Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains

Abstract

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (nā€‰=ā€‰739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 104ā€“106-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography. Large clusters of hyper-acetylated CRDs were enriched for SCZ heritability, with prominent representation of regulatory sequences governing fetal development and glutamatergic neuron signaling. Therefore, SCZ and BD brains show coordinated dysregulation of risk-associated regulatory sequences assembled into kilobase- to megabase-scaling chromosomal domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histone peak profiling in 739 ChIP-seq datasets from two studies consisting of SCZ, BD and control subjects.
Fig. 2: Enrichment of common SCZ risk variants in dysregulated peaks in NeuN+ and bulk tissue.
Fig. 3: PFC histone CRDs reveal sub-TAD chromosomal organization.
Fig. 4: Acetylated CRDs dysregulated in SCZ.
Fig. 5: Fingerprinting disease-sensitive CRDs.
Fig. 6: Spatial organization of diseased CRDs in the virtual Chrom3D model of the neuronal nucleus.

Similar content being viewed by others

Data availability

Raw data (FASTQ files) and processed data (BigWig files, metadata, peaks and raw and normalized count matrices) have been deposited in Synapse under synID syn25705564. Browsable UCSC genome browser tracks of our processed ChIP-seq data are available as a resource at EpiDiff Phase 2 http://genome.ucsc.edu/s/girdhk01/EpiDiff_Phase2.

External validation sets used in the study are as follows: H3K27ac ChIP-seq fetal-specific peaks: spatio-temporal enrichment of H3K27ac peaks table from http://development.psychencode.org/#; RoadMap Epigenome Project H3K27ac, H3K4me3 tissue ChIP-seq peaks, chromHMM states on E073 and fetal male E081 and fetal female E082 (https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/); and CTCF ChIP-seq on human neural cell (Gene Expression Omnibus GSE127577). TruSeq3-PE.fa file was downloaded from the adaptor folder under the Trimmomatic repository: https://github.com/timflutre/trimmomatic/blob/master/adapters/TruSeq3-PE.fa.

The source data described in this manuscript are available via the PsychENCODE Knowledge Portal (https://psychencode.synapse.org/). The PsychENCODE Knowledge Portal is a platform for accessing data, analyses and tools generated through grants funded by the National Institute of Mental Health PsychENCODE program. Data are available for general research use according to the following requirements for data access and data attribution: https://psychencode.synapse.org/DataAccess.

Code availability

All publicly available software used is noted in the Methods. We used decorate software to call CRDs: https://github.com/GabrielHoffman/decorate.

References

  1. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331ā€“336 (2015).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Girdhar, K. et al. Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat. Neurosci. 21, 1126ā€“1136 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Cheung, I. et al. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl Acad. Sci. USA 107, 8824ā€“8829 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Khan, A., Mathelier, A. & Zhang, X. Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Epigenetics 13, 910ā€“922 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18, 199ā€“209 (2015).

    ArticleĀ  Google ScholarĀ 

  6. Roussos, P. et al. A role for noncoding variation in schizophrenia. Cell Rep. 9, 1417ā€“1429 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Takata, A. et al. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 82, 773ā€“780 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Fullard, J. F. et al. An atlas of chromatin accessibility in the adult human brain. Genome Res. 28, 1243ā€“1252 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Smigielski, L., Jagannath, V., Rƶssler, W., Walitza, S. & GrĆ¼nblatt, E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol. Psychiatry 25, 1718ā€“1748 (2020).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442ā€“1453 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Hoffman, G. E. et al. CommonMind Consortium provides transcriptomic and epigenomic data for schizophrenia and bipolar disorder. Sci. Data 6, 180 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Hauberg, M. E. et al. Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Mol. Psychiatry 24, 1685ā€“1695 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Kozlenkov, A. et al. A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Sci. Adv. 4, eaau6190 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Wong, A. H. C. et al. Association between schizophrenia and the syntaxin 1A gene. Biol. Psychiatry 56, 24ā€“29 (2004).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Bryois, J. et al. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat. Commun. 9, 3121 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228ā€“1235 (2015).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Madani Tonekaboni, S. A., Mazrooei, P., Kofia, V., Haibe-Kains, B. & Lupien, M. Identifying clusters of cis-regulatory elements underpinning TAD structures and lineage-specific regulatory networks. Genome Res. 29, 1733ā€“1743 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Bendl, J. et al. The three-dimensional landscape of chromatin accessibility in Alzheimerā€™s disease. Preprint at https://www.biorxiv.org/content/10.1101/2021.01.11.426303v1 (2021).

  20. Dong, P. et al. Population-level variation of enhancer expression identifies novel disease mechanisms in the human brain. Preprint at https://www.biorxiv.org/content/biorxiv/early/2021/06/11/2021.05.14.443421.full.pdf (2021).

