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During development, cellular identity is established by the 
complex interplay between transcriptional regulators, 
cis-regulatory elements (CREs) and the chromatin land-

scape, taking place within the physical constraints imposed by 
three-dimensional (3D) nuclear architecture1,2. These different layers 
of molecular interactions form the basis of gene regulatory networks 
(GRNs), ensuring the precise temporal and spatial regulation of gene 
expression. Although our understanding of the underlying molecu-
lar cascades has grown considerably, the exact multilayered mecha-
nisms leading to acquisition of neural identity, lineage specification 
and developmental plasticity in the cerebral cortex remain unclear.

Recently, profiling the transcriptional and chromatin accessi-
bility landscape at single-cell resolution has improved our under-
standing of the temporal logic of lineage specification in the mouse3 
and human4,5 developing cerebral cortex. However, studies that 
comprehensively assess the effect of multiple regulatory modalities 
on transcription remain scarce6–9. Many of these regulatory lay-
ers converge on CREs such as enhancers, which represent the key 
building blocks of GRNs in eukaryotes. Changes in histone modifi-
cations, accessibility and the binding of cell-type-specific transcrip-
tion factors (TFs) have been proposed to explain the relationship 
between enhancer activation and gene expression10,11. Using 3D 
proximity data improves target gene prediction12, yet such data is 
rarely cell-type specific. Furthermore, some enhancers have been 
shown to interact only weakly or not at all with their target promot-
ers, therefore challenging the classical view of stable enhancer–pro-
moter (E–P) loops13,14. TF-associated chromatin looping has also 
been proposed to play a role in mouse15 and human9 brain develop-
ment, yet the causal relationships between TF binding, epigenetic 
signature, enhancer activity, chromatin looping and tissue-specific 
gene expression remain to be understood.

To comprehensively assess how coordinated epigenome remod-
eling governs cell fate decisions in the developing neocortex in vivo, 
we integrated single-cell transcriptomic and chromatin accessibility 
data with cell-type-specific massive parallel reporter assay (MPRA), 
DNA methylation and 3D genome architecture. We identify thou-
sands of new cell-type-specific enhancer–gene pairs (EGPs) and 
show that although enhancer activation appears to precede gene 
expression, only a subset of enhancers bound by specific TFs acts as 
truly lineage priming. In addition, we validate the cell-type-specific 
activity of the vast majority of these enhancers using a new MPRA 
approach in vivo and show that mutating specific TF motifs is suf-
ficient to abolish reporter activity. Extending our analysis to DNA 
methylation and 3D genome topology, we show that despite overall 
cell-type specificity, regulatory loops vary considerably in both con-
tact strength and dynamics. Finally, using integrated analysis and 
in vivo validation, we identify a new role for the TF Neurog2 in 
directly mediating enhancer activity, DNA demethylation, as well as 
leading to increased chromatin accessibility and chromatin looping 
in vivo. Thus, we propose that TFs represent a key component of the 
cell-type-specific reorganization of the chromatin landscape during 
lineage specification in the neocortex and can coordinate changes 
across multiple regulatory layers to facilitate lineage decisions. The 
generated data are freely available at https://shiny.bonevlab.com/ for 
interactive visualization.

Results
Single-cell transcription dynamics in the E14.5 mouse cor-
tex. To identify changes in the gene regulatory landscape upon 
differentiation at the single-cell level, we performed in parallel 
single-cell RNA sequencing (scRNA-seq) and single-cell assay for 
transposase-accessible chromatin using sequencing (scATAC–seq) 
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from the mouse somatosensory cortex at midneurogenesis (embry-
onic day (E) 14.5; Fig. 1a and Methods).

The scRNA data were of high quality and were highly reproducible 
across replicates (Extended Data Fig. 1a–f and Supplementary Data 
1). We identified 11 clusters that recapitulated the major cell types 
of the developing cortex (Fig. 1b–d and Extended Data Fig. 1d–i).  
Progenitor populations such as neural stem cells (NSCs) and inter-
mediate progenitor cells (IPCs) were characterized by Gene Ontology 
(GO) terms such as proliferation and Notch signaling, while projec-
tion neurons (PNs; 1–3) were associated with axonogenesis, synapse 
formation and cognition (Extended Data Fig. 1j). We then examined 
markers for different types of human radial glia cells, whose existence 
in the mouse is still under debate16. We found that, in comparison 
to human fetal cortex data4, markers for both ventricular and outer 
radial glia cells were nonoverlapping in the mouse (Extended Data 
Fig. 2a), suggesting differences in how these genes are regulated.

To infer the developmental trajectory and identify changes in 
gene expression, we used a generalized RNA velocity approach17 
(Fig. 1e and Extended Data Fig. 2b) and Monocle3 (ref. 18; Fig. 1f,g 
and Extended Data Fig. 2c). Consistent with previous lineage-tracing 
results19, our trajectory analysis revealed transcriptional waves 
of key neurogenic factors in NSCs (Hes1, Id4 and Hes5), IPCs 
(Neurog2 and Eomes), PN1 (Neurod2), PN2 (Rnd2) and PN3 (Mapt) 
(Extended Data Fig. 2d,e and Supplementary Data 2). In addition, 
we identified a number of genes exhibiting variable expressions 
along the studied differentiation trajectory, which we verified by 
independent fluorescence in situ hybridization (FISH) experiments 
(Fig. 1g–i). Such genes include Fhl1 (involved in muscular dystro-
phy20), Chd7 (a member of the chromodomain family of chromatin 
remodelers and associated with the CHARGE syndrome21) and the 
cell adhesion protein Lrfn5, which has been linked to autism, and 
mental retardation22.
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Fig. 1 | scRNa-seq analysis of mouse e14.5 cortical development. a, Schematic representation of the model system and the experimental approach.  
b, scrNa-seq UMaP projection. INs, interneurons; Crs, Cajal-retzius neurons; MG, microglia. Mural represents mural cells. _M indicates 
the corresponding mitotic (G2-M) population. c, UMaP visualization with expression levels of the indicated marker genes. d, representative 
immunofluorescence images of the indicated genes in coronal sections of e14.5 cortex. Scale bars, 50 µm. e, Direction of neuronal differentiation  
inferred from estimated rNa velocities and plotted as streamlines on the UMaP. f, Trajectory analysis depicting the inferred pseudotime on the UMaP 
projection. g, Pseudotime heat map ordering of the top 3,000 most variable genes across neural differentiation. h, expression levels of the indicated  
genes across differentiation. each dot shows the expression in an individual pseudotime-ordered cell, while the line represents the smoothed fit of 
expression levels. i, representative FISH images of the depicted genes in coronal sections of e14.5 cortex. Scale bars, 50 µm.
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Collectively, our scRNA-seq data recapitulate known transcrip-
tional dynamics during neurogenesis, reveal cell-type-specific 
expression and provide a molecular roadmap to investigate the 
influence of epigenetic regulation on gene expression in the context 
of corticogenesis.

Single-cell chromatin accessibility and transcription factor 
binding motifs. To dissect how transcriptional dynamics are 
associated with the remodeling of the epigenome landscape, we 
next focused on chromatin accessibility. Similar to the scRNA-seq 
data, the scATAC–seq data were characterized by high quality and 
strong correlation across replicates (Extended Data Fig. 3a–e and 
Supplementary Data 1 and 3).

We identified seven highly reproducible clusters (Fig. 2a and 
Extended Data Fig. 3f,g), which we subsequently annotated based on 
the gene body accessibility of known marker genes (Extended Data 
Fig. 3h,i). Similarly to the scRNA-seq, we observed a gradual pro-
gression in cell state (Fig. 2a). However, no distinct mitotic clusters 
were identified, presumably due to the high similarities of the chro-
matin accessibility landscape during different cell cycle phases4,23. 
As an example, we observed chromatin accessibility changes at the 
Dll1 locus even at the single-cell level (Fig. 2b).

