explanatory power by incorporating ‘meta-learning’ com-
ponents, such as knowledge of changing targets or task structure more 
generally. In the future, we propose that it will be critical to integrate 
generative models of foraging trajectories (putatively with learning 
as in the tML model) with other representations known to be critical 
for navigation, such as visual landmarks, memory of locations and 
contexts and path integration.
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Methods
Male and female mice, typically aged 3–6 months at the time of sur-
gery, were used in this study. Mice were housed in a reversed 12-hour 
light/dark cycle (lights on at 18:00) and tested in the dark phase. All 
procedures were approved by the Janelia Research Campus Institu-
tional Animal Care and Use Committee and were consistent with the 
standards of the Association for Assessment and Accreditation of 
Laboratory Animal Care.

Guide cannula implantation
Five male mice (three GP4.3 mice and two Ai93(TITL-GCaMP6f)-D;RO
SA26-ZtTA×Kcnd2-IRES-Cre 3G5 mice) aged 3–6 months at the start 
were used in this study. The Kcnd2-IRES-Cre 3G5 mice were gener-
ated in house in the Janelia Transgenic Core (https://www.janelia.org/
support-team/gene-targeting-and-transgenics) based upon evidence 
for Kcnd2 expression in principal neurons of dorsal CA1 (ref. 71) and are 
available upon reasonable request (Extended Data Fig. 10c). Mice were 
anesthetized under isoflurane (1.5–2%) anesthesia. A 1.8-mm-diameter 
circular craniotomy centered on AP −1.9 mm and ML +1.5 mm was 
opened with a trephine drill (1.8-mm diameter). Dura was removed, 
and the cortex above CA1 was aspirated with a 27-gauge blunt needle 
followed by a 30-gauge needle as the hippocampus was approached 
until vertical white fiber tracts were visible (Extended Data Fig. 10a). 
During this procedure, bleeding was controlled by constantly irrigating 
the exposed tissue with sterile 0.9% saline. Then, a guide cannula with 
a bottom glass window (diameter (outer): 1.8 mm and length: ~3.6 mm; 
part ID: 1050-002191, Inscopix) was placed above dorsal CA1. The guide 
cannula was affixed to the skull with dental cement (Calibra Universal 
Cement), and then a head bar72 (details can be obtained from http://
dudmanlab.org/html/rivets.html) was affixed to the skull with dental 
cement. At the end of the surgery, the top of the guide cannula was 
covered by pamafilm. A silicone adhesive (Kwik-Sil, World Precision 
Instruments) was then applied above the parafilm.

Three to four weeks after the guide cannula implantation, awake 
mice were head-fixed by a head bar holder. A inner cannula lens sleeve 
(comes with the guide cannula; inner diameter: ~1.0 mm and length: 
~4 mm) was inserted into the guide cannula first, and then a GRIN lens 
(1-mm diameter and ~4-mm length; part ID: 1050-002176, Inscopix) 
was placed into the inner cannula. A baseplate (part ID: 1050-004201, 
Inscopix) attached to the miniature microscope was positioned above 
the GRIN lens. The focal plane was adjusted until GCaMP6 fluorescence 
responses were clearly observed. Then, the mice were anesthetized by 
isoflurane, and the baseplate was affixed to the skull with dental cement.

Optical fiber implantation and optical stimulation
VGAT-ChR2-EYFP ( Jackson Laboratory, 014548, VGAT-ChR2-EYFP line 8) 
mice were used for optical stimulation. A guide cannula was implanted 
above dorsal CA1 first (same procedure as above imaging window). In 
the NTF task (N = 3 mice), at the start of each session, an optical fiber 
(200-mm core, 0.53 NA, doric) coupled with a 473-nm laser source 
(Fiberoptics) was placed into the center the guide cannula (~3-mm 
depth from the top of the cannula) and held by a stereotaxic micro-
manipulator. After each session, the optical fiber was taken out of the 
cannula, and the top of the guide cannula was covered by pamafilm. A 
silicone adhesive (Kwik-Sil) was then applied above the parafilm. In the 
STF task (N = 4 mice), an inner sleeve (~1.0-mm inner diameter, 4.0 mm 
long) was inserted into the guide cannula first, and then an optical 
fiber (200-mm core, 0.53 NA, 3 mm long, doric) was lowered down by 
a stereotaxic micromanipulator into the inner sleeve, until the ferrule 
of the optical fiber just touched the inner sleeve. The optical fiber was 
placed in the center of the inner sleeve. Then, dental cement was used 
to fix the guide tube, the inner sleeve and the ferrule of optical fiber 
together (Extended Data Fig. 10a).

