Abstract
Psychedelics are serotonin 2A receptor agonists that can lead to profound changes in perception, cognition and mood. In this review, we focus on the basic neurobiology underlying the action of psychedelic drugs. We first discuss chemistry, highlighting the diversity of psychoactive molecules and the principles that govern their potency and pharmacokinetics. We describe the roles of serotonin receptors and their downstream molecular signaling pathways, emphasizing key elements for drug discovery. We consider the impact of psychedelics on neuronal spiking dynamics in several cortical and subcortical regions, along with transcriptional changes and sustained effects on structural plasticity. Finally, we summarize neuroimaging results that pinpoint effects on association cortices and thalamocortical functional connectivity, which inform current theories of psychedelic action. By synthesizing knowledge across the chemical, molecular, neuronal, and network levels, we hope to provide an integrative perspective on the neural mechanisms responsible for the acute and enduring effects of psychedelics on behavior.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Not applicable.
Code availability
Not applicable.
References
Nichols, D. E. & Walter, H. The history of psychedelics in psychiatry. Pharmacopsychiatry 54, 151–166 (2021).
Davis, A. K. et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry 78, 481–489 (2021).
Carhart-Harris, R. et al. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384, 1402–1411 (2021).
Johnson, M. W., Garcia-Romeu, A. & Griffiths, R. R. Long-term follow-up of psilocybin-facilitated smoking cessation. Am. J. Drug Alcohol Abuse 43, 55–60 (2017).
Nichols, D. E. Psychedelics. Pharm. Rev. 68, 264–355 (2016).
Vollenweider, F. X. & Preller, K. H. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci. 21, 611–624 (2020).
Kelmendi, B., Kaye, A. P., Pittenger, C. & Kwan, A. C. Psychedelics. Curr. Biol. 32, R63–R67 (2022).
McClure-Begley, T. D. & Roth, B. L. The promises and perils of psychedelic pharmacology for psychiatry. Nat. Rev. Drug Discov. 21, 463–473 (2022).
Kim, K. et al. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588 (2020).
Cao, D. et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 375, 403–411 (2022).
Froldi, G., Silvestrin, B., Dorigo, P. & Caparrotta, L. Gramine: a vasorelaxing alkaloid acting on 5-HT2A receptors. Planta Med. 70, 373–375 (2004).
Dong, C. et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184, 2779–2792 (2021).
Glennon, R. A., Liebowitz, S. M. & Mack, E. C. Serotonin receptor-binding affinities of several hallucinogenic phenylalkylamine and N,N-dimethyltryptamine analogs. J. Med. Chem. 21, 822–825 (1978).
Lyon, R. A., Titeler, M., Seggel, M. R. & Glennon, R. A. Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens. Eur. J. Pharmacol. 145, 291–297 (1988).
McLean, T. H. et al. 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J. Med. Chem. 49, 5794–5803 (2006).
Halberstadt, A. L., Chatha, M., Stratford, A., Grill, M. & Brandt, S. D. Comparison of the behavioral responses induced by phenylalkylamine hallucinogens and their tetrahydrobenzodifuran (‘FLY’) and benzodifuran (‘DragonFLY’) analogs. Neuropharmacology 144, 368–376 (2019).
Mantle, T. J., Tipton, K. F. & Garrett, N. J. Inhibition of monoamine oxidase by amphetamine and related compounds. Biochem. Pharmacol. 25, 2073–2077 (1976).
Glennon, R. A., Young, R. & Jacyno, J. M. Indolealkylamine and phenalkylamine hallucinogens—effect of α-methyl and N-methyl substituents on behavioral activity. Biochem. Pharmacol. 32, 1267–1273 (1983).
Dyer, D. C., Nichols, D. E., Rusterholz, D. B. & Barfknecht, C. F. Comparative effects of stereoisomers of psychotomimetic phenylisopropylamines. Life Sci. 13, 885–896 (1973).
Congreve, M., Carr, R., Murray, C. & Jhoti, H. A ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today 8, 876–877 (2003).
Wager, T. T., Hou, X., Verhoest, P. R. & Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 1, 435–449 (2010).
Takahashi, T. et al. 11C labeling of indolealkylamine alkaloids and the comparative-study of their tissue distributions. Int. J. Appl. Radiat. Isot. 36, 965–969 (1985).
Ebersole, B. J., Visiers, I., Weinstein, H. & Sealfon, S. C. Molecular basis of partial agonism: orientation of indoleamine ligands in the binding pocket of the human serotonin 5-HT2A receptor determines relative efficacy. Mol. Pharmacol. 63, 36–43 (2003).
Banskota, S., Ghia, J. E. & Khan, W. I. Serotonin in the gut: blessing or a curse. Biochimie 161, 56–64 (2019).
Barfknecht, C. F. & Nichols, D. E. Correlation of psychotomimetic activity of phenethylamines and amphetamines with 1-octanol-water partition coefficients. J. Med. Chem. 18, 208–210 (1975).
Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous Solution (Butterworths, 1965).
Migliaccio, G. P., Shieh, T. L. N., Byrn, S. R., Hathaway, B. A. & Nichols, D. E. Comparison of solution conformational preferences for the hallucinogens bufotenin and psilocin using 360-MHz proton NMR-spectroscopy. J. Med. Chem. 24, 206–209 (1981).
Adams, A. M. et al. In vivo production of psilocybin in E. coli. Metab. Eng. 56, 111–119 (2019).
Milne, N. et al. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab. Eng. 60, 25–36 (2020).
Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F., Babler, A., Vogel, H. & Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport 9, 3897–3902 (1998).
Preller, K. H. et al. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr. Biol. 27, 451–457 (2017).
Madsen, M. K. et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44, 1328–1334 (2019).
Glennon, R. A., Titeler, M. & McKenney, J. D. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 35, 2505–2511 (1984).
Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology 167, 107933 (2020).
Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).
Gonzalez-Maeso, J. et al. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53, 439–452 (2007).
Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).
Marona-Lewicka, D., Thisted, R. A. & Nichols, D. E. Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology 180, 427–435 (2005).
Grailhe, R. et al. Increased exploratory activity and altered response to LSD in mice lacking the 5-HT5A receptor. Neuron 22, 581–591 (1999).
Marona-Lewicka, D., Chemel, B. R. & Nichols, D. E. Dopamine D4 receptor involvement in the discriminative stimulus effects in rats of LSD, but not the phenethylamine hallucinogen DOI. Psychopharmacology 203, 265–277 (2009).
Klein, A. K. et al. Investigation of the structure–activity relationships of psilocybin analogues. ACS Pharm. Transl. Sci. 4, 533–542 (2021).
Pokorny, T., Preller, K. H., Kraehenmann, R. & Vollenweider, F. X. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur. Neuropsychopharmacol. 26, 756–766 (2016).
Hesselgrave, N., Troppoli, T. A., Wulff, A. B., Cole, A. B. & Thompson, S. M. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc. Natl Acad. Sci. USA 118, e2022489118 (2021).
Shao, L. X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109, 2535–2544 (2021).
Sard, H. et al. SAR of psilocybin analogs: discovery of a selective 5-HT2C agonist. Bioorg. Med. Chem. Lett. 15, 4555–4559 (2005).
Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).
Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389 (2017).
Roth, B. L. Drugs and valvular heart disease. N. Engl. J. Med. 356, 6–9 (2007).
Droogmans, S. et al. Possible association between 3,4-methylenedioxymethamphetamine abuse and valvular heart disease. Am. J. Cardiol. 100, 1442–1445 (2007).
Setola, V. et al. 3,4-Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol. Pharmacol. 63, 1223–1229 (2003).
Roth, B. L., Nakaki, T., Chuang, D. M. & Costa, E. Aortic recognition sites for serotonin (5HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacology 23, 1223–1225 (1984).
Roth, B. L., Nakaki, T., Chuang, D. M. & Costa, E. 5-Hydroxytryptamine 2 receptors coupled to phospholipase C in rat aorta: modulation of phosphoinositide turnover by phorbol ester. J. Pharmacol. Exp. Ther. 238, 480–485 (1986).
Kristiansen, K. et al. A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT2A serotonin receptor but does not participate in activation via a ‘salt-bridge disruption’ mechanism. J. Pharmacol. Exp. Ther. 293, 735–746 (2000).
