Abstract
In nature, animals display defensive behaviors that reflect the spatiotemporal distance of threats. Laboratory-based paradigms that elicit specific defensive responses in rodents have provided valuable insight into the brain mechanisms that mediate the construction of defensive modes with varying degrees of threat imminence. In this Review, we discuss accumulating evidence that the central nucleus of the amygdala (CeA) plays a key role in this process. Specifically, we propose that the mutually inhibitory circuits of the CeA use a winner-takes-all strategy that supports transitioning across defensive modes and the execution of specific defensive behaviors to previously formed threat associations. Our proposal provides a conceptual framework in which seemingly divergent observations regarding CeA function can be interpreted and identifies various areas of priority for future research.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kapp, B. S., Frysinger, R. C., Gallagher, M. & Haselton, J. R. Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiol. Behav. 23, 1109–1117 (1979).
Pascoe, J. P. & Kapp, B. S. Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit. Behav. Brain Res. 16, 117–133 (1985).
LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988).
Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. & LeDoux, J. E. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242 (2001).
LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).
Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).
Gozzi, A. et al. A neural switch for active and passive fear. Neuron 67, 656–666 (2010).
Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).
Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332–339 (2013).
Viviani, D. et al. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333, 104–107 (2011).
Fanselow, M. S. & Lester, L. S. A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In Evolution and Learning (eds Bolles, R. C. & Beecher, M. D.) 185–212 (Lawrence Erlbaum Associates, 1988).
Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998).
Cassell, M. D., Gray, T. S. & Kiss, J. Z. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J. Comp. Neurol. 246, 478–499 (1986).
McDonald, A. J. Cytoarchitecture of the central amygdaloid nucleus of the rat. J. Comp. Neurol. 208, 401–418 (1982).
Medina, L., Bupesh, M. & Abellán, A. Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala. Brain Behav. Evol. 78, 216–236 (2011).
Ehrlich, I., Humeau, Y., Grenier, F., Ciocchi, S. & Lüthi, A. Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771 (2009).
Cassell, M. D., Freedman, L. J. & Shi, C. The intrinsic organization of the central extended amygdala. Ann. N. Y. Acad. Sci. 877, 217–241 (1999).
Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005).
Roberts, G. W., Woodhams, P. L., Polak, J. M. & Crow, T. J. Distribution of neuropeptides in the limbic system of the rat: the amygdaloid complex. Neuroscience 7, 99–131 (1982).
Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).
McCullough, K. M., Morrison, F. G., Hartmann, J., Carlezon, W. A. Jr & Ressler, K. J. Quantified coexpression analysis of central amygdala subpopulations. eNeuro 5, ENEURO.0010-18.2018 (2018).
Hunt, S., Sun, Y., Kucukdereli, H., Klein, R. & Sah, P. Intrinsic circuits in the lateral central amygdala. eNeuro 4, ENEURO.0367-16.2017 (2017).
Adke, A. P. et al. Cell-type specificity of neuronal excitability and morphology in the central amygdala. eNeuro 8, ENEURO.0402-20.2020 (2021).
Blanchard, D. C. & Blanchard, R. J. Ethoexperimental approaches to the biology of emotion. Annu. Rev. Psychol. 39, 43–68 (1988).
Mobbs, D., Headley, D. B., Ding, W. & Dayan, P. Space, time, and fear: survival computations along defensive circuits. Trends Cogn. Sci. 24, 228–241 (2020).
Tashjian, S. M., Zbozinek, T. D. & Mobbs, D. A decision architecture for safety computations. Trends Cogn. Sci. 25, 342–354 (2021).
Blanchard, D. C. Risk assessment: at the interface of cognition and emotion. Curr. Opin. Behav. Sci. 24, 69–74 (2018).
Blanchard, D. C., Griebel, G., Pobbe, R. & Blanchard, R. J. Risk assessment as an evolved threat detection and analysis process. Neurosci. Biobehav. Rev. 35, 991–998 (2011).
McNaughton, N. & Corr, P. J. Survival circuits and risk assessment. Curr. Opin. Behav. Sci. 24, 14–20 (2018).
Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640 (1990).
Fanselow, M. S. Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev. 1, 429–438 (1994).
Bolles, R. C. Species-specific defense reactions and avoidance learning. Psychol. Rev. 77, 32–48 (1970).
Fanselow, M. S. in Learning, Motivation, and Cognition: the Functional Behaviorism of Robert C. Bolles (eds Bouton, M. E. & Fanselow, M. S.) 321–341 (American Psychological Association, 1997).
Fanselow, M. S. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24, 44–49 (2018).
Domjan, M. Pavlovian conditioning: a functional perspective. Annu. Rev. Psychol. 56, 179–206 (2005).
Blanchard, R. J. & Blanchard, D. C. Effects of hippocampal lesions on the rat’s reaction to cat. J. Comp. Physiol. Psychol. 78, 77–82 (1972).
Blanchard, R. J., Fukunaga, K. K. & Blanchard, D. C. Environmental control of defensive reactions to a cat. Bull. Psychon. Soc. 8, 179–181 (1976).
Fanselow, M. S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 110, 73–81 (2000).
Holland, P. C. & Bouton, M. E. Hippocampus and context in classical conditioning. Curr. Opin. Neurobiol. 9, 195–202 (1999).
Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428 (2013).
Smith, D. S. & Mizumori, S. J. Y. Hippocampal place cells, context, and episodic memory. Hippocampus 16, 716–729 (2006).
Fanselow, M. S. Associative vs. topographical accounts of the immediate shock deficit in rats: implications for the response selection rules governing species specific defensive reactions. Learn. Motiv. 17, 16–39 (1989).
Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming stimuli. Curr. Biol. 23, 2011–2015 (2013).
Mobbs, D. & Kim, J. J. Neuroethological studies of fear, anxiety, and risky decision-making in rodent and humans. Curr. Opin. Behav. Sci. 5, 8–15 (2015).
Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).
Branco, T. & Redgrave, P. The neural basis of escape behavior in vertebrates. Annu. Rev. Neurosci. 43, 417–439 (2020).
Li, B. Central amygdala cells for learning and expressing aversive emotional memories. Curr. Opin. Behav. Sci. 26, 40–45 (2019).
Duvarci, S., Popa, D. & Paré, D. Central amygdala activity during fear conditioning. J. Neurosci. 31, 289–294 (2011).
Whittle, N. et al. Central amygdala micro-circuits mediate fear extinction. Nat. Commun. 12, 4156 (2021).
Yu, K., Garcia da Silva, P., Albeanu, D. F. & Li, B. Central amygdala somatostatin neurons gate passive and active defensive behaviors. J. Neurosci. 36, 6488–6496 (2016).
Coultrip, R., Granger, R. & Lynch, G. A cortical model of winner-take-all competition via lateral inhibition. Neural Netw. 5, 47–54 (1992).
Fadok, J. P., Markovic, M., Tovote, P. & Lüthi, A. New perspectives on central amygdala function. Curr. Opin. Neurobiol. 49, 141–147 (2018).
Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206–212 (2016).
Penzo, M. A., Robert, V. & Li, B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. J. Neurosci. 34, 2432–2437 (2014).
Lester, L. S. & Fanselow, M. S. Exposure to a cat produces opioid analgesia in rats. Behav. Neurosci. 99, 756–759 (1984).
Fanselow, M. S. in Stress-Induced Analgesia (ed. Kelly, D. D.) 40–54 (New York Academy of Sciences, 1986).
Bolles, R. C. & Fanselow, M. S. A perceptual–defensive–recuperative model of fear and pain. Behav. Brain Sci. 3, 291–323 (1980).
Manning, B. H. & Mayer, D. J. The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test. J. Neurosci. 15, 8199–8213 (1995).
Helmstetter, F. J. The amygdala is essential for the expression of conditional hypoalgesia. Behav. Neurosci. 106, 518–528 (1992).
Wilson, T. D. et al. Dual and opposing functions of the central amygdala in the modulation of pain. Cell Rep. 29, 332–346 (2019).
Helmstetter, F. J., Tershner, S. A., Poore, L. H. & Bellgowan, P. S. Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla. Brain Res. 779, 104–118 (1998).
Helmstetter, F. J. & Tershner, S. A. Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses. J. Neurosci. 14, 7099–7108 (1994).
Bellgowan, P. S. & Helmstetter, F. J. The role of µ and κ opioid receptors within the periaqueductal gray in the expression of conditional hypoalgesia. Brain Res. 791, 83–89 (1998).
Helmstetter, F. J. & Landeira-Fernandez, J. Conditional hypoalgesia is attenuated by naltrexone applied to the periaqueductal gray. Brain Res. 537, 88–92 (1990).
Ozawa, T. et al. A feedback neural circuit for calibrating aversive memory strength. Nat. Neurosci. 20, 90–97 (2017).
Dong, P. et al. A novel cortico-intrathalamic circuit for flight behavior. Nat. Neurosci. 22, 941–949 (2019).
Borkar, C. D. et al. Sex differences in behavioral responses during a conditioned flight paradigm. Behav. Brain Res. 389, 112623 (2020).
Hersman, S., Allen, D., Hashimoto, M., Brito, S. I. & Anthony, T. E. Stimulus salience determines defensive behaviors elicited by aversively conditioned serial compound auditory stimuli. eLife 9, e53803 (2020).
Totty, M. S. et al. Behavioral and brain mechanisms mediating conditioned flight behavior in rats. Sci. Rep. 11, 8215 (2021).
Trott, J. M., Hoffman, A. N., Zhuravka, I. & Fanselow, M. S. Conditional and unconditional components of aversively motivated freezing, flight and darting in mice. Elife 11, e75663 (2022).
Hartley, N. D. et al. Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states. Nat. Neurosci. 22, 2000–2012 (2019).
Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A. & Tonegawa, S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93, 1464–1479 (2017).
Campeau, S. & Davis, M. Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J. Neurosci. 15, 2301–2311 (1995).
Lee, Y. & Davis, M. Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J. Neurosci. 17, 6434–6446 (1997).
Bandler, R., Depaulis, A. & Vergnes, M. Identification of midbrain neurones mediating defensive behaviour in the rat by microinjections of excitatory amino acids. Behav. Brain Res. 15, 107–119 (1985).
Carrive, P. The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav. Brain Res. 58, 27–47 (1993).
Deng, H., Xiao, X. & Wang, Z. Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. J. Neurosci. 36, 7580–7588 (2016).
Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590–594 (2018).
Masferrer, M. E., Silva, B. A., Nomoto, K., Lima, S. Q. & Gross, C. T. Differential encoding of predator fear in the ventromedial hypothalamus and periaqueductal grey. J. Neurosci. 40, 9283–9292 (2020).
Morgan, M. M. & Clayton, C. C. Defensive behaviors evoked from the ventrolateral periaqueductal gray of the rat: comparison of opioid and GABA disinhibition. Behav. Brain Res. 164, 61–66 (2005).
Reis, F. M. et al. Dorsal periaqueductal gray ensembles represent approach and avoidance states. eLife 10, e64934 (2021).
Iwata, J., Chida, K. & LeDoux, J. E. Cardiovascular response elicited by stimulation of neurons in the central amygdaloid nucleus in awake but not anesthetized rats resemble conditioned emotional responses. Brain Res. 418, 183–188 (1987).
Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012).
Cui, Y. et al. A central-amygdala–substantia innominate neural circuitry encodes aversive reinforcement signals. Cell Rep. 21, 1770–1782 (2017).
Jones, B. E. Arousal and sleep circuits. Neuropsychopharmacology 45, 6–20 (2020).
Carobrez, A. P. & Bertoglio, L. J. Ethological and temporal analyses of anxiety-like behavior: the elevated-plus maze 20 years on. Neurosci. Biobehav. Rev. 29, 1193–1205 (2005).
Hogg, S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54, 21–30 (1996).
Kraeuter, A. K., Guest, P. C. & Sarnyai, Z. The elevated plus maze test for measuring anxiety-like behavior in rodents. Methods Mol. Biol. 1916, 69–74 (2019).