In Extended Data Fig. 9c, a new batch of mice (N = 3) were trained 
to perform NTF tasks. Optical fibers were implanted above the 

hippocampus (depth: ~1 mm) in the left hemisphere and in the thala-
mus (depth: ~2.5 mm) in the right hemisphere. In Extended Data Fig. 8c, 
a new batch of mice (N = 4) were trained to perform STF tasks. Optical 
fibers were implanted above the hippocampus (depth: ~1 mm) in the left 
hemisphere (Extended Data Fig. 10b). During the session, optical fiber 
was coupled to a 473-nm laser source (Fiberoptics) to deliver light onto 
the dorsal hippocampus through the guide cannula window or through 
optical fibers directly. Then, 10-ms pulses, 25-Hz laser with power 
measured at the tip of the fiber of 2–3 mW, were delivered at different 
behavior phases with variable time length in 30% of the behavior trials. 
We chose this intensity to ensure complete suppression of illuminated 
regions of the hippocampus while minimizing effects on underlying 
thalamic nuclei59.

Behavior: NTF task
Behavioral code was implemented as described previously and run 
from a microcontroller-based system (details can be obtained from 
http://dudmanlab.org/html/resources.html). After surgery, mice were 
given 5 days of recovery before beginning water restriction (1 ml of 
water per day). After 7 days of initial water restriction, they underwent 
4–8 weeks of training. Mice were head-fixed in a custom-made head 
restraint box using the RIVETS head fixation apparatus72. The mouse’s 
front paws rested on a metal bar attached to a spring-loaded joystick, 
which had unconstrained two-dimensional maneuverability in the hori-
zontal plane, as described previously33,35. Mice were trained to displace 
the joystick to target position ranges (as represented in figures) varying 
across two blocks of trials (40 trials per block) to obtain a sweetened 
water reward delivered 1 second after each threshold crossing. An 
additional lower-magnitude block was included at the end to ensure 
that mice were not just drifting toward larger movements over time, but 
these data are not shown in figures. The reward delivery was controlled 
by a solenoid valve outside the enclosure to minimize the audible sound 
of reward delivery. Rewards were followed by a 3.3-second ITI in which 
no movements would be rewarded. There were up to 160 trials per imag-
ing session, with one water reward being available per trial. Forelimb 
movements were assessed offline to detect individual reaches based 
on the velocity of joystick movement. Note: NTF video data were not 
recorded in this dataset, but analogous performance data can be found 
online with a previous publication35.

Behavior: STF task
After surgery, mice were given 5 days of recovery before beginning 
water restriction (1.2 ml of water per day). After 7 days of initial water 
restriction, they underwent 4–8 weeks of training in the dark phase 
under incandescent red light. In this self-paced free-foraging task, mice 
were placed in a 75 cm × 75 cm box. There was a water spout on one wall 
of the box (we defined an area 20 cm × 14 cm around the water spout 
as the collection area). Mice were required to run into an unmarked 
target area (~18 cm × 14 cm) triggering the reward delivery and then 
came back to the collection area to consume the water. The next trial 
starts 2 seconds after the mice enter into the collection area. See Sup-
plementary Video 1 for an example set of trials. There were two differ-
ent blocks with two different unmarked target areas: target area1 (the 
center is ~34 cm away from the reward area) and target area2 (the center 
is ~52 cm away from the reward area). The configuration of these two 
target areas is shown in Extended Data Figs. 1d and 3b. As the target area 
shifted, mice were able to reliably adjust their movements to collect 
rewards in both tasks. There were up to 160 trials (80 trials per block) 
per imaging session, with one water reward being available per trial. 
The reward delivery was controlled by a solenoid valve outside the 
enclosure to minimize the audible sound of reward delivery.