To identify TFs whose binding correlates with accessibil-
ity changes, we used ChromVAR (Fig. 2c and Supplementary  
Data 4)24. NSC-specific factors included known neural TFs such 
as Sox2, Pax6 or Lhx2, as well as the less-characterized Tead2 and 
c-Fos/Jun (AP-1), which have been recently described as impor-
tant in NSCs25,26. Conversely, neurogenic TFs such as Eomes and 
Neurod2 had increased motif accessibility during the transition 
from NSC to IPC and IPC to PN1, respectively (Fig. 2c–e).

Most changes in chromatin accessibility occurred at CREs 
rather than on promoters (Fig. 2b,f–h, Extended Data Fig. 3j 
and Supplementary Data 5), consistent with the hypothesis that 
promoter accessibility, while required, may not be sufficient  
for transcription27.

Together, our scATAC–seq data identify major reorganization 
of the chromatin landscape during neural differentiation at the 
single-cell level, associated with cell-type-specific TFs. We also 
demonstrate that accessibility at CREs is highly dynamic and fre-
quently correlated with changes in gene expression, compared to 
the relatively invariant/static promoters.

Dynamic enhancer–gene pairs underlie neuronal commitment. 
To uncover how dynamic accessibility at CREs relates to changes 
in gene expression, we integrated the scRNA-seq and scATAC–seq 
data, which resulted in overall high prediction scores, minimal 
cross-annotations and high intermixed projection on a joint uni-
form manifold and approximation projection (UMAP; Extended 
Data Fig. 4a–d). To identify EGPs, we used a correlation-based 
analysis28 (Methods), which we validated using publicly available 
single-cell multiome data (Extended Data Fig. 4e,f). We identified 
16,978 positively correlated EGPs (Supplementary Data 6; r ≥ 0.35, 
false discovery rate (FDR) ≤ 0.1) with each gene being connected to 

a median of three distal regions (Extended Data Fig. 4g). Positively 
correlated distal regions were usually located closer to their pre-
dicted target genes (Extended Data Fig. 4h) and were characterized 
by overall higher accessibility compared to non-correlated pairs 
(also referred to as control pairs; −0.35 ≥ r ≤ 0.35, FDR > 0.1) but 
not compared to negatively correlated pairs (r ≤ −0.35, FDR ≤ 0.1; 
Extended Data Fig. 4i).

To address if the identified EGPs are cell-type specific, we clus-
tered the distal regions based on their pseudobulk accessibility. We 
found that only the positively correlated EGPs were mostly cell-type 
specific (Fig. 3a and Extended Data Fig. 4j,k). To further validate 
these findings, we focused on the Rnd2 locus (a gene involved in 
neuronal migration29), which was upregulated in IPCs and mainly 
expressed in newborn neurons (PN1; Extended Data Fig. 2d,e). We 
identified multiple EGPs associated with Rnd2 (Fig. 3b), including a 
previously validated enhancer29.

To address which TFs are associated with the identified 
cell-type-specific enhancers, we used motif enrichment (Methods). 
We found that some NSC-specific TFs such as Sox2, Tead2 and 
AP-1 (Fos::jun) were enriched only in NSC-specific enhancers, 
while others such as Lhx2 and Pou3f2 (also known as Brn2) were 
present in both NSC and IPC enhancers (Fig. 3c). Conversely, neu-
rogenic TFs such as Neurog2, Eomes and Neurod2 were depleted 
in NSC enhancers but strongly enriched in both IPC and PN1/2. 
Comparing expression patterns with motif footprints corroborated 
these findings (Extended Data Fig. 5a–d).

To determine the temporal relationship between chromatin 
accessibility and gene expression, we ordered the EGPs based on 
their enhancer accessibility as a function of the integrated pseudo-
time (Fig. 3d, Extended Data Fig. 5e and Supplementary Data 7). 
This systematic analysis showed that for transient cell states (IPC, 
PN1 and PN2) enhancer accessibility generally precedes upregula-
tion of their linked gene. Expression and downstream motif acces-
sibility of transcriptional activators such as Pax6, Sox2, Eomes 
and Neurog2 were highly correlated, while known repressors such 
as Insm1, Id4 and Hes1 displayed a strong negative correlation 
(Extended Data Fig. 5f).

Next, we examined if all predicted enhancers of a gene are char-
acterized by similar accessibility dynamics. While most became 
accessible shortly before or at the onset of gene expression (Fig. 3g 
and Extended Data Fig. 5h), some (such as Eomes: −159,192 and 
Neurod2: 8,330) acquired accessibility considerably earlier, suggest-
ing that they may act in lineage priming and be bound by specific 
TFs such as Neurog2 at the Neurod2 primed enhancer (Extended 
Data Fig. 5g). Consistent with this hypothesis, we found that motifs 
for neural bHLH (Neurog and Neurod) and T-box (Eomes and 
Tbr1) TFs were enriched in primed enhancers, while Lhx and Emx 
motif families were present in enhancers induced with or after 
the onset of expression (Fig. 3e). Surprisingly, Meis1 motifs were 
enriched in Neurog2-bound primed enhancers, while others (Emx 
and Tfap2) were present in delayed enhancers (Fig. 3f). These find-
ings suggest that the priming activity of pioneer TFs might be regu-
lated by cofactors such as Meis1 or repressors such as Hes/Hey1.

Fig. 2 | scataC–seq identifies dynamic transcription factor motifs and variable distal regulatory elements. a, scaTaC–seq UMaP projection (cells 
derived from the same brain as the scrNa-seq data). b, Genomic tracks showing the accessibility of aggregated scaTaC-seq clusters (top) and of 1,000 
random single cells (bottom) at the Dll1 gene locus. Four examples of differential accessible loci are highlighted with dashed black rectangles. c,d, Heat 
map clustering of chromVar bias-corrected accessibility deviations for the most 100 variably expressed TFs (c) or based on ChIP–seq peaks (d). e, Gene 
body accessibility or chromVar motif bias-corrected deviations of the indicated TFs. f, Heat map of aggregated accessibility z-scores (per cluster) of 
differentially accessible peaks in distal regions or within promoters. Labels indicate the name and the distance in base pairs (bp) to the nearest TSS.  
g, Box plot showing the standardized variance within promoter (n = 81,810) or distal (n = 289,165) regions. Plot displays the median (line), 25th and  
75th percentiles (box), as well as the 10th and 90th percentiles (whiskers). Statistical significance was calculated using a two-sided Wilcoxon rank-sum 
test. h, Genomic tracks showing scaTaC accessibility at the Fhl1 gene locus (highlighted in gray). The promoter region (solid black rectangle) and four 
putative regulatory elements (dashed black rectangles) are also highlighted.
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In summary, integrating scRNA-seq and scATAC–seq allowed us 
to identify EGPs, which led to several new findings. First, we find 
specific TFs enriched at cell-type-specific enhancers. Second, we 
show that only a subset of enhancers appears to be lineage priming 
and that cofactors/repressors may influence TF pioneering activity. 
Finally, the identification of EGPs in single cells, in vivo, sets the 
stage to systematically interrogate how TFs facilitate and maintain 
GRNs during development.

In vivo MPRA uncovers cell-type-specific enhancer activity. To 
further characterize if the identified enhancers have the potential 
to drive gene expression, we performed an MPRA in vivo (Methods 
and Fig. 4a). We included 18,000 266-bp sequences (1,713 scrambled 
controls) and recovered ~95% of them during barcode association 
with an average of ~88 unique barcodes per enhancer (Extended 
Data Fig. 6a–c).

We then used in utero electroporation (IUE) to introduce the 
MPRA pool into the E13.5 embryonic cortex and sorted the elec-
troporated cells 2 d after using fluorescence-activated cell sorting 
(FACS; Fig. 4a). This approach resulted in high reproducibility and 
barcode recovery (Extended Data Fig. 6d–j). Using MPRAnalyse30, 
we found that positively correlated enhancers were significantly 
more active compared to non-correlated enhancers and scrambled 
controls (Fig. 4b). Reassuringly, the sequences that partially over-
lap with VISTA forebrain enhancers31 were more active compared 
to scrambled controls, validating our approach (Extended Data 
Fig. 6k). Surprisingly, highly active enhancers were predominantly 
associated with neuronal genes, while NSC enhancers displayed low 
activity scores (Fig. 4c and Extended Data Fig. 6l), an observation 
we attributed to overrepresentation of differentiating neurons in the 
electroporated cells (Extended Data Fig. 6d,n).