La-Vu, M., Tobias, B. C., Schuette, P. J. & Adhikari, A. To approach or avoid: an introductory overview of the study of anxiety using rodent assays. Front. Behav. Neurosci. 14, 145 (2020).
Rodgers, R. J. & Dalvi, A. Anxiety, defence and the elevated plus-maze. Neurosci. Biobehav. Rev. 21, 801–810 (1997).
Cai, H., Haubensak, W., Anthony, T. & Anderson, D. J. Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17, 1240–1248 (2014).
Griessner, J. et al. Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Mol. Psychiatry 26, 534–544 (2021).
Blanchard, D. C., Blanchard, R. J., Tom, P. & Rodgers, R. J. Diazepam changes risk assessment in an anxiety/defense test battery. Psychopharmacology 101, 511–518 (1990).
Botta, P. et al. Regulating anxiety with extrasynaptic inhibition. Nat. Neurosci. 18, 1493–1500 (2015).
Ahrens, S. et al. A central extended amygdala circuit that modulates anxiety. J. Neurosci. 38, 5567–5583 (2018).
de Oca, B. M., Minor, T. R. & Fanselow, M. S. Brief flight to a familiar enclosure in response to a conditional stimulus in rats. J. Gen. Psychol. 134, 153–172 (2007).
Sun, Y., Qian, L., Xu, L., Hunt, S. & Sah, P. Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala. Mol. Psychiatry https://doi.org/10.1038/s41380-020-00894-1 (2020).
Basbaum, A. I. & Fields, H. L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann. Rev. Neurosci. 7, 309–338 (1984).
Esposito, M. S., Capelli, P. & Arber, S. Brainstem nucleus MdV mediates skilled forelimb. Motor tasks. Nature 508, 351–356 (2014).
Cain, C. K. Avoidance problems reconsidered. Curr. Opin. Behav. Sci. 26, 9–17 (2019).
Mowrer, O. H. & Lamoreaux, R. R. Fear as an intervening variable in avoidance conditioning. J. Comp. Psychol. 39, 29–50 (1946).
Bolles, R. C. & Riley, A. L. Freezing as an avoidance response: another look at the operant–respondant distinction. Learn. Motiv. 4, 268–275 (1973).
Laughlin, L. C., Moloney, D. M., Samels, S. B., Sears, R. M. & Cain, C. K. Reducing shock imminence eliminates poor avoidance in rats. Learn. Mem. 27, 270–274 (2020).
Moscarello, J. M. & LeDoux, J. E. Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J. Neurosci. 33, 3815–3823 (2013).
Choi, J. S., Cain, C. K. & LeDoux, J. E. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn. Mem. 17, 139–147 (2010).
Lázaro-Muñoz, G., LeDoux, J. E. & Cain, C. K. Sidman instrumental avoidance initially depends on lateral and basal amygdala and is constrained by central amygdala-mediated Pavlovian processes. Biol. Psychiatry 67, 1120–1127 (2010).
Terburg, D. et al. The basolateral amygdala is essential for rapid escape: a human and rodent study. Cell 175, 723–735 (2018).
Quirk, G. J., Likhtik, E., Guillaume Pelletier, J. & Paré, D. Stimulation of medial prefrontal cortex decreases responsiveness of central amygdala output neurons. J. Neurosci. 23, 8800–8807 (2003).
Moscarello, J. M. Prefrontal cortex projections to the nucleus reuniens suppress freezing following two-way signaled avoidance training. Learn. Mem. 27, 119–123 (2020).
Campese, V. D. et al. Lesions of lateral or central amygdala abolish aversive Pavlovian-to-instrumental transfer in rats. Front. Behav. Neurosci. 8, 161 (2014).
Campese, V. D. et al. Noradrenergic regulation of central amygdala in aversive Pavlovian-to-instrumental transfer. eNeuro 4, ENEURO.0224-17.2017 (2017).
Gu, Y. et al. A brainstem–central amygdala circuit underlies defensive responses to learned threats. Mol. Psychiatry 25, 640–654 (2020).
Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Elucidating an affective pain circuit that creates a threat memory. Cell 162, 363–374 (2015).