In the STF task, the mouse’s position was recorded via a USB cam-
era mounted below the clear platform of the enclosure. In brief, a 
real-time tracking algorithm was developed in which the video frame 
was converted to black and white, subtracting a blank background 
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without a mouse, blurred, and then a standard OpenCV blob detection 
algorithm was applied with user-customizable threshold settings. The 
center of the mouse body was calculated at every frame from the center 
of the detected blob, and a running buffer of positions was tracked 
by custom software written in Processing (www.processing.org) and 
written to a file. The tracking video was synchronized to the imaging 
using a TTL signal from the tracking program to trigger data acquisition 
on the Inscopix miniature microscope (www.inscopix.com). Behavior 
videos were linearly interpolated to match the sampling rate of the 
microscope. All analysis of foraging trajectories was performed offline 
using stored position data in MATLAB 2018 (www.mathworks.com).

Data analysis: behavior
Real-time position data from either the joystick (NTF) or the tracked 
body centroid (STF) was recorded and synchronized with individual 
imaging frames (10 Hz or 17 Hz). The key hardware and custom software 
are described at http://dudmanlab.org/html/resources.html. Hard-
ware was controlled with custom scripts written in the free software 
Processing and Arduino IDE (www.arduino.cc); data were analyzed 
with MATLAB 2020b. Occasional tracking errors were removed and 
interpolated over, and then x,y position data were smoothed with a 
Savitzky–Golay filter (3rd order, 11 pts). In the case of the STF task x,y 
position is reported relative to a reward located at x = 0, y = 0 and an 
arena that spanned y = {0,600}, x = {−300,300} pixel values. Video 
resolution was ~25 pixels for 3 cm. In the case of the NTF task, joystick 
position was recorded at a resolution of ~0.1 mm.

To extract trajectories, we used a custom algorithm that used a 
threshold amplitude (10 cm) and minimum duration (1 second) to 
extract trajectories and find approximate start and stop frames of 
individual attempts. A successful attempt was defined as one in which 
a reward was triggered (target intercepted) between attempt start and 
stop. Analogous procedures were used in the NTF task; however, move-
ment speed profiles were more reliable metrics to use in the detection 
of event starts and stops. Scalar statistics of each foraging attempt 
(trajectory) were then computed from the positions (or derived values, 
angle relative to reward port, velocity, distance, etc.) between event 
starts and stops. For maximum amplitude, the first phase of move-
ment was used up to a time of ~500 ms after event start to eliminate 
miscalculation on occasional complex trajectories that lasted for 
several seconds and often covered much of the environment perimeter.

Data analysis: calcium imaging
In the NTF task, mice (N = 5) were head-fixed in a custom-made head 
restraint box using the RIVETS head fixation apparatus, and the micro-
scope was connected to the baseplate when the animal was head-fixed; after 
adjusting to the best imaging focal plane, the imaging session started. In the 
STF task (N = 3 mice), first, the microscope was connected to the baseplate 
when the animal was head-fixed; after adjusting to the best focal plane, mice 
were removed from head fixation and put into the free-moving behavior 
box. Two mice underwent imaging in both NTF and STF tasks.

Fluorescence images were acquired at 10 Hz (GP4.3 mice) or 17 Hz 
(Ai93(TITL-GCaMP6f)-D;ROSA26-ZtTA×Kcnd IRESCre 3G5 mice; www.
jax.org), and the LED power was set at 10–35% (0.1–0.35 mW) with analog 
gain of 3–3.5. To decrease the photo bleaching effect, in each session 
imaging trial segments were interleaved with non-imaging segments. 
During the imaging trial segment, the LED in the microscope was on, 
and GCaMP signals were acquired; whereas, during the non-imaging seg-
ment, the LED and imaging acquisition were off, but the behavior task still 
kept going. In the NTF task, 20 trials were recorded in each block. In the 
STF task, 40 trials were recorded in each block. All recorded calcium vid-
eos from one animal in 1 day were concatenated in Fiji. The concatenated 
video was spatially downsampled 2× and movement-corrected using 
Mosaic (www.inscopix.com). Then, the corrected video was cropped to 
remove correction artifacts and exclude areas with no GCaMP6f42 activ-
ity. The cropped video was further spatially downsampled 2× (usually 

resulting in 350 × 300 pixel videos). The CNMF-E package73,74 was used 
to automatically segment neurons from the pre-processed videos. The 
neuron ROIs from CNMF-E were manually examined and corrected. Cal-
cium signals within these corrected ROIs were extracted with CNMF-E. 
Spike trains were inferred with the deconvolution function in the CNMF-E 
package (constrained FOOPSI).