To overcome this limitation and to obtain a cell-type-specific 
enhancer activity in vivo, we combined our IUE-based MPRA 
with an immunoFACS approach to isolate NSCs, IPCs and PNs 
(Methods and Extended Data Fig. 6m,n) and confirmed cell speci-
ficity by quantitative PCR (qPCR; Extended Data Fig. 6o). For all 
cell types, we achieved a high barcode recovery and a clear sepa-
ration (Extended Data Fig. 6p–r). MPRA activity was highly cor-
related with enhancer cluster annotation for positively correlated  
(Fig. 4e and Extended Data Fig. 6s) but not negatively correlated 
pairs (Extended Data Fig. 6t).

To identify TFs that govern cell-type-specific reporter activity, 
we clustered all significantly active enhancers and performed motif 
enrichment analysis (Fig. 4f,g). We found enrichment of Tead binding 
motifs in the NSC-IPC cluster, neurogenic bHLH in IPC-PN cluster 
and AP-1 in NSCs/PNs, highly consistent with the results in Fig. 3c and 
the TFs expression patterns (Extended Data Fig. 5a–c). Conversely, 
inactive enhancers displayed a strong enrichment for NR4A2::RXRA 
and Hes TFs, which can act as transcriptional repressors32,33.

Next, we asked if TF binding directly regulates enhancer activity. 
For the majority of the analyzed TFs, mutating the motif was suf-
ficient to strongly reduce reporter expression (Fig. 4h). Sequences 
containing the Neurog2 binding motif were associated with the 
highest overall signal and its mutation led to almost complete 
absence of reporter activity (Fig. 4h). This is exemplified at the Dll1 
locus, where the activity of IPC-specific Dll1 enhancers was abol-
ished upon mutation of the Neurog2 motif (Fig. 4i,j).

In summary, our in vivo MPRA assay not only expands exist-
ing databases of validated enhancer elements, but also allows us 
to make several important conclusions. First, the activity of the 
distal sequences identified in our positively correlated EGPs is 
largely cell-type specific and is significantly higher than compa-
rable non-correlated sequences, validating our linkage method. 
Second, several TF motifs are associated with cell-type-specific 
reporter activity, which largely confirms and further extends 
our accessibility-based enrichment analysis. Finally, muta-
tion of TF binding motifs abolishes reporter activity in a 
cell-type-specific manner, directly linking TF binding and enhancer  
function in vivo.

Rewiring 3D genome organization and DNA methylation in vivo. 
To obtain a more comprehensive view of how the chromatin land-
scape is reorganized during neural differentiation, we combined a 
modified Methyl-HiC7,8 approach (Methods and Supplementary 
Data 1) with immunoFACS of NSCs, IPCs and PN G0/G1 cells 
from E14.5 somatosensory cortex in biological triplicates (Fig. 5a 
and Extended Data Fig. 7a,b). Our improved Methyl-HiC method 
was characterized by high bisulfite conversion efficiencies (99.48%; 
Extended Data Fig. 7c,d), distance-dependent decrease in con-
tact probability (Extended Data Fig. 7e), as well as a high repro-
ducibility on the level of both the 3D genome (r ≥ 0.9; Extended 
Data Fig. 7f) and DNA methylation (r ≥ 0.93; Extended Data  
Fig. 7g). Furthermore, CTCF-associated methylation followed the 
expected pattern34 and did not change across cell types (Extended  
Data Fig. 7k).

Consistent with our previous results using an in vitro differen-
tiation system15, we observed a global reorganization of chroma-
tin interactions associated with fewer compartment transitions 
(Extended Data Fig. 7h) but stronger overall compartment strength 
(Fig. 5b,d), as well as increased insulation at topologically associ-
ating domain (TAD) boundaries and promoters upon neuronal 
differentiation (Fig. 5c and Extended Data Fig. 7i). This increased 
insulation was evident already in IPCs and was not associated with 
changes in DNA methylation at TAD boundaries or accessibility 
and DNA methylation at CTCF-bound sites (Fig. 5c and Extended 
Data Fig. 7i–k). We identified 322 differentially insulated domain 
boundaries (~11% of all; Fig. 5e and Supplementary Data 8), many 
of which were in close proximity to the transcription start site (TSS) 

Fig. 3 | Lineage dynamics of enhancer–gene pairs and transcription factor motifs. a, Heat maps of aggregated accessibility of putative enhancers (left) and 
gene expression levels of their linked genes (right) for each of the 16,978 positively correlated eGPs (rows). rows were clustered by enhancer accessibility 
using feature binarization (Methods). b, Genomic tracks depicting aggregated accessibility (per cluster) at the Rnd2 gene locus. arcs represent rnd2 
linked enhancers and their correlation score. The promoter region (solid black rectangle), previously characterized enhancers (gray dashed rectangle) 
and predicted enhancers (black dashed rectangles) are highlighted. c, Scatterplot showing the enrichment of TF motifs within cluster-specific eGPs. red 
and blue dots indicate significantly (log10P ≥ 2; abs(log fold change) ≥ 0.25) enriched and depleted motifs, respectively. The significance of each motif 
was calculated using Fisher’s exact test. d, Left: heat map depicting scaled enhancer accessibility of eGPs in individual cells ordered along the integrated 
pseudotime. right: heat map depicting the pseudotemporal difference between maximum enhancer accessibility and expression of the linked gene (referred 
to as ‘dPD’), as well as box plots with the median of these differences (M). Negative values mean that accessibility precedes gene expression. Box plots 
displays the median (line), 25th and 75th percentiles (box limits) as well as the 10th and 90th percentiles (whiskers). Significance was calculated using a 
one-sample, one-sided Wilcoxon signed-rank test. e, Heat map showing motif enrichment of primed (dPD ≤ −2; dark green), immediate (dPD > −2 and 
<2; gray) and delayed (dPD ≥ 2) positive correlated enhancers. Only motifs of expressed TFs are displayed. f, Same as e, but only for enhancers bound by 
Neurog2 and containing its binding motif. g, Pseudotime heat map ordering of enhancer accessibility (individual or aggregate), linked gene expression and 
motif accessibility of the indicated TFs.
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of dynamically expressed genes such as Gas1 (NSC), Cxcd12 (IPC) 
or Flrt2 (PN) and frequently associated with dynamic enhancer 
accessibility (Fig. 5f–h and Extended Data Fig. 7j).

To address if there is a global rewiring of regulatory interac-
tions, we examined the aggregated Hi-C E–P contacts for each 
cluster (Supplementary Data 6) based on the previous EGP  
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definitions (Fig. 3a). We found that positively correlated E–P 
pairs were characterized by a higher overlap with chromatin 
loops (42.78% versus 27.75%; P ≤ 0.00001, Fisher’s exact test) and 
increased contact strength compared to negatively correlated and 
non-correlated E–P pairs (Extended Data Fig. 8a). Furthermore, 
positively correlated E–P loops were largely cell-type specific, with 
the highest contact strength in the cell type where the enhancer is 
the most active (Fig. 6a,b).

Next, we confirmed that only changes in positively correlated, 
but not in control pairs were statistically significant (Fig. 6b and 
Extended Data Fig. 8b,c). However, individual E–P pairs were 
characterized by a continuum of contact strengths including 
pre-looping or even anti-correlated with changes in accessibility 

and expression (Fig. 6c). Examples of dynamic E–P contacts include 
cell-type-specific genes such as Gas1 (also depicted in Fig. 5f), Gli3 
and Nr2e1 in NSCs, Eomes and Gas2 in IPCs and neuronal genes 
such as Sox5 and Clstn2.

To understand how DNA methylation is related to changes 
in enhancer accessibility and gene expression, we analyzed the 
dynamics of CpG methylation at enhancers and promoters. We 
found that promoter regions displayed consistent hypomethylation 
levels throughout neurogenesis (Fig. 6d), while DNA methylation 
levels were lowest at accessible enhancers (Fig. 6e,f), consistent 
with previous reports35,36. While the majority of enhancers became 
consistently hypomethylated upon activation, DNA methylation 
levels varied considerably (Fig. 6g and Extended Data Fig. 8e–g). 
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Although chromatin interactions between negatively correlated 
pairs did not change significantly, DNA methylation levels were 
variable, suggesting that these two molecular layers are not strictly 
correlated (Extended Data Fig. 8h,i). Furthermore, MPRA-based 
enhancer activity and DNA methylation levels (or interaction 
strength) were also only weakly correlated, consistent with the lack 
of locus-specific context in MPRA assays (Extended Data Fig. 8j,k).

In summary, we show that most regulatory interactions between 
EGPs are fairly dynamic and strongest in the cell type where the 
enhancer is active and the linked gene expressed. Despite this over-
all trend, considerable heterogeneity exists at the level of individual 
E–P pairs; while many follow the classical model of cell-type-specific 
looping, some appear to be already pre-looped before transcrip-
tion occurs and others are only weakly interacting with their tar-
get promoters. DNA methylation levels at enhancers are generally 
anti-correlated with accessibility but, again, vary considerably from 
enhancer to enhancer. Importantly, neither 3D contact strength 
nor DNA methylation could be inferred simply from scRNA-seq, 
scATAC–seq or MPRA data, thus highlighting the importance of 
integrating multiple epigenome layers to study GRNs.

Transcription factor-associated 3D epigenome remodeling and 
DNA demethylation. Given the observed dynamics and hetero-
geneity at the identified EGPs, we sought to identify the underly-
ing molecular mechanisms. TFs have been previously suggested as 
potential mediators of chromatin looping by us and others9,15,37,38, 
but it is unclear which ones are important and to what extend they 
participate in coordinated epigenome remodeling.

To address this question, we determined the average interaction 
strength and specificity for each TF based on accessible sites con-
taining their binding motif (Methods). Surprisingly, we found several 
TFs associated with strong looping, cell-type specificity or both (Fig. 
7a, Extended Data Fig. 9a and Supplementary Data 9). Some (such 
as members of the POU domain (class 3) and Sox families) have 
been previously described in the context of human brain develop-
ment9, while others (such as Neurog2 and Dmrta2) have not yet been 
implicated in the context of the 3D genome. To confirm these find-
ings, we plotted the aggregated Hi-C contact maps for Pou3f2 and 
Neurog2 motifs (Fig. 7b) or ChIP–seq-based peaks (Extended Data 
Fig. 9b) and observed that interaction strength was highly correlated  
with TF expression (Fig. 7c). This dynamic pattern of chromatin 
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interactions matched well with the changes in accessibility at TF 
bound sites (Extended Data Fig. 9c) and it was in contrast with the rel-
atively weaker and static loops associated with other TFs such as AP-1 
and Tead (Extended Data Fig. 9d,e). Finally, we observed dynamic 
looping not only between Neurog2-bound enhancers and promoters, 
but also between pairs of Neurog2-bound enhancers (Fig. 7d).

Next, we used an analogous approach to identify TFs related 
to dynamic DNA methylation. We identified Neurod2 (previously 

linked to DNA demethylation in the cortex35) and Neurog2 among 
others (Supplementary Data 9) to be associated with high cell-type 
variability (Fig. 7e,f) and confirmed these results using publicly 
available ChIP–seq data (Extended Data Fig. 9f,g).

Finally, we focused on Neurog2, as it was one of the few TFs 
that was correlated with dynamic chromatin interactions as well as 
changes in DNA methylation and due to its well-characterized role 
in neuronal differentiation in the cortex39. This can be exemplified 
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between their expression and the accessibility of their binding motif. Gray circles represent non-significant TFs (P > 0.05; permutation test). b, aggregated 
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at the Eomes locus where Neurog2-bound enhancers engaged in 
strong, cell-type-specific looping with each other and with the Eomes 
promoter only in IPCs (Fig. 7g,h; loci 5–7), while other enhancers 
were either pre-looped (Fig. 7g,h; loci 1–4) or weakly interacting 
(Fig. 7g,h; locus 8). DNA methylation levels at Neurog2-bound 
enhancers were either very low (Fig. 7i, locus 5) or decreased specif-
ically in IPCs (Fig. 7i; loci 4, 6 and 7). Focusing on enhancer 7 as an 
example (Eomes: −150,098), we could validate its cell-type-specific 
MPRA reporter activity in IPCs, which was completely abolished 
upon mutating the Neurog2 motif (Fig. 7j), indicating direct regula-
tion consistent with previous findings40,41. The relationship between 
enhancer activity and Neurog2 binding was also confirmed genome 
wide across all tested Neurog2-bound enhancers (Fig. 7k).

Collectively, these experiments identify the previously under-
appreciated role of TFs in dynamic chromatin looping and DNA 
methylation. Several TFs with a well-characterized role in cortical 
development such as Neurog2, Pou3f2 and Eomes are associated 
with strong cell-type-specific looping, but only Neurog2 binding is 
also correlated with changes in DNA methylation. We further dem-
onstrate that the activity of Neurog2 enhancers directly depends on 
its binding genome wide.

Neurog2 is sufficient to induce epigenome changes in vivo. To 
understand the mechanism that links Neurog2 binding to changes 
in DNA methylation, chromatin accessibility and 3D regulatory 
loops, we used a gain-of-function approach in vivo (Fig. 8a,b and 
Extended Data Fig. 10a).

First, we verified Neurog2 overexpression by qPCR and con-
firmed that Pax6 levels were not affected (Fig. 8c), while the 
expression of the direct target Eomes40 was increased. Consistent 
with previous findings29, Neurog2 overexpression was also associ-
ated with increased neuronal migration (Extended Data Fig. 10b). 
RNA-seq confirmed that among IPC-specific genes, only those 
bound by Neurog2 were upregulated, suggesting negligible fate shift 
from NSC to IPC within the 24-h time window of the experiment 
(Extended Data Fig. 10c).

Next, we asked if Neurog2 overexpression affects the local chro-
matin accessibility and DNA methylation. Neurog2 binding sites 
and Neurog2 motifs became more accessible upon Neurog2 overex-
pression (Fig. 8d,e and Extended Data Fig. 10e), while Ctcf sites or 
Eomes motifs were not affected (Extended Data Fig. 10d,f). These 
results are consistent with our computational predictions (Fig. 3c) 
and the proposed pioneering activity of Neurog2 (ref. 42). In addi-
tion to changes in accessibility, Neurog2 overexpression also led to 
DNA demethylation at its bound regions (Fig. 8f–h) but not at Ctcf 
sites (Extended Data Fig. 10g).

Next, we addressed if Neurog2 binding is sufficient to affect 
chromatin looping. We observed that Neurog2-bound sites inter-
acted stronger upon Neurog2 overexpression (Fig. 8i,j), while there 
was no change at Pax6 binding sites (Extended Data Fig. 10m,n). 
Furthermore, global 3D genome topology at the level of TADs, 
compartments and contact probability was not affected (Extended 
Data Fig. 10h–l), suggesting that Neurog2 overexpression does not 
lead to IPC-like nuclear architecture. Importantly, only positively 
correlated E–P pairs bound by Neurog2 at both anchors were char-
acterized by increased interaction strength (Fig. 8k). Taken together, 
these results suggest that Neurog2 binding is sufficient to induce 
chromatin looping between regulatory regions within 24 h.

Finally, we examined the consequences of Neurog2-mediated 
regulatory contacts for gene expression. Consistent with the earlier 
findings, we observed that expression at unbound genes was gen-
erally unchanged upon Neurog2 overexpression, arguing against 
secondary effects (Fig. 8l). Genes where Neurog2 binding occurred 
only at the paired enhancer were only slightly upregulated, while 
Neurog2 present at the promoter led to a relatively stronger increase 
in expression (Fig. 8l). We observed the highest upregulation for 

genes where Neurog2 was bound both at the paired enhancer and 
promoter (Fig. 8l), indicating a potential synergistic effect.

One example of such locus is Eomes, where we observed spe-
cific increase of E–P contacts upon Neurog2 overexpression only 
at bound enhancers (Fig. 8m). DNA methylation and chromatin 
accessibility were affected at some, but not all, Neurog2-bound 
Eomes enhancers, suggesting that the increase in contacts is not a 
direct consequence of changes in the linear epigenome.

Collectively, these experiments confirm our computational 
predictions and identify a previously unknown role of Neurog2 
in regulating dynamic chromatin looping and DNA methylation. 
Importantly, Neurog2 can mediate regulatory interactions only 
when it is bound at both anchors, that is, the enhancer and the pro-
moter. Finally, we show that genes where such a binding pattern 
occurs are more robustly upregulated upon Neurog2 overexpression.

Discussion
Here, we combined single-cell transcriptomics and chromatin 
accessibility with cell-type-specific massively parallel reporter 
activity, DNA methylation and 3D genome architecture in vivo to 
address how changes across multiple regulatory layers can be coor-
dinated to facilitate specific lineage decisions in the mouse cortex.

Integrating matched scRNA and scATAC data, we identified 
thousands of positively correlated EGPs, generating a rich resource 
to study GRNs. We showed that although enhancer activation 
generally precedes transcription at dynamic genes, only a subset 
of enhancers appears to be truly lineage priming. These findings 
corroborate prior conclusions in early mammalian embryogenesis6 
and recent data using simultaneous paired ATAC/RNA measure-
ments in single cells43. The presence of neural bHLH and T-box 
TFs at primed enhancers suggests a pioneering function; however, 
priming of Neurog2-bound regions was associated specifically with 
Meis1 motifs and the absence of Hey/Hes binding. These results 
suggest that chromatin context, enhancer grammar and cofactors 
may influence pioneering activity of Neurog2, similarly to how 
co-binding can shape the activity of other pioneering factors such 
as Foxa2 in the endoderm44.

Using a modified MPRA approach, capable of quantifying 
cell-type-specific enhancer activity in vivo, we could confirm our 
integration-based linkage method and expand the repertoire of vali-
dated neuronal enhancers. We identify several TFs which are asso-
ciated with cell-type-specific reporter activity (such as AP-1 and 
Tead for NSCs and neural bHLH TF in IPCs and PNs) and confirm 
their direct effect using motif mutagenesis. Focusing on Neurog2, 
we show that higher reporter activity is associated with stron-
ger Neurog2 binding, and mutation of Neurog2 motif abolishes  
this correlation.

Three-dimensional genome architecture and DNA methylation 
represent two epigenome layers that are important for gene regula-
tion, but have not yet been coupled to single-cell transcriptomic and 
accessibility measurements3,4. Our immunoFACS approach allowed 
us to combine the resolution and depth of bulk Hi-C/DNA methyla-
tion with cell-type specificity. The reduced input requirements and 
the improved resolution compared to previous studies7,8 enable the 
application of this method to other tissues and model organisms.

Previous studies have produced somewhat conflicting results 
regarding the importance of 3D genome architecture on gene regu-
lation45–48 and the cell-type specificity of regulatory loops9,14,15,49,50. 
Our results indicate that contact strength between enhancers and 
promoters (as well as DNA methylation levels) is not simply a conse-
quence of gain in accessibility/expression, as even highly correlated 
EGPs were characterized by a continuum of interactions scores. 
Despite this apparent heterogeneity, the majority of E–P interac-
tions appear to be dynamic and cell-type specific, yet such differ-
ences are rather quantitative than binary. Furthermore, the ability of 
a sequence to enhance expression in a reporter assay (the ‘classical’  
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definition of enhancer) cannot be directly predicted from other 
epigenome layers such as accessibility, looping or DNA methylation.

Finally, we provide evidence that a subset of TFs is associated 
with dynamic chromatin looping, potentially acting as ‘molecular 
bridges’ to facilitate and coordinate epigenome remodeling. We 
identify the proneural TF Neurog2 as one such factor and show 
that it is sufficient to induce local chromatin accessibility and DNA 
demethylation at its binding sites in vivo. The simultaneous bind-
ing of Neurog2 at both the enhancer and promoter, as well as the 
increased chromatin looping associated with such configuration, 
leads to stronger transcriptional upregulation of the downstream 
target genes. Thus, regulatory homotypic interactions mediated by 
TFs may ensure more robust changes in gene expression and cell 
fate in a dynamic developmental system. Such interactions can be 
achieved via multimerization51, transient phase transitions52,53 or via 
cofactors such as Lmo4/Ldb1 (refs. 45,54).

Although the cell types we focused on belong to temporally sepa-
rated lineages (NSCs at E14.5 give rise to superficial layer neurons 
and glia cells, while PNs have primarily deep layer identity), the 
focus of our work is on the epigenome remodeling associated with 
conserved neuronal differentiation GRNs. Indeed, very recent find-
ings on the molecular logic of subtype diversification in the cortex3 
conclude that the neural differentiation programs are mostly con-
served and divergence occurs primarily in postmitotic neurons.

Collectively, our data provide a comprehensive view of the 
reorganization of the epigenetic regulatory landscape during lin-
eage commitment in the mouse cortex. Our results pave the way 
for functional studies aiming to resolve the relative influence of 
dynamic versus pre-looped enhancers on gene expression and the 
mechanism of how TFs such as Neurog2 can rewire the regula-
tory 3D genome. Our functional experiments also suggest that E–P 
homotypic interactions stabilized by TFs, as well as multimodal 
epigenome remodeling can lead to the robustness of the transcrip-
tional response and lineage specification.
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Methods
Plasmids. An IRES-eGFP cassette, with or without Neurog2, was introduced in 
the dCas9 control plasmid36 (kind gift from the Calegari laboratory) with prior 
removing of the U6-gRNA scaffold and the 3xFlag-dCas9-T2A-eGFP sequence. 
Neurog2 was amplified from cDNA of E14.5 mouse cortices, and all primers used 
for cloning are listed in the Supplementary Data 10.

MPRA design and plasmid pool generation. A detailed protocol for the MPRA 
plasmid pool generation can be found at https://www.protocols.io/view/ 
mpra-plasmid-pool-preparation-bxchpit6/.

The designed MPRA plasmid pool included 7,772 enhancers associated with 
positively correlated EGPs, 1,679 negatively correlated EGPs or 873 non-correlated 
EGPs, as well as 1,713 scrambled control sequences, which had matched GC 
content and were prescreened to minimize the presence of expressed TF motifs. 
Additionally, we added 4,398 posCor sequences where only the corresponding 
motif sequence was iteratively mutated (100 permutations with similar GC content, 
lowest motif score selected). All sequences were centered and resized to 266 bp  
and extracted using the ‘BSgenome.Mmusculus.UCSC.mm10’ R package. To 
facilitate barcode–CRE association we added a 4 bp tag at the beginning of each  
WT/control (ATTA) or Mut (TCCG) sequence.

In total, 266-bp single-stranded oligonucleotides were synthesized (Twist 
Bioscience) and degenerated barcodes as well as KpnI/EcoRI restriction sites 
were added by two separate PCRs. PCR products were introduced into the 
pMPRA1 (ref. 55; Addgene plasmid no. 49349) backbone via Gibson assembly and 
transformed into ElectroMAX Stbl4 Competent Cells (Thermo Fisher)  
using Gene Pulser/MicroPulser Electroporation Cuvettes with a 0.1-cm gap 
(parameters: 1.8 kV, 25 µF, 200 Ω). Transformed bacteria were immediately 
resuspended in 1 ml of warm SOC medium and a 1:10 dilution of the bacteria 
was distributed on ten plates of LB agar containing 100 µg µl−1 carbenicillin. The 
number of transformants was estimated on a 1:10.000 diluted counting plate, 
and 1.2 million colonies, corresponding to approximately 68 barcodes per CRE, 
were scraped for plasmid purification. The purified plasmids were digested with 
KpnI/EcoRI and ligated with an insert containing the minimal promoter (derived 
from pNL3.1 (Nluc/minP), Promega) and mScarlet-I (kind gift of the laboratory 
of M. Götz). The purified ligation product was transformed in Escherichia coli 
as described above, scraped and the final plasmid library was purified using the 
EndoFree Plasmid Maxi Kit (Qiagen).

Experimental model and subject details. Time-mated pregnant C57BL/6JRj 
mice were obtained from Janvier Laboratories and kept under standard housing 
conditions according to local regulations of the Regierung Oberbayern, Germany. 
E14.5 mouse embryos were used independent of sex. Each biological replicate 
represents a single embryo from different mothers in case of scRNA-seq/scATAC–
seq or a pool of 4–6 littermates from separate mothers in the case of Methyl-HiC. 
For IUE experiments, matched biological replicates consisted of 1–3 GFP and 
Neurog2 electroporated littermates from the same mother or 3–5 littermates for the 
MPRA pool. All experiments were performed according to national guidelines and 
were approved by local authorities (Regierung Oberbayern, Germany; ROB-55.2-
2532.Vet_02-19-175). No animals or data points were excluded from the analysis.

In utero electroporation. IUE was performed as previously described36. Briefly, 
E13.5 time-mated plugs were anesthetized using isoflurane, the uterus was 
exposed and 1–3 µl plasmid DNA in PBS was injected into the lumen of the 
telencephalon followed by five pulses of 35 V, 100 ms each, at 1-s intervals delivered 
through platinum electrodes (NepaGene). At 24 or 48 h after electroporation, the 
pregnant females were euthanized, the brains of the embryos dissected and the 
electroporation efficiency evaluated using a fluorescence stereotactic microscope.

Tissue preparation and dissociation. Brains of WT or electroporated E14.5 
and E15.5 embryos were either used directly for in situ hybridization and 
immunohistochemistry or further dissected to isolate the somatosensory cortex 
with a prior removal of all meninges. The dissected cortex was dissociated 
using a papain-based neural dissociation kit (Miltenyi Biotec) according to the 
manufacturer’s protocol. The cell number and viability were assessed using a 
Countess II Automated Cell Counter (Invitrogen).

Sectioning, immunohistology and in situ hybridization. Brains were fixed in 
freshly prepared 4% formaldehyde in PBS at 4 °C for at least 8 h, washed once in 
PBS and cryoprotected in 30% sucrose for ~6 h at 4 °C. Subsequently, brains were 
embedded in TFM-Tissue Freezing Media (TBS; Triangle Biomedical), snap frozen 
on dry ice and finally cryosectioned (~10 μm) using a CryoStar NX70 (Thermo 
Fisher). Sections were collected on Superfrost Plus adhesive microscope slides 
(Thermo Fisher) and stored at −80 °C until further use.

For immunohistochemistry, the sections were hydrated in PBS and incubated 
for 1 h at room temperature (RT) in PBS blocking buffer containing 5% horse 
serum (Sigma-Aldrich), 1% BSA (Thermo Scientific) and 0.3% Triton X-100 
(Sigma-Aldrich). Staining was performed overnight at 4 °C with anti-GFP (1:1,000 
dilution; Abcam) and anti-Neurog2 (1:250 dilution; Cell Signalling) antibodies in 
PBS blocking buffer. Sections were washed three times for 10 min with 0.1% Triton 

X-100 in PBS and, if required, stained with secondary antibodies (1:1,000 dilution; 
goat anti-chicken-A488 and donkey anti-rabbit-A555, Thermo Scientific) followed 
by an incubation with DAPI (1:1,000 dilution in PBS) for 10 min and finally 
mounted using Fluoromount-G (Invitrogen).

RNA in situ hybridization was performed using the RNAscope Multiplex 
Fluorescent Reagent kit v2 (ADCBio) according to the instruction manual. 
Signal amplification and detection reagents, including Opal fluorophores (Akoya 
Biosciences), were applied sequentially. Nuclei were counterstained with DAPI and 
slides mounted with Fluoromount-G (Invitrogen).

All images were acquired using a Zeiss LSM 710 confocal microscope.  
Data collection and analysis were not performed blind to the conditions of  
the experiments.

scRNA-seq and scATAC–seq. scRNA-seq (v3, 10x Genomics) as well as  
scATAC–seq (10x Genomics) libraries were generated according to the instruction 
manual with a targeted recovery of 6,000 cells per nuclei for each sample.

Intracellular immunostaining. A detailed protocol for the immunoFACS can 
be found at https://www.protocols.io/view/immunofacs-b2a2qage/. Briefly, 
dissociated cells were fixed for 10 min at RT in 1% freshly prepared formaldehyde 
in PBS (Thermo Fisher) and quenched by addition of glycine (Invitrogen) to a final 
concentration of 0.2 M. Fixed cells were spun down with 500g for 5 min at 4 °C, 
washed once with 1% BSA, 0.1% RNasin plus RNase inhibitor (Promega) in PBS 
(wash buffer) and subsequently incubated for 10 min at 4 °C in permeabilization 
buffer consistent of 0.1% freshly prepared Saponin (Sigma-Aldrich), 0.2% BSA 
(Thermo Fisher) and 0.1% RNasin plus RNase inhibitor in PBS. Staining against 
Pax6 (1:40 dilution; BD Bioscience), Eomes (1:33 dilution; BD Bioscience) and 
Tubb3 (1:13 dilution; BD Bioscience) was performed in staining buffer (0.1% 
saponin, 1% BSA and 0.1% RNasin plus RNase inhibitor in PBS) for 1 h at 4 °C 
under slow rotation. Cells were washed twice with permeabilization buffer, once 
with wash buffer containing DAPI (1:1,000 dilution; Thermo Fisher, 62248) and 
a final wash with wash buffer without DAPI. Between each washing step, the cells 
were incubated for 5 min at 4 °C with the respective buffer under slow rotation 
and spun down with 2,500g for 5 min at 4 °C. After the last wash, the cells were 
resuspended in PBS with 1% BSA and 1% RNasin plus RNase inhibitor, passed 
through a 40-µm cell strainer (Thermo Fisher) and immediately FACS sorted.

Fluorescence-activated cell sorting. FACS was performed on a BD FACSAria 
Fusion (BD Bioscience) with four lasers (405, 488, 561 and 640 nm) using a 
100-µm nozzle. Singlets of immunostained cells were selected using forward and 
side scatter, cells in G0 and G1 were identified by genomic content based on DAPI 
staining. Subsequently, these cells were divided into Tubb3-high for PNs and 
low for progenitor cell types. The progenitor population was further subdivided 
into Pax6-high/Eomes-low for NSCs and Eomes-high for IPCs. Please note that 
the fixation leads to the loss of mScarlet-I fluorescence (compare Extended Data 
Fig. 7f). Dissociated cells from in utero electroporated brains were sorted for 
GFP (Neurog2) or RFP (MPRA). After sorting, cells were either directly used for 
nucleotide isolation or fixed, quenched, pelleted, flash frozen and stored at −80 °C 
as described above.

RNA extraction, real-time quantitative PCR and RNA-seq library preparation. 
RNA from fixed or non-fixed cells was extracted using the Quick-RNA FFPE 
Miniprep kit (Zymo Research) or TRIzol (Thermo Fisher), respectively.

For qPCR, reverse transcription was performed using the Maxima H Minus 
Reverse Transcriptase (Thermo Fisher) with OligodT primer (Thermo Fisher) 
according to the instructions manual. Transcripts were quantified by using 
either the LightCycler 480 SYBR Green I Master Mix (Roche) or the Luna 
Universal qPCR Master Mix (New England Biolabs) with the appropriate primers 
(Supplementary Data 10) on a Roche LightCycler 480.

RNA-seq libraries were generated using the NEBNext Single Cell/Low Input 
RNA Library Prep Kit (New England Biolabs) according the manufacturer’s 
instruction.

Methyl-HiC and in situ Hi-C. For Methyl-HiC and the low-input in situ Hi-C, 
we adapted current protocols7,8 (detailed experimental procedures can be found at 
https://www.protocols.io/view/methylhic-bif2kbqe/ and https://www.protocols.io/
view/in-situ-hi-c-brd4m28w/, respectively)

Briefly, frozen pellets of fixed cells were thawed on ice, lysed with 0.2% 
Igepal-CA630 (Sigma-Aldrich), permeabilized with 0.5% SDS (Invitrogen) and 
digested with DpnII (New England Biolabs) overnight at 37 °C. Subsequently, 
sticky ends were filled with biotin-14-dATP (Life Technologies) followed by T4 
Ligase (New England Biolabs)-based proximity ligation for at least 6 h at 16 °C. 
Thereafter, nuclei were lysed, reverse crosslinked overnight at 68 °C, purified by 
ethanol precipitation and sheared to ~550-bp DNA fragments using a Covaris  
S220 sonicator.

For in situ Hi-C, biotin pulldown was performed by incubation of the 
sheared DNA with MyOne Streptavidin T1 beads (Thermo Fisher) for 30 min 
at RT followed by on-bead biotin removal and end repair by incubating the 
samples for 30 min at RT in a reacting mix consisting of T4 DNA Polymerase, 
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T4 Polynucleotide Kinase and DNA Polymerase I, Large (Klenow) Fragment 
(New England Biolabs). Thereafter, A-tailing using Klenow Fragment exo-minus 
(New England Biolabs) was performed for 30 min at 37 °C followed by ligation of 
NextFlex DNA barcodes (Perkin Elmer). Between each of the incubation steps the 
samples bound to the streptavidin beads were washed twice with washing buffer 
containing 0.05% Tween-20 (Sigma-Aldrich) and once with the respective buffer 
of the following reaction. Libraries were amplified on the streptavidin beads using 
the NEBNext Ultra Q5 II Master mix (New England Biolabs) using the following 
program: 98 °C for 30 s; (98 °C 10 s, 65 °C 75 s) × 10; 65 °C for 5 min; hold at 10 °C. 
After the amplification, the streptavidin beads were pelleted and the supernatant 
was purified twice using 0.7× AMPure XP beads (Agencourt) to reach an average 
fragment size of approximately 500 bp.

In the case of Methyl-HiC, end repair was performed by incubating the 
sonicated DNA with T4 DNA Polymerase (New England Biolabs) for 4 h at  
20 °C followed by bisulfite conversion using the EZ DNA Methylation-Gold 
kit (Zymo Research) with the prior spike-in of methylation controls (~0.01%). 
For library construction, the Accel-NGS Methyl-Seq DNA Library kit (Swift 
Bioscience) was used according to the manufacturer’s instructions until the  
adaptor ligation step. After this step, biotin pulldown was performed using  
MyOne Streptavidin T1 beads (Thermo Fisher) followed by five washes with 
washing buffer containing 0.05% Tween-20 (Sigma-Aldrich) and two additional 
washes with low-TE water. Libraries were amplified on the streptavidin beads 
using the EpiMark Hot Start Taq (New England Biolabs) with Methyl-Seq Indexing 
Primers (Swift Bioscience) using following program: 95 °C 30 s; (95 °C 15 s, 61 °C 
30 s, 68 °C 60 s) × 14; 68 °C 5 min; hold at 10 °C. Streptavidin T1 beads were  
pelleted and the prepared libraries within the supernatant were purified using  
0.6× AMPure XP beads (Agencourt).

The nucleosome occupancy and methylome sequencing assay. For the 
nucleosome occupancy and methylome sequencing (NOMe-seq) assay, we adapted 
current protocols34,56. A detailed experimental procedure can be found at https://
www.protocols.io/view/nome-seq-of-fixed-cells-brdwm27e. Briefly, frozen pellets 
of fixed cells were thawed on ice, lysed with 0.2% Igepal-CA630 (Sigma-Aldrich) 
and incubated with M.CviPI (New England Biolabs) for 3 h at 37 °C with 
additional substitution of enzyme every hour. Thereafter, nuclei were lysed, reverse 
crosslinked overnight at 68 °C, purified by ethanol precipitation and sheared to 
~550-bp fragments using a Covaris S220 sonicator. Methylation controls consisting 
of M.CviPI treated and sheared fully methylated pUC19 (Zymo Research) and 
unmethylated lambda DNA (Promega) were added to the samples (~0.05%) 
followed by bisulfite conversion using the EZ DNA Methylation-Gold kit (Zymo 
Research). For library construction, the Accel-NGS Methyl-Seq DNA Library kit 
(Swift Bioscience) was used according to the manufacturer’s instructions until 
the final library amplification step. Library amplification was performed in five 
separate reactions using the EpiMark Hot Start Taq (New England Biolabs) with 
Methyl-Seq Indexing Primers (Swift Bioscience) using the following PCR program: 
95 °C for 30 s (95 °C for 15 s, 61 °C for 30 s and 68 °C for 60 s) × 11; 68 °C for 5 min, 
and hold at 10 °C. PCR reactions were pooled and purified using 0.8× AMPure XP 
beads (Agencourt).

MPRA and CREs barcode association library generation. A detailed protocol 
for the MPRA library preparations can be found at https://www.protocols.io/view/
mpra-library-preparation-bxdtpi6n/.

Briefly, RNA and DNA from fixed or unfixed cells were extracted using  
the Quick-DNA/RNA Microprep Plus Kit (Zymo Research) according to  
the corresponding manufacturer’s instructions. Purified RNA was treated with 
TURBO DNase (Thermo Fisher) and reverse transcribed with Maxima H 
Minus RT (Thermo Fisher) using Oligo(dT)18 Primer (Thermo Fisher). cDNA 
was purified with 1.5× AMPure XP magnetic beads (Agencourt). For both the 
DNA and cDNA libraries, unique molecular identifiers (UMIs) were added by 
PCR (98 °C for 30 s (98 °C for 10 s, 65 °C for 30 s, 72 °C for 1 min) × 3, 72 °C for 
3 min, and hold at 4 °C) using the primers RV_univ_MPRA and FWD_mScar_
Tn7_10UMI_3 (0.5 µM each). P7 and P5 sequencing adaptors were attached  
in two separate PCRs (98 °C for 30 s (98 °C for 10 s, 65 °C for 90 s) × (10 + X) 72 °C 
5 min, and hold at 4 °C) using indexed Ad2.X57 and P5NEXTPT5 primers  
(0.1 µM each). Required PCR cycle numbers were estimated by qPCR and  
using one-tenth of the second PCR product as input. All PCRs were performed  
in 1× NEBNext Ultra II Q5 Master Mix (New England Biolabs), and PCR  
products were purified with 0.8× to 1.2× of AMPure XP magnetic beads.  
Final libraries were quantified by Qubit (Thermo Fisher) and Bioanalyzer  
2100 (Agilent).

For the CREs barcode association library, 5 ng of the plasmid pool without 
minimal promoter and mScarlet-I was used to attach P5 and P7 sequencing 
adaptors in two separated PCRs. Both PCRs were performed using the NEBNext 
Ultra II Q5 Master Mix (New England Biolabs) with RV_univ_MPRA + FWD_
CRS_Tn7 (0.5 µM each; PCR conditions: (98 °C for 30 s, (98 °C for 10 s, 
65 °C for 30 s and 72 °C for 3 min) × 3; 72 °C for 3 min, and hold at 4 °C) and 
P5NEXTPT5 + indexed Ad2.X (0.1 µM each; PCR conditions: 98 °C for 30 s, (98 °C 
for 10 s, 65 °C for 90 s) × 10, 72 °C for 5 min, and hold at 4 °C), respectively. All 
primers used are listed in Supplementary Data 10.

Library quality control and sequencing. Before sequencing, libraries were 
quantified by qPCR using either the NEBNext Library Quant kit (New England 
Biolabs, E7630S) or the KAPA Library Quantification Kit (scRNA-seq libraries 
only; Roche, 07960298001). Size distribution of the obtained libraries was assessed 
using the Agilent 2100 Bioanalyzer. Sequencing depths of the libraries are listed in 
Supplementary Data 1.

scRNA-seq processing. Raw sequencing data were converted to fastqs using 
cellranger mkfastq (10x Genomics, v3.1.0). scRNA reads were aligned to the 
GRCm38 reference genome (mm10) and quantified using cellranger count  
(10x Genomics, v3.1.0).

scRNA-seq quality control. We removed low-informative cells by filtering cells 
with less than 1,000 genes or 2,500 UMIs per cell detected. To lower doublet 
representation, we filtered cells with more than 7,000 genes per cell detected and 
the top 4% cells (estimated doublet percentage) with the highest number of UMIs. 
Finally, to remove any potential dead cells, we filtered cells that have more than 
10% mitochondrial counts.

scRNA-seq clustering and dimensionality reduction. Seurat (v3.1.5)58 was used 
to further process the cells passing the quality-control (QC) filters. After log 
transformation, feature selection using variance stabilizing transformation (top 
2,000 most highly variable genes) and linear transformation, principal-component 
analysis was performed using the first 20 dimensions. After dimensionality 
reduction, Harmony59 was used to correct the batch effect between the two 
biological replicates. Next, we applied Louvain clustering (resolution = 0.3, 
n.start = 100, n.iter = 500) and visualized the data using UMAP (min.dist = 0.5, 
spread = 1, n.epochs = 500). As they represent very few cells, the microglia and 
mural clusters were further manually identified based on the UMAP projection 
and the subclustering of the NSC cluster. Cluster identify was determined based 
on the top 40 differentially expressed genes (MAST60, minimum log fold change of 
0.25 and expressed in at least 25% of the cells in the cluster)

scRNA-seq velocity and pseudotime analysis. The percentage of spliced and 
unspliced reads was calculated using Velocyto (v0.17)61 and RNA velocity was 
calculated using scVelo (dynamical model)17. Only cells passing the previously 
described QC were used and UMAP coordinates were transferred from Seurat. To 
calculate trajectory and pseudotime, we used Monocle3 (ref. 18), while retaining 
cluster assignment and UMAP coordinates from Seurat. A trajectory graph 
was constructed using the following parameters: minimal_branch_len = 20, 
ncenter = 600, geodesic_distance_ratio = 0.275. Cells belonging to the NSC cluster 
were assigned as root cells. To calculate the change of gene expression as a function 
of the pseudotime, we fitted a generalized additive model using cubic regression 
splines and REML smoothing for each of the top 3,000 most variable genes 
(expressed in at least 20 cells). The values were then rescaled per gene from 0 to 1.

scATAC–seq processing. Raw sequencing data were converted to fastqs using 
cellranger-atac mkfastq (10x Genomics, v1.2.0). Reads were aligned to the 
GRCm38 reference genome (mm10) and quantified using cellranger-atac count 
(10x Genomics, v1.2.0) using integrated doublet removal.

scATAC–seq quality control. We calculated the QC statistics separately for each 
replicate and filtered the combined 10× object (merged using cellranger --atac 
--aggr with no normalization). To ensure sufficient sequencing depth and high 
signal-to-noise ratio, we filtered cells with less than 10,000 unique fragments per 
cell and a TSS enrichment ratio of less than 8 or more than 25 (Extended Data 
Fig. 7f). To account for any remaining doublets after the automatic cellranger-atac 
filtering, we additionally removed cells with more than 120,000 unique fragments 
per cell. TSS enrichment was calculated as described previously28. In brief, Tn5 
insertions located within ±2,000 bp relative from each TSS (strand corrected) were 
aggregated per TSS, normalized to the mean accessibility ±1,900–2,000 bp from 
the TSS and smoothed every 51 bp. The maximum smoothed value was reported 
as TSS enrichment. Fragment size distribution for cells passing the QC filters was 
calculated using ArchR62 and plotted with ggplot2.

scATAC–seq clustering and dimensionality reduction. To obtain a set of initial 
clusters, we first counted the number of unique fragments in 5-kb genomic 
bins63. After binarization, the top 20,000 accessible windows were kept and the 
matrix was transformed using log term frequency-inverse document frequency 
(TF-IDF) transformation using Signac63. The normalized matrix was then used 
as an input for partial singular value decomposition (SVD) using irlba. After 
dimensionality reduction, Harmony59 was used to correct the batch effect between 
the two biological replicates. Next, we retained the first 20 dimensions, applied 
Louvain clustering with the following parameters: resolution = 1, n.start = 50 and 
n.iter = 50, and visualized the data using UMAP (min.dist = 0.5, spread = 1.5, 
n.epochs = 2,000).

For each cluster, peak calling was performed on the Tn5-corrected insertions 
as described in Granja et al. (2019)28. Peak size was then normalized to 501 bp in 
length, filtered by the mm10 ENCODE blacklist and then peaks were merged into 
a union set as previously described28.
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Next, this high-quality peak set was used to generate the final clustering and 
visualization. First, fragments contained within peaks were calculated using Signac, 
binarized, and the top 25,000 variable peaks were identified (using aggregated 
counts per million from the initial bin-based clusters). The count matrix associated 
with those peaks was then again subjected to TF-IDF normalization followed 
by SVD as described above. After batch correction using Harmony59, the first 20 
dimensions were retained and clusters were identified using Louvain algorithm 
(resolution = 0.3, n.start = 100, n.iter = 200). Data were visualized using UMAP 
embedding (min.dist = 0.5, spread = 1.5, n.epochs = 2,000). Cluster identity was 
determined based on the top 40 differentially accessible gene bodies (Student’s 
t-test, minimum log fold change of 0.25 and expressed in at least 25% of the cells in 
the cluster).

scATAC–seq calculation of promoter and gene body. To calculate gene body 
accessibility scores, we counted the number of unique fragments along the whole 
span (TSS – transcription termination site of protein-coding genes (EnsDb.
Mmusculus.v79), extended 2,000 upstream of TSS. To calculated promoter scores, 
we counted the number of unique fragments along promoters of protein-coding 
genes (defined as the sequence −2,000 bp to +200 bp of the TSS).

scATAC–seq motif and ChIP–seq accessibility deviations. Motif accessibility 
was calculated using chromVAR24 as implemented in the Signac63. In brief, 
position-weight matrices were obtained from the JASPAR 2020 motif database64, 
to which entries present in the JASPAR 2018 version but subsequently removed, 
were manually added. Each accessibility peak was then tested for the presence/
absence of each TF motif and GC bias-corrected deviations were computed using 
the chromVAR ‘deviations’ function as implemented in Signac (‘RunChromVar’). 
Accessibility deviations associated with ChIP–seq peaks were computed 
analogously, but the overlap of ChIP–seq peaks and scATAC peaks was used as 
entry to chromVAR instead.

scATAC–seq unique peaks identification. Cluster-specific peaks were identified 
using feature binarization as described28. In brief, pseudobulk replicates were 
created for clusters with N cells < 100, while real biological replicates were used for 
the remaining clusters. Peaks were considered as unique if they had an adjusted 
P value less than 0.01 and minimum log fold change of 0.25 to the next highest 
cluster. The identified unique peaks (Supplementary Data 3) were split into two 
categories: promoter associated (less than 500 bp away from a TSS) and distal 
(more than ±5 kb away from an annotated TSS).

Transcription factor footprinting. The Tn5-normalized accessibility around TF 
motifs was calculated as previously described65 using the ArchR package62. The 
expected Tn5 bias was substracted from the calculated footprints to generate the 
final footprint plots62. The positions of the respective motifs within the ChIP–seq 
peaks were identified using the R package motifmatcher.

Label transfer and co-embedding. To integrate scRNA and scATAC datasets,  
we used Seurat’s canonical correlation analysis58. In brief, we first identified  
transfer anchors using the top 5,000 most variable genes shared across  
both datasets using FindTransferAnchors (dims = 1:20, k.anchor = 20,  
k.filter = 200, k.score = 30, max.features = 500). We then transferred the 
scRNA-based labels using the inferred anchors and the harmony corrected 
low-dimensional coordinates as weight reduction. After we confirmed the 
high-confidence values of the prediction scores (Extended Data Fig. 7f), we then 
co-embedded the scRNA and the scATAC cells in the same low-dimensional 
space and recalculated UMAP embedding (Extended Data Fig. 7f; dims = 1:20, 
n.epochs = 2,000, spread = 1.5, min.dist = 0.5). To enable more robust downstream 
correlation-based analysis, we used the previously described Cicero-based 
k-nearest neighbor (kNN) approach to group scATAC–seq accessibility  
(4,892 groups, kNN = 50) match grouped gene expression (based on scRNA-seq 
closest neighbors).

Identifying pairs of matched genes and predicted enhancers. To identify  
putative enhancers, where the accessibility