Sanford, C. A. et al. A central amygdala CRF circuit facilitates learning about weak threats. Neuron 93, 164–178 (2017).
Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546 (2017).
Fanselow, M. S. & LeDoux, J. E. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23, 229–232 (1999).
Maren, S. & Quirk, G. J. Neuronal signaling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).
Campese, V. D., Gonzaga, R., Moscarello, J. M. & LeDoux, J. E. Modulation of instrumental responding by a conditioned threat stimulus requires lateral and central amygdala. Front. Behav. Neurosci. 9, 293 (2015).
Jimenez, S. A. & Maren, S. Nuclear disconnection with the amygdala reveals a direct pathway to fear. Learn. Mem. 16, 766–768 (2009).
Shrestha, P. et al. Amygdala inhibitory neurons as loci for translation in emotional memories. Nature 586, 407–411 (2020).
Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008).
Lee, J., An, B. & Choi, S. Longitudinal recordings of single units in the basal amygdala during fear conditioning and extinction. Sci. Rep. 11, 11177 (2021).
Xu, C. et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell 167, 961–972 (2016).
Penzo, M. A. et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature 519, 455–459 (2015).
Ma, J. et al. Divergent projections of the paraventricular nucleus of the thalamus mediate the selection of passive and active defensive behaviors. Nat. Neurosci. 24, 1429–1440 (2021).
Choi, E. A. & McNally, G. P. Paraventricular thalamus balances danger and reward. J. Neurosci. 37, 3018–3029 (2017).
Engelke, D. S. et al. A hypothalamic–thalamostriatal circuit that controls approach–avoidance conflict in rats. Nat. Comm. 12, 2517 (2021).
Klein, A. S., Dlensek, N., Weiand, C. & Gogolla, N. Fear balance is maintained by bodily feedback in the insular cortex in mice. Science 374, 1010–1015 (2021).
Schiff, H. C. et al. An insula–central amygdala circuit for guiding tastant-reinforced choice behavior. J. Neurosci. 38, 1418–1429 (2018).
Gehrlach, D. A. et al. Aversive state processing in the posterior insular cortex. Nat. Neurosci. 22, 1424–1437 (2019).
Campos, C. A., Bowen, A. J., Roman, C. W. & Palmiter, R. D. Encoding of danger by parabrachial CGRP neurons. Nature 555, 617–622 (2018).
Bowen, A. J. et al. Dissociable control of unconditioned responses and associative fear learning by CGRP neurons. eLife 9, e59799 (2020).
Fanselow, M. S., Hoffman, A. N. & Zhuravka, I. Timing and the transition between modes in the defensive behavior system. Behav. Processes 166, 103890 (2019).
Timberlake, W. Behavior systems, associationism, and Pavlovian conditioning. Psychon. Bull. Rev. 1, 405–420 (1994).
Han, W. et al. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168, 311–324 (2017).
Douglass, A. M. et al. Central amygdala circuits modulate food consumption through a positive valence mechanism. Nat. Neurosci. 20, 1384–1394 (2017).
Acknowledgements
This work was supported by the NIMH Intramural Research Program (1ZIAMH002950 to M.A.P.). We thank C. Cain and F. Do Monte for providing critical comments on the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Neuroscience thanks Michael Fanselow, Sabine Krabbe, and Pankaj Sah for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moscarello, J.M., Penzo, M.A. The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat Neurosci 25, 999–1008 (2022). https://doi.org/10.1038/s41593-022-01130-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41593-022-01130-5
This article is cited by
-
Fear, anxiety and the functional architecture of the human central extended amygdala
Nature Reviews Neuroscience (2024)
-
Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus
Nature Communications (2024)
-
Reply to ‘Fear, anxiety and the functional architecture of the human central extended amygdala’
Nature Reviews Neuroscience (2024)
-
Longitudinal microstructural changes in 18 amygdala nuclei resonate with cortical circuits and phenomics
Communications Biology (2024)
-
Central amygdala CRF+ neurons promote heightened threat reactivity following early life adversity in mice
Nature Communications (2024)