To align neurons from different days, MATLAB scripts based on 
the ANTs toolkit (http://picsl.upenn.edu/software/ants/) were used 
to register images from different days and generate the correspond-
ing transformations. Using these transformations, the neuron ROIs 
of different days were transformed to align with a common reference 
ROI. Then, pairwise correlation coefficients of spatial profiles of the 
transformed ROIs across days were computed. If the correlation coef-
ficient was greater than 0.8, this pair of ROIs was assigned as the same 
neuron on different days.

Data analysis: place fields
To analyze place fields, we identified ‘movement periods’ when the 
mouse ran in open-field arenas at the speed of ≥1 cm s−1. These criteria 
rejected small movements, such as grooming, rearing or head turning. 
We spatially binned the open-field arenas into 4 cm × 4 cm bins. To 
suppress noise, we also identified ‘foraging bins’, into which bins the 
mouse ran ≥5 times in one session. We divided the number of calcium 
transients in each foraging bin by the mouse’s total occupancy time 
there, applied a Gaussian smoothing filter (σ = 4 cm) and normalized 
each place field by its maximum value.

Data analysis: neural correlates of behavior
In brief, in both tasks, individual movements in trained mice were quite 
well-isolated (see extended traces in Figs. 1 and 3). In the NTF task, 
analysis was preceded by identifying the start and stop time of each 
individual movement. Movements were required to be at least 1 second 
in duration with at least 1 second between well-separated movements. 
Raw position data were centered around either the reward collection 
port (STF task) or the true 0 position of the joystick (NTF task). Speed 
was computed by taking a simple pointwise difference and smoothing 
with a Savitzky–Golay filter. In the NTF task, a threshold was used to 
estimate the onset and offset of movement events. A number of statis-
tics of movement were then computed from these events. Whether a 
movement event was rewarded or not was determined by looking for 
reward triggers occurring during an event. More than 95% of rewards 
could be attributed to a single well-isolated movement event in all 
sessions used for analysis.

Cross-validated PMTH alignment in Fig. 3 was determined by tak-
ing a random half of trials, sorting by time of peak response magnitude 
and then using that ROI index array to sort the held-out half of trials. 
The results were plotted in Fig. 3 for both tasks. For continuous plots 
of data shown in Fig. 3, we accomplished a hierarchical sorting of activ-
ity by first dividing ROIs around the median of average activity over 
the session and then, within each group, re-sorting by latency to peak 
response from movement onset. This array of ROI indices was used in 
all subsequent plotting.

In Fig. 5 and Extended Data Fig. 7, we calculated the principal com-
ponents of population activity or specifically around the period of 
time during which SPEs occurred to bias toward variance in ensemble 
patterns during SPEs. In the latter case, we detected SPEs as described 
in Extended Data Fig. 5, took brief windows (±250 ms; similar results 
with ±125 ms, not shown) of activity (ΔF/F) and concatenated all 
SPE-triggered windows into a single matrix. We then computed the 
principal components of this matrix where the leading component is 
denoted as ‘PCSPE’.

Data analysis: decoder and classifier construction
To decode the continuous behavior from inferred spikes in the imaging 
data, we took an approach we recently described48 that is inspired by 
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the use of committee machines in machine learning. In brief, we sought 
to identify a linear decoder to estimate the joystick movement or body 
position. The decoder defines linear mapping (Wdecode) between the 
neural population activity and the two-dimensional position:

K = FT ⋅Wdecode

where F is the data matrix comprising the population vector of spike 
counts with the dimension of the number of units concatenated across 
all time bins and trials in the training dataset. The matrix K comprises 
two vectors each corresponding to the decoded position ({x,y} or 
{angle,radius}). We solve for Wdecode as Wdecode = (FTF)*FTK using the 
Moore–Penrose inverse on a subset of randomly permuted and con-
catenated trials. This approach yielded noisy decoder performance on 
cross-validation. To reduce noise and provide better generalization, 
we computed a family of linear decoders from N folds of P permuted 
trials. Typical values were N = 50 and P = 75. We then took the mean 
of the family of decoders (N × number of units) to yield a ‘consensus’ 
decoder. Decoding performance is illustrated with this consensus 
decoder applied to a unique permuted sequence of trials; see also ref. 48.

Data analysis: perturbation effects on STF task
To assess the effects of optogenetic inactivation of hippocampal neu-
ronal ensemble on STF task, we extracted each individual foraging tra-
jectory run as described above. We then identified runs that contained 
a laser perturbation either in the collection area immediately after run 
termination or during interception of the target area. For each run tra-
jectory, we then computed its maximal amplitude and initial angle and 
calculated the change (delta) in amplitude and heading angle relative to 
the prior trial. The analyses conditioned each delta for trial i on whether 
trial i−1 was unrewarded, rewarded or reward+laser inactivation and 
took the session-wise mean for each of the three conditionals. Box plots 
shown in the figures represent the distribution of session-wise mean 
effects across animals and sessions. Significance testing was performed 
by calculating the Kruskal–Wallis test and reporting P values. Multiple 
comparison corrections for repeated measures from individual mice 
were performed using the kruskalwallis function in MATLAB and the 
returned ANOVA table. The same analysis approach was used for all 
perturbation types and for the analysis of tML model trajectories (see 
below). Reported P values are for the main effect of prior trial type 
(unrewarded, rewarded and perturbed) with correction for multiple 
comparisons.

Data analysis: perturbation effects in NTF task
To assess the effects of optogenetic inactivation of hippocampal neu-
ronal ensemble on NTF task, forelimb movements were aligned with the 
reward event (Fig. 7b) within 12 seconds after that event. Because only 
~30% of trials were inactivation catch trials, we randomly resampled 
(with replacement) k trials of the aligned movement from the catch and 
control trials, respectively, where k is the number of catch trials. Then, 
we used the aligned movement in the resampled catch and control 
trials to compute their post-event time histograms (PETHs) of move-
ment. To statistically evaluate the difference in PETHs between catch 
and control trials, we repeated the resampling and PETH calculation 
procedure 1,000 times. Mean PETHs and 95% (2.5–97.5%) confidence 
intervals (CIs) of PETHs under inactivation and control conditions were 
calculated with the 1,000 resampled PETHs. To remove transient noise, 
only the time spans greater than 200 ms and no overlapping between 
the 95% CIs were marked with red horizontal lines in Fig. 7b to show 
when inactivation significantly affected NTF behavior.

Computational modeling: tML agent
The tML agent model is based around the idea that an agent can learn 
to scale the parameters of a structured representation of foraging 
trajectories. For a central place forager, we might demand a trajectory 

that forms a closed out-and-back loop that begins at a ‘home’ location, 
transits through an extrema and returns home. The goal of the learning 
agent is to update the heading and amplitude of this trajectory so that 
it reliably intercepts a target location according to the specific rules 
of the environment. For example, interception may need to occur at 
the trajectory extrema or perhaps anywhere along the trajectory or 
perhaps for some fixed duration. In the specific cases for this study, we 
consider interception at any point along the trajectory (STF task) and 
for a fixed, brief duration (NTF task) that correspond to the practical 
requirements of our real-time behavior analysis used in the experi-
mental task designs. We note that similar results to those reported 
have been obtained with a range of different simulated environments.

Returning to the notion of a structured, closed-loop trajectory, 
we consider the problem as a control signal that determines behavior 
at each time step. First, considering a locomoting animal, at each time 
step we assume that it is governed by a heading angle and an instan-
taneous speed. Under such a model, a closed-loop trajectory will be 
produced by a smooth rotation in heading angle (a linear function 
from −pi to pi). For a fixed speed, this would produce a rotation about 
a circle. However, to produce the observed, roughly elliptical paths, 
speed is inhomogeneous and reaches maxima along specific heading 
angles—outward runs (pi/2) and return runs (−pi/2). Given the expected 
bell-shaped distribution of speeds that minimize jerk along a trajectory, 
this can be modeled as a sequence of Gaussian speed profiles. These 
dynamics for heading and speed can be generated by an artificial neural 
network, but, for simplicity, we have used simple generative functions 
perturbed by noise. A schematic of the model architecture can be found 
in Figs. 2, 6 and 7.

Θ(t) = L(−π,π) + ω[i] + ε (1)

S(t) = G(tau,σ) × a[i] + ε (2)

where L is a linear mapping across the range {−π, π} spanning time t, 
and ω[i] is the heading offset sampled from a distribution of mean Ω[i] 
and constant variance for each trial i. G is either a single (NTF) or double 
(STF) peaked Gaussian function with offsets tau = {tau1}or {tau1, tau2} 
and width σ, scaled by a gain a[i] sampled from a distribution with a 
mean A[i] and constant variance for each trial i. ε is a normally distrib-
uted and smoothed noise term matched to observed variability in 
observed behavioral trajectories.

Given a model of structured trajectories defined by continuous 
speed (S(t)) and heading (θ(t)), the learning problem for an agent is 
to learn to scale the amplitude (A(i)) and orientation (Ω(i)) offsets of 
trajectories trial by trial to reliably intercept target locations. Behav-
ioral data indicated bidirectional and rapid learning for changes in the 
scaling of movement trajectories; thus, we used a modified version 
of a learning rule (MeSH) previously described to account for rapid, 
bidirectional movement scaling35,40.

A[i + 1] = A[i] + α(a[i] − A[i])υ[i] − β(a[i] − A[0])) (3)

Ω[i + 1] = Ω[i] + α (ω[i] −Ω[i]) υ[i] − β (ω[i] −Ω[0])) (4)

where i is the index of the ith trial; υ[i] is a smoothed estimate of the 
local reward rate; and a[i] is the magnitude of the speed on the current 
trial as sampled from a normal distribution centered on A[i] with rate 
parameters α and β. Learning rate parameters and the standard devia-
tion of the distribution 𝒩𝒩(A,σ) were explored using grid search optimi-
zation. The equivalent learning rule is also expressed for Ω(i) in Eq. 4.

To account for effects of inactivation, we considered two imple-
mentation modifications to the tML model corresponding to the 
distinct behavioral context of the STF and NTF tasks (Discussion). 
Simulation data and schematics depicting these model formulations 
are shown in Table 1 and Figs. 6 and 7.
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First, we consider the STF task in which CA1 SPEs were observed 
immediately upon completion of a foraging trajectory and return 
to the reward location. The critical computation for learning in the 
tML model is the MeSH update (Eq. 3) that depends upon the signed 
difference between the current trial speed, a[i], (or heading) and the 
current policy speed, A[i], (or heading). A precise circuit mechanism 
for this computation is unclear and beyond the scope of the current 
study, but one possibility consistent with our experimental data is 
that CA1 SPEs encode information about the current trajectory. In 
such a formulation, we consider a model in which the SPE is necessary 
to update the policy, and, in the absence of an SPE, the policy reverts 
to its default A[0].

Second, we consider the NTF task in which CA1 SPEs were observed 
just before initiation of a joystick movement. Again, we postulate that 
the occurrence of an SPE is critical for a learning update; however, we 
note some key differences in the control of skilled forelimb movements 
as contrasted with navigational trajectories (Discussion). Previous 
modeling work in the context of tasks like the NTF task have been con-
sistent with the possibility that the putative MeSH update is produced 
in the form of an eligibility trace at the time of movement initiation35,40. 
Here, we consider the additional possibility that movement initiation 
is facilitated by the occurrence of a CA1 SPE. We note that this would 
be a particularly useful formulation to ensure that a viable eligibility 
trace is present when movements are initiated given the width of the 
distribution of movement initiation times and relatively low frequency 
of SPEs of about 1 Hz. To model such an initiation process, we generated 
a hazard function that matched the observed latency distribution and 
determined the probability of initiating a trial. The hazard function is 
given by:

H = g(μ,σ)/1 − G

where g is a Gaussian function with mean of 3 seconds and  
standard deviation of 0.48 seconds. G is the cumulant density of g. 
Individual trial latencies were determined by sampling a uniform 
random variable for the timepoint at which it exceeded probability 
H, if an SPE had occurred. We used the observed empirical distribu-
tion of intervals between SPEs for all datasets to draw event times  
for an SPE. In the case of optogenetic inactivation, we assume that 
the probability of an SPE was reduced by ~75% but also resulted in 
an SPE with high probability at offset of inactivation due to rebound 
excitation58.

For simulations of a standard Q agent (Extended Data Fig. 1e,f) 
to examine exploration around a target switch, we assumed a con-
verged, optimal value estimate and simulated trajectories using a 
standard ε-greedy simulated agent36. For shown simulations, ε = 0.1, 
0.4 or 1 (that is, random walk agent). Notes: (1) Qualitatively similar  
results are obtained by training models to criterion; however, it 
requires large numbers of trials that exceed total experience of  
mice; (2) The simulations are not the full task and do not have a mecha-
nism for returning to reward collection location. This has not, to our 
knowledge, previously been modeled, and it is neither clear how 
it should be implemented nor whether it continues to exhibit the 
optimal convergence properties that make Q learning attractive in 
the first place, because some switching dynamics of the action–value 
function are implied; and (3) A deterministic Q agent with an optimal 
value function never obtains reward after a target switch and, thus, 
is not shown.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The imaging data used in this manuscript will be made available at 
https://janelia.figshare.com/; 10.25378/janelia.21539676. A compiled 
set of links to data, supporting files, hardware information, and code 
can be found at https://tinyurl.com/Wanchen2022.

Code availability
Code for running simulations in this study is available at https://github.
com/dudmanj/tML and/or http://dudmanlab.org upon publication.
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Extended Data Fig. 1 | Exploration trajectories around target switch in 
example mouse behavior and version of optimal Q agents. a-c, Example data 
from 3 different mice illustrating a set of 10 trajectories before and after target 
switch. Thick lines indicate rewarded attempts. d, 10 rewarded trial trajectories 
around a switch in the target location (cyan, before; red, after). Illustrate the 
smooth scaling of trajectory amplitude after switch. One can also see the ‘stub’ 
of a return trajectory after a failed (unrewarded) run after the switch and then 
an immediate increase in trajectory amplitude in response. e-h, Simulations 
of an epsilon-greedy RL agent model exploiting an optimal action-value 
representation (that is product of Q learning) in the STF task. Upper panels show 
20 simulated colored trajectories to target under optimal policy (policy shown in 
small heatmaps below). Lower graphs are the number of discrete steps (actions) 
taken to reach the target plotted as the log action count (path length). e, epsilon 
set to a typical value in the field of 0.05 exhibiting perseverance around the prior 

target on initial trials after a switch that leads to a consistent, large increase 
in path length. f. for comparison a random agent is shown (epsilon=1; policy 
irrelevant but shown for consistency). g, an optimal agent is shown exhibiting 
extremely long paths and perseveration around prior target when target is 
moved to a more distal location. Epsilon increased to 0.4 because agents with 
too low epsilon never find the new target on first attempts. Note: even in e with 
standard target locations epsilon = 0 + optimal policy on target 1 yields agents 
that fail to ever discover new target (See Methods). Simulations are not full STF 
task (agent not required to return to reward location). Since most innovations 
in RL are related to more rapid and accurate convergence to optimal policies in 
large state spaces, we are effectively simulating consequences for exploration 
around a sudden change in target location in optimal models (in this sense). 
h, Comparison of a simulated session from model and an example session of 
trajectories to the near and far target locations.
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Extended Data Fig. 2 | Example place fields distributed along foraging 
trajectories. a, Place fields of 6 example neurons overlaid on the average 
foraging trajectory in an example STF session. Dashed rectangle: target area; 
Solid rectangle: collection area; Closed circle: average of foraging trajectories; 

Top left number: ROI id number. b, Locations of calcium spikes from the example 
neurons in the same session as (a). Each dot marks the location of one calcium 
spike from a neuron. These neurons were sequentially activated along the 
foraging trajectories. Top right: neuron identity pseudocolor legend.
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Extended Data Fig. 3 | Stable imaging of individual dCA1 neurons across days. 
a, Example response images (maximum intensity projection - average intensity 
projection) of the same field of view across days. Left: aligned response image on 
Day 1 overlaid with the ROIs detected on both days; Middle: reference response 
image on Day 2 overlaid with ROIs detected on both days; Right: pseudocolor 

overlay of the response images on both days. b, Stable place fields of 6 example 
neurons across days. Dashed white rectangle: target area1; Solid red rectangle: 
target area2; Solid white rectangle: collection area; Top left number: neuron 
identity with the same color as that of its ROI in (a).
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Extended Data Fig. 4 | Forebrain activity was modulated at theta frequency 
in NTF task. Data from a 64-channel probe recording from dorsal striatum in the 
joystick task from previously published data32. The mean amplitude envelope of 
filtered LFP signal (bandwidth: 4-12 Hz) is plotted for all 64 channels averaged 

across all joystick movements. Lower plots show the mean amplitude envelope 
change across all trials; all channels (cyan) compared to the mean joystick 
movement (red; sampled at 1 kHz). Note: second peak in theta envelope is around 
the time of mean reward delivery (1 second after threshold crossing).
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Extended Data Fig. 5 | Detection of SPE events. a, Histograms of synchronized 
neurons in an example NTF session and in its corresponding shuffled datasets. 
The shuffled datasets were generated by shuffling the spike-timing but keeping 
the interspike intervals for each neuron and repeating the shuffling procedure 

1000 times. Shaded blue line: mean ± s.e.m of the 1000 shuffled datasets; 
Magenta dashed line: statistical threshold for SPEs detection. Any imaging frame 
with more synchronized neurons than the threshold was detected as a SPE (Fig. 
5e). b, same as (a) but for an example of STF session (Fig. 5a).
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Extended Data Fig. 6 | Comparison of activity of individual neurons along 
foraging trajectory and those in SPEs for STF task (a) and for NTF task (b). 
Each dot represents one ROI. Inferred spike times (see Methods) were used to 
compute the probability of observing a spike either during the trajectory (x-axis) 

or in the window of time of elevated SPEs (y-axis; see Fig. 5 for elevated SPE 
probability windows). Color codes reflect different sessions / mice from which 
individual spike probabilities were obtained.
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Extended Data Fig. 7 | Example session data for SPE encoding of NTF task 
blocks. a, A matched number of SPE events were retrieved from each Block of 
the NTF task and concatenated into a single matrix. The indexing of ROIs along 
the y-axis is sorted by the loading weight onto the PCSPE (see Fig. 5 and Methods). 

At right in each grouping is shown the mean SPE (|SPE|) responses of individual 
ROIs for the block. Color indicates dF/F activity as reflected in the colorbar. b, The 
mean perimovement time histogram (as in Fig. 3) for this session and with the 
same ROIs order as in (a).
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Extended Data Fig. 8 | Additional data and model simulations for STF task 
optogenetic perturbations. a, Replotting of simulation data shown in Fig. 
6a for comparison (n = 15 simulations). b, Plotting data just for a subset of 
sessions which followed the target-inactivation sessions (Fig. 6c) consistent 
with data shown in the main figure (n = 4 mice, N = 5 sessions/mouse). c, A 
further experiment was done using a larger reward collection area spatial 
trigger for inactivation (n = 4 mice, N = 16 sessions/mouse). Analogous results 

were obtained. d, A collection of distinct simulation results as described in the 
main text and Table 1 (n = 15 simulations). None of these simulations exhibited a 
fully consistent pattern of effects with experimental results (b-c). ***, p < 0.001 
Kruskal-Wallis test with multiple comparison corrections; Box plot properties: 
centre: median; edges: 25th-75th %, whiskers: extrema, outliers plotted 
individually.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Optogenetic inactivation in the NTF task. a, Replication 
of results in Fig 7b1 in an additional 3 animals. b, Comparison of movement 
velocity during control and optogenetic inactivation of dCA1. c, Additional 
control experiments in which a fiber was implanted below hippocampus 
(~2.5 mm depth; 1 mm deeper than dCA1 fiber placement) to estimate potential 
effect of light spread to underlying motor thalamus areas. Up to 10% power to 
approximate light spread (note this is a simulation of a higher intensity than 
expected from diffuse light spread) fails to produce any effect on movement. 

Strong inactivation of motor thalamus is sufficient to completely block 
movement (unlike dCA1 inactivation which only biases against initiation). d, 
A thick slice was cleared and imaged on a light sheet microscope. Thick slices 
allowed reconstruction of hippocampal and thalamic targeting optical fibers to 
be well estimated. Scale bar: 1 mm. Nominal depth of optical fiber for thalamus is 
~1.5 mm deeper than CA1 targeting fiber. Shaded line in a-c: mean and 0.025-0.975 
confidence interval by 1000-fold shuffles. Two-sided permutation test in a-c; n.s.: 
no significance.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Localization of cannula, optical fibers, and 
GCaMP-expression. a, left: example histology image of cannula window for 
optical inhibition experiments; right: schematic of cannula positions from 
all experiments, which almost targeted the same position. b, left: example 
histological image of optical fiber placement; right: schematic of 4 fiber 

locations, whose centers are indicated by the red dots. Anatomical schematic in 
a and b corresponds to standard coronal atlas for bregma -1.9. c, Example image 
of GCaMP6 expression in dorsal CA1 neurons of Ai93(TITL-GCaMP6f)-D;ROSA26-
ZtTA×Kcnd2-IRES-Cre 3G5 mouse.
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