  21. Delaneau, O. et al. Chromatin three-dimensional interactions mediate genetic effects on gene expression. Science 364, eaat8266 (2019).

  22. Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039ā€“1050 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Hoffman, G. E., Bendl, J., Girdhar, K. & Roussos, P. decorate: differential epigenetic correlation test. Bioinformatics 36, 2856ā€“2861 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Ambroise, C., Dehman, A., Neuvial, P., Rigaill, G. & Vialaneix, N. Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics. Algorithms Mol. Biol. 14, 22 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8ā€“16 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, E6697ā€“E6706 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65ā€“75 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376ā€“380 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Lazar, N. H. et al. Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res. 28, 983ā€“997 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Hoffman, G. E. et al. Sex differences in the human brain transcriptome of cases with schizophrenia. Biol. Psychiatry 91, 92ā€“101 (2022).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Paulsen, J. et al. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol. 18, 21 (2017).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Paulsen, J., Liyakat Ali, T. M. & Collas, P. Computational 3D genome modeling using Chrom3D. Nat. Protoc. 13, 1137ā€“1152 (2018).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Tseng, C.-E. J. et al. In vivo human brain expression of histone deacetylases in bipolar disorder. Transl. Psychiatry 10, 224 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Gilbert, T. M. et al. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J. Clin. Invest. 129, 364ā€“372 (2019).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. Schroeder, F. A. et al. Expression of HDAC2 but not HDAC1 transcript is reduced in dorsolateral prefrontal cortex of patients with schizophrenia. ACS Chem. Neurosci. 8, 662ā€“668 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Bahari-Javan, S. et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc. Natl Acad. Sci. USA 114, E4686ā€“E4694 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Jakovcevski, M. et al. Prefrontal cortical dysfunction after overexpression of histone deacetylase 1. Biol. Psychiatry 74, 696ā€“705 (2013).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55ā€“64 (2007).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. de la Fuente Revenga, M. et al. HDAC2-dependent antipsychotic-like effects of chronic treatment with the HDAC inhibitor SAHA in mice. Neuroscience 388, 102ā€“117 (2018).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. Thomas, E. A. Histone posttranslational modifications in schizophrenia. Adv. Exp. Med. Biol. 978, 237ā€“254 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Shulha, H. P., Cheung, I., Guo, Y., Akbarian, S. & Weng, Z. Coordinated cell typeā€“specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood. PLoS Genetics 9, e1003433 (2013).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Connor, C. M. et al. Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophr. Res. 140, 175ā€“184 (2012).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Jaffe, A. E. et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40ā€“47 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Hannon, E. et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat. Neurosci. 19, 48ā€“54 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Ruzicka, W. B. et al. Single-cell dissection of schizophrenia reveals neurodevelopmental-synaptic axis and transcriptional resilience. Preprint at https://www.medrxiv.org/content/10.1101/2020.11.06.20225342v1 (2020).

  47. Dienel, S. J., Enwright, J. F., Hoftman, G. D. & Lewis, D. A. Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: disease effects differ across anatomical levels of resolution. Schizophr. Res. 217, 86ā€“94 (2020).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  48. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557ā€“572 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403ā€“413 (2006).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744ā€“757 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Khanna, N., Hu, Y. & Belmont, A. S. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24, 1138ā€“1144 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Ahanger, S. H. et al. Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nat. Neurosci. 24, 1235ā€“1242 (2021).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Legge, S. E. et al. Associations between schizophrenia polygenic liability, symptom dimensions, and cognitive ability in schizophrenia. JAMA Psychiatry 8, 1143ā€“1151 (2021).

  54. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

  55. Kundakovic, M. et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol. Psychiatry 81, 162ā€“170 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Jiang, Y., Matevossian, A., Huang, H.-S., Straubhaar, J. & Akbarian, S. Isolation of neuronal chromatin from brain tissue. BMC Neurosci. 9, 42 (2008).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114ā€“2120 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrowsā€“Wheeler transform. Bioinformatics 25, 1754ā€“1760 (2009).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813ā€“1831 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Fort, A. et al. MBV: a method to solve sample mislabeling and detect technical bias in large combined genotype and sequencing assay datasets. Bioinformatics 33, 1895ā€“1897 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  61. Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923ā€“930 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139ā€“140 (2010).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Hunt, G. J., Freytag, S., Bahlo, M. & Gagnon-Bartsch, J. A. dtangle: accurate and robust cell type deconvolution. Bioinformatics 35, 2093ā€“2099 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Neath, A. A. & Cavanaugh, J. E. The Bayesian information criterion: background, derivation, and applications. WIREs Computational Statistics https://doi.org/10.1002/wics.199 (2011).