Egan, C. et al. Agonist high and low affinity state ratios predict drug intrinsic activity and a revised ternary complex mechanism at serotonin 5-HT2A and 5-HT2C receptors. Synapse 35, 144–150 (2000).
Gray, J. A., Bhatnagar, A., Gurevich, V. V. & Roth, B. L. The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT2A receptor induces agonist-independent internalization. Mol. Pharmacol. 63, 961–972 (2003).
Felder, C. C., Kanterman, R. Y., Ma, A. L. & Axelrod, J. Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc. Natl Acad. Sci. USA 87, 2187–2191 (1990).
Garcia, E. E., Smith, R. L. & Sanders-Bush, E. Role of Gq protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. Neuropharmacology 52, 1671–1677 (2007).
Schmid, C. L., Raehal, K. M. & Bohn, L. M. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc. Natl Acad. Sci. USA 105, 1079–1084 (2008).
Rodriguiz, R. M. et al. LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1. Sci. Rep. 11, 17690 (2021).
Kurrasch-Orbaugh, D. M., Parrish, J. C., Watts, V. J. & Nichols, D. E. A complex signaling cascade links the serotonin 2A receptor to phospholipase A2 activation: the involvement of MAP kinases. J. Neurochem. 86, 980–991 (2003).
Zhuang, Y. et al. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 184, 931–942 (2021).
Hasler, F., Bourquin, D., Brenneisen, R., Bar, T. & Vollenweider, F. X. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm. Acta Helv. 72, 175–184 (1997).
Brandt, S. D. et al. Return of the lysergamides. Part I: analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD). Drug Test. Anal. 8, 891–902 (2016).
Vargas, M. V., Meyer, R., Avanes, A. A., Rus, M. & Olson, D. E. Psychedelics and other psychoplastogens for treating mental illness. Front. Psychiatry 12, 727117 (2021).
Olson, D. E. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J. Exp. Neurosci. 12, 1179069518800508 (2018).
Dunlap, L. E. et al. Identification of psychoplastogenic N,N-dimethylaminoisotryptamine (isoDMT) analogues through structure–activity relationship studies. J. Med. Chem. 63, 1142–1155 (2020).
Cameron, L. P. et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589, 474–479 (2020).
Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).
Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601, 452–459 (2022).
Araneda, R. & Andrade, R. 5-Hydroxytryptamine 2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40, 199–412 (1991).
Davies, M. F., Deisz, R. A., Prince, D. A. & Peroutka, S. J. Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res. 423, 347–352 (1987).
Savalia, N. K., Shao, L. X. & Kwan, A. C. A dendrite-focused framework for understanding the actions of ketamine and psychedelics. Trends Neurosci. 44, 260–275 (2021).
Miner, L. A. H., Backstrom, J. R., Sanders-Bush, E. & Sesack, S. R. Ultrastructural localization of serotonin 2a receptors in the middle layers of the rat prelimibic prefrontal cortex. Neuroscience 116, 107–117 (2003).
Jakab, R. L. & Goldman-Rakic, P. S. 5-Hydroxytryptamine 2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc. Natl Acad. Sci. USA 95, 735–740 (1998).
Willins, D. L., Deutch, A. Y. & Roth, B. L. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27, 79–82 (1997).
Aghajanian, G. K. & Marek, G. J. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36, 589–599 (1997).
Santana, N., Bortolozzi, A., Serrats, J., Mengod, G. & Artigas, F. Expression of serotonin 1A and serotonin 2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex 14, 1100–1109 (2004).
Martin, D. A. & Nichols, C. D. Psychedelics recruit multiple cellular types and produce complex transcriptional responses within the brain. EBioMedicine 11, 262–277 (2016).
Avesar, D. & Gulledge, A. T. Selective serotonergic excitation of callosal projection neurons. Front. Neural Circuits 6, 12 (2012).
Wood, J., Kim, Y. & Moghaddam, B. Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J. Neurosci. 32, 3022–3031 (2012).
Evarts, E. V., Landau, W., Freygang, W. Jr. & Marshall, W. H. Some effects of lysergic acid diethylamide and bufotenine. Am. J. Physiol. 182, 594–598 (1955).
Rose, D. & Horn, G. Effects of LSD on the responses of single units in cat visual cortex. Exp. Brain Res. 27, 71–80 (1977).
Michaiel, A. M., Parker, P. R. L. & Niell, C. M. A hallucinogenic serotonin-2A receptor agonist reduces visual response gain and alters temporal dynamics in mouse V1. Cell Rep. 26, 3475–3483 (2019).
Aghajanian, G. K., Foote, W. E. & Sheard, M. H. Lysergic acid diethylamide: sensitive neuronal units in the midbrain raphe. Science 161, 706–708 (1968).
Aghajanian, G. K., Foote, W. E. & Sheard, M. H. Action of psychotogenic drugs on single midbrain raphe neurons. J. Pharmacol. Exp. Ther. 171, 178–187 (1970).
Sprouse, J. S. & Aghajanian, G. K. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1, 3–9 (1987).
Trulson, M. E., Ross, C. A. & Jacobs, B. L. Lack of tolerance to the depression of raphe unit activity by lysergic acid diethylamide. Neuropharmacology 16, 771–774 (1977).
Trulson, M. E. & Jacobs, B. L. Dissociations between the effects of LSD on behavior and raphe unit-activity in freely moving cats. Science 205, 515–518 (1979).
Domenico, C., Haggerty, D., Mou, X. & Ji, D. LSD degrades hippocampal spatial representations and suppresses hippocampal–visual cortical interactions. Cell Rep. 36, 109714 (2021).
Rasmussen, K. & Aghajanian, G. K. Effect of hallucinogens on spontaneous and sensory-evoked locus coeruleus unit activity in the rat: reversal by selective 5-HT2 antagonists. Brain Res. 385, 395–400 (1986).
Aghajanian, G. K. LSD and CNS transmission. Annu. Rev. Pharm. 12, 157–168 (1972).
Nichols, C. D. & Sanders-Bush, E. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology 26, 634–642 (2002).
Vaidya, V. A., Marek, G. J., Aghajanian, G. K. & Duman, R. S. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J. Neurosci. 17, 2785–2795 (1997).
de la Fuente Revenga, M. et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 37, 109836 (2021).
Jones, K. A. et al. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl Acad. Sci. USA 106, 19575–19580 (2009).
Yoshida, H. et al. Subtype specific roles of serotonin receptors in the spine formation of cortical neurons in vitro. Neurosci. Res. 71, 311–314 (2011).
Ly, C. et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182 (2018).
Raval, N. R. et al. A single dose of psilocybin increases synaptic density and decreases 5-HT2A receptor density in the pig brain. Int. J. Mol. Sci. 22, 835 (2021).
Ly, C. et al. Transient stimulation with psychoplastogens is sufficient to initiate neuronal growth. ACS Pharmacol. Transl. Sci. 4, 452–460 (2020).
Phoumthipphavong, V., Barthas, F., Hassett, S. & Kwan, A. C. Longitudinal effects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex. eNeuro 3, ENEURO.0133-0115.2016 (2016).
Ali, F. et al. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat. Commun. 11, 72 (2020).
Aleksandrova, L. R. & Phillips, A. G. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol. Sci. 42, 929–942 (2021).
Hibicke, M., Landry, A. N., Kramer, H. M., Talman, Z. K. & Nichols, C. D. Psychedelics, but not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem. Neurosci. 11, 864–871 (2020).
Hermle, L. et al. Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: experimental psychosis as a tool for psychiatric research. Biol. Psychiatry 32, 976–991 (1992).
Vollenweider, F. X. et al. Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16, 357–372 (1997).
Carhart-Harris, R. L. et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl Acad. Sci. USA 109, 2138–2143 (2012).
Lewis, C. R. et al. Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow. NeuroImage 159, 70–78 (2017).
Preller, K. H. et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. eLife 7, e35082 (2018).
Muller, F., Dolder, P. C., Schmidt, A., Liechti, M. E. & Borgwardt, S. Altered network hub connectivity after acute LSD administration. NeuroImage Clin. 18, 694–701 (2018).
Madsen, M. K. et al. Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. Eur. Neuropsychopharmacol. 50, 121–132 (2021).
Preller, K. H. et al. Psilocybin induces time-dependent changes in global functional connectivity. Biol. Psychiatry 88, 197–207 (2020).
Muller, F. et al. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr. Scand. 136, 648–657 (2017).
Preller, K. H. et al. Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proc. Natl Acad. Sci. USA 116, 2743–2748 (2019).
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
Beliveau, V. et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J. Neurosci. 37, 120–128 (2017).
Deco, G. et al. Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Curr. Biol. 28, 3065–3074 (2018).
Burt, J. B. et al. Transcriptomics-informed large-scale cortical model captures topography of pharmacological neuroimaging effects of LSD. eLife 10, e69320 (2021).
Kringelbach, M. L. et al. Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl Acad. Sci. USA 117, 9566–9576 (2020).
McCulloch, D. E. et al. Lasting effects of a single psilocybin dose on resting-state functional connectivity in healthy individuals. J. Psychopharmacol. 36, 74–84 (2022).
Barrett, F. S., Doss, M. K., Sepeda, N. D., Pekar, J. J. & Griffiths, R. R. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci. Rep. 10, 2214 (2020).
Doss, M. K. et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl. Psychiatry 11, 574 (2021).
Daws, R. E. et al. Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 28, 844–851 (2022).
Stenbaek, D. S. et al. Brain serotonin 2A receptor binding predicts subjective temporal and mystical effects of psilocybin in healthy humans. J. Psychopharmacol. 35, 459–468 (2021).
Vollenweider, F. X. & Geyer, M. A. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res. Bull. 56, 495–507 (2001).
Carhart-Harris, R. L. & Friston, K. J. REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharm. Rev. 71, 316–344 (2019).
Corlett, P. R. et al. Hallucinations and strong priors. Trends Cogn. Sci. 23, 114–127 (2019).
Doss, M. K. et al. Models of psychedelic drug action: modulation of cortical–subcortical circuits. Brain 145, 441–456 (2021).
Vollenweider, F. X., Csomor, P. A., Knappe, B., Geyer, M. A. & Quednow, B. B. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval. Neuropsychopharmacology 32, 1876–1887 (2007).
Schmid, Y. et al. Acute effects of lysergic acid diethylamide in healthy subjects. Biol. Psychiatry 78, 544–553 (2015).
Roseman, L. et al. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion. Hum. Brain Mapp. 37, 3031–3040 (2016).
Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K. & Muthukumaraswamy, S. D. Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci. Rep. 7, 46421 (2017).
Timmermann, C. et al. Neural correlates of the DMT experience assessed with multivariate EEG. Sci. Rep. 9, 16324 (2019).
Alamia, A., Timmermann, C., Nutt, D. J., VanRullen, R. & Carhart-Harris, R. L. DMT alters cortical travelling waves. eLife 9, e59784 (2020).
Vernon, J., Marton, T. & Peterson, E. Sensory deprivation and hallucinations. Science 133, 1808–1812 (1961).
Powers, A. R., Mathys, C. & Corlett, P. R. Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science 357, 596–600 (2017).
Barrett, F. S., Krimmel, S. R., Griffiths, R. R., Seminowicz, D. A. & Mathur, B. N. Psilocybin acutely alters the functional connectivity of the claustrum with brain networks that support perception, memory, and attention. NeuroImage 218, 116980 (2020).
Smith, R. L., Barrett, R. J. & Sanders-Bush, E. Neurochemical and behavioral evidence that quipazine–ketanserin discrimination is mediated by serotonin 2A receptor. J. Pharmacol. Exp. Ther. 275, 1050–1057 (1995).
Palacios, J. M., Pazos, A. & Hoyer, D. A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment. Psychopharmacology 234, 1395–1418 (2017).
Fitzgerald, L. W. et al. Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology 21, 82S–90S (1999).
Casey, A. B., Cui, M., Booth, R. G. & Canal, C. E. ‘Selective’ serotonin 5-HT2A receptor antagonists. Biochem. Pharmacol. 200, 115028 (2022).
Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47, 33–46 (2004).
Bittner, T. et al. γ-Secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway. J. Neurosci. 29, 10405–10409 (2009).
Huang, K. W. et al. Molecular and anatomical organization of the dorsal raphe nucleus. eLife 8, e46464 (2019).
Olson, D. E. The subjective effects of psychedelics may not be necessary for their enduring therapeutic effects. ACS Pharmacol. Transl. Sci. 4, 563–567 (2020).
Yaden, D. B. & Griffiths, R. R. The subjective effects of psychedelics are necessary for their enduring therapeutic effects. ACS Pharmacol. Transl. Sci. 4, 568–572 (2020).
Osmond, H. A review of the clinical effects of psychotomimetic agents. Ann. N. Y. Acad. Sci. 66, 418–434 (1957).
Shulgin, A. & Shulgin, A. PIHKAL: A Chemical Love Story (Transform, 1990).
Shulgin, A. & Shulgin, A. TiHKAL: The Continuation (Transform, 2002).
Griffiths, R. R., Richards, W. A., McCann, U. & Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology 187, 268–283 (2006).
Griffiths, R. R. et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J. Psychopharmacol. 30, 1181–1197 (2016).
Abramson, H. A. The Use of LSD in Psychotherapy and Alcoholism (Bobbs–Merrill, 1967).
Grob, C. S. et al. Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch. Gen. Psychiatry 68, 71–78 (2011).
Ross, S. et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J. Psychopharmacol. 30, 1165–1180 (2016).
Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S. & Duman, R. S. Ketamine: a paradigm shift for depression research and treatment. Neuron 101, 774–778 (2019).
Mitchell, J. M. et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat. Med. 27, 1025–1033 (2021).
Canal, C. E. & Morgan, D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test. Anal. 4, 556–576 (2012).
Appel, J. B., West, W. B. & Buggy, J. LSD, 5-HT (serotonin), and the evolution of a behavioral assay. Neurosci. Biobehav. Rev. 27, 693–701 (2004).
Acknowledgements
A.C.K. thanks N. Savalia, P. Davoudian and P. Corlett and D.E.O. thanks L. Dunlap, H. Warren and D. Nichols for helpful conversations. A.C.K. was supported by the Yale Program in Psychedelic Science, an One Mind - COMPASS Rising Star Award, and NIH/NIMH grants R01MH121848 and R01MH128217. D.E.O. was supported by NIH/NIDA grant R01DA056365, NIH/NIGMS grant R01GM128997 and the Camille and Henry Dreyfus Foundation. B.L.R. was supported by grants from NIH/NIMH, NIH/NIDA, DARPA and the Michael Hooker Distinguished Professorship.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
A.C.K. is a member of the Scientific Advisory Board of Empyrean Neuroscience and Freedom Biosciences. A.C.K. has consulted for Biohaven Pharmaceuticals. No-cost compounds were provided to A.C.K. for research by Usona Institute. D.E.O. is a cofounder of Delix Therapeutics, Inc., and serves as the Chief Innovation Officer and Head of the Scientific Advisory Board. K.H.P. is currently an employee of Boehringer Ingelheim GmbH & Co. KG. B.L.R. is a member of the Scientific Advisory Board of Septerna Pharmaceuticals and Escient Pharmaceuticals. These duties had no influence on the content of this article.
Peer review
Peer review information
Nature Neuroscience thanks Javier Gonzalez-Maeso, Gitte Knudsen, and Charles Nichols for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kwan, A.C., Olson, D.E., Preller, K.H. et al. The neural basis of psychedelic action. Nat Neurosci 25, 1407–1419 (2022). https://doi.org/10.1038/s41593-022-01177-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41593-022-01177-4
This article is cited by
-
Modulation of long-term potentiation following microdoses of LSD captured by thalamo-cortical modelling in a randomised, controlled trial
BMC Neuroscience (2024)
-
LSDDEP2: study protocol for a randomised, double-dummy, triple-blind, active placebo-controlled, parallel groups trial of LSD microdosing in patients with major depressive disorder
Trials (2024)
-
Psychedelics: preclinical insights provide directions for future research
Neuropsychopharmacology (2024)
-
A proximity proteomics pipeline with improved reproducibility and throughput
Molecular Systems Biology (2024)
-
High-resolution tracking of unconfined zebrafish behavior reveals stimulatory and anxiolytic effects of psilocybin
Molecular Psychiatry (2024)