Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

How to establish robust brain–behavior relationships without thousands of individuals

Can studying individual differences in brain structure and function reveal individual differences in behavior? Analyses of MRI data from nearly 50,000 individuals may suggest that the possibility is fleeting. Although sample size is important for brain-based prediction, researchers can take other steps to build better biomarkers. These include testing model generalizability across people, datasets, and time points and maximizing model robustness by optimizing brain data acquisition, behavioral measures, and prediction approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Marek, S. et al. Nature 603, 654–660 (2022).

    Article  CAS  Google Scholar 

  2. Kanwisher, N., McDermott, J. & Chun, M. M. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  3. Owen, A. M. et al. Science 313, 1402 (2006).

    Article  CAS  Google Scholar 

  4. Newbold, D. J. et al. Neuron 107, 580–589.e6 (2020).

    Article  CAS  Google Scholar 

  5. Poldrack, R. A., Huckins, G. & Varoquaux, G. JAMA Psychiatry 77, 534–540 (2020).

    Article  Google Scholar 

  6. Scheinost, D. et al. Neuroimage 193, 35–45 (2019).

    Article  Google Scholar 

  7. Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Nat. Neurosci. 20, 365–377 (2017).

    Article  CAS  Google Scholar 

  8. Rosenberg, M. D., Casey, B. J. & Holmes, A. J. Nat. Commun. 9, 589 (2018).

    Article  Google Scholar 

  9. Rudolph, M. D. et al. Dev. Cogn. Neurosci. 24, 93–106 (2017).

    Article  Google Scholar 

  10. Chamberlain, T. A. & Rosenberg, M. D. Cereb. Cortex 2022, bhac020 (2022).

  11. Whitfield-Gabrieli, S. et al. JAMA Psychiatry 77, 378–386 (2020).

    Article  Google Scholar 

  12. Ellwood-Lowe, M. E., Whitfield-Gabrieli, S. & Bunge, S. A. Nat. Commun. 12, 7183 (2021).

    Article  CAS  Google Scholar 

  13. deBettencourt, M. T. & Norman, K. A. Curr. Biol. 26, R673–R675 (2016).

    Article  CAS  Google Scholar 

  14. Naselaris, T., Allen, E. & Kay, K. Curr. Opin. Behav. Sci. 40, 45–51 (2021).

    Article  Google Scholar 

  15. Rosenberg, M. D. et al. Nat. Neurosci. 19, 165–171 (2016).

    Article  CAS  Google Scholar 

  16. Kardan, O. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.08.01.454530 (2022)

  17. Wu, E. X. W. et al. Neuroimage 209, 116535 (2020).

    Article  Google Scholar 

  18. Rosenberg, M. D. et al. Proc. Natl Acad. Sci. USA 117, 3797–3807 (2020).

    Article  CAS  Google Scholar 

  19. Rosenberg, M. D. et al. J. Neurosci. 36, 9547–9557 (2016).

  20. Finn, E. S. & Bandettini, P. A. Neuroimage 235, 117963 (2021).

    Article  Google Scholar 

  21. Li, J. et al. Neuroimage 196, 126–141 (2019).

    Article  Google Scholar 

  22. Ebner-Priemer, U. W. & Trull, T. J. Psychol. Assess. 21, 463–475 (2009).

    Article  Google Scholar 

  23. Hedge, C., Powell, G. & Sumner, P. Behav. Res. Methods 50, 1166–1186 (2018).

    Article  Google Scholar 

  24. Yip, S. W., Kiluk, B. & Scheinost, D. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 748–758 (2020).

    PubMed  Google Scholar 

  25. Finn, E. S. Trends Cogn. Sci. 25, 1021–1032 (2021).

    Article  Google Scholar 

  26. Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Nat. Commun. 9, 2807 (2018).

    Article  Google Scholar 

  27. Finn, E. S. et al. Neuroimage 160, 140–151 (2017).

    Article  Google Scholar 

  28. Vanderwal, T. et al. Neuroimage 157, 521–530 (2017).

    Article  Google Scholar 

  29. Finn, E. S. & Rosenberg, M. D. Neuroimage 239, 118254 (2021).

    Article  Google Scholar 

  30. Tian, Y. & Zalesky, A. Neuroimage 245, 118648 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monica D. Rosenberg or Emily S. Finn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenberg, M.D., Finn, E.S. How to establish robust brain–behavior relationships without thousands of individuals. Nat Neurosci 25, 835–837 (2022). https://doi.org/10.1038/s41593-022-01110-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01110-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research