  67. Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382ā€“2383 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478ā€“2492 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1ā€“48 (2010).

  71. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495ā€“501 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500ā€“507 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57ā€“74 (2012).

    ArticleĀ  Google ScholarĀ 

  75. Kumar, V. et al. Uniform, optimal signal processing of mapped deep-sequencing data. Nat. Biotechnol. 31, 615ā€“622 (2013).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Kozlenkov, A. et al. Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Res. 44, 2593ā€“2612 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  77. Van den Berge, K., Soneson, C., Robinson, M. D. & Clement, L. stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage. Genome Biol. 18, 151 (2017).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. Forgy, E. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768ā€“780 (1965).

  79. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  80. RamĆ­rez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311ā€“316 (2020).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank the late P. Sklar for many contributions in the early phase of this project and P. Rajarajan and S. Espeso-Gil for helpful discussions. This work was supported, in part, through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. We are extremely grateful to J. Ochando, C. Bare and other personnel of the Icahn School of Medicine at Mount Sinaiā€™s Flow Cytometry Core for providing and teaching cell-sorting expertise and to L. Bingman in the Division of Neuroscience and Basic Behavioral Science at the National Institute of Mental Health (National Institutes of Health (NIH)) for logistical support in the context of the PsychENCODE Consortium. This project was supported by NIH U01DA048279 (S.A. and P.R.) and R01MH106056 (S.A.). PsychENCODE Consortium: data were generated as part of the first phase of the PsychENCODE Consortium, supported by U01MH103339, U01MH103365, U01MH103392, U01MH103340, U01MH103346, R01MH105472, R01MH094714, R01MH105898, R21MH102791, R21MH105881, R21MH103877 and P50MH106934 awarded to S.A. (Icahn School of Medicine at Mount Sinai), G. Crawford (Duke University), S. Dracheva (Icahn School of Medicine at Mount Sinai), P. Farnham (University of Southern California (USC)), M. Gerstein (Yale University), D. Geschwind (University of California, Los Angeles), T. M. Hyde (Lieber Institute for Brain Development (LIBD)), A. Jaffe (LIBD), J. A. Knowles (USC), C. Liu (University of Illinois at Chicago), D. Pinto (Icahn School of Medicine at Mount Sinai), N. Sestan (Yale University), P. Sklar (Icahn School of Medicine at Mount Sinai), M. State (University of California, San Francisco), P. Sullivan (University of North Carolina), F. Vaccarino (Yale University), S. Weissman (Yale University), K. White (University of Chicago) and P. Zandi (Johns Hopkins Universityu). The HBCC is funded by the National Institute of Mental Health-Intramural Research Program through project ZIC MH002903. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Wet lab work, including tissue processing, sorting of nuclei and ChIP-seq and Hi-C library generation: Y.J., L.B., M.K., E.Z., R.J., J.R.W., R.P., B.S.K., L.C., O.D., S.R., J.F., E.F. and A.K. Data processing and coordination: Y.J., M.K., M.A.P. and J.S.J. Bioinformatics and computational genomics: K.G., G.E.H., J.B., S.R., T.G., J.P.-C., P.D., W.L., M.E.H., L.S. and L.C. Provision of brain tissue and resources: C.A.T., S.M., B.K.L., D.A.L., V.H., C.-G.H., R.E.G., S.D. and P.C. Conception of study and design: P.R., S.A., K.G., G.E.H. and J.B. Writing of the paper: K.G., S.A. and P.R.

Corresponding authors

Correspondence to Kiran Girdhar, Panos Roussos or Schahram Akbarian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Angel Barco, Inge Holtman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Captions for Supplementary Figs. 1ā€“22

Reporting Summary

Supplementary Data 1

PsychENCODE members list

Supplementary Table 1

Metadata of samples in Study-1 and Study-2

Supplementary Table 2

Genomic coordinates of consensus peaks

Supplementary Table 3

Differential analysis of peaks across SCZ cases and controls and across BD cases and controls

Supplementary Table 4

GWAS enrichment of brain traits and non-brain-related traits in peaks stratified by differentially upregulated and downregulated peaks

Supplementary Table 5

Genomic coordinates of identified CRDs

Supplementary Table 6

Annotation and differential analysis of CRDs

Supplementary Table 7

Pathway analysis of Ī”CRDĪ”Peaks

Supplementary Table 8

Genomic coordinates of H3K27ac GABA-, Glu- and OLIG-specific peaks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girdhar, K., Hoffman, G.E., Bendl, J. et al. Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains. Nat Neurosci 25, 474ā€“483 (2022). https://doi.org/10.1038/s41593-022-01032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01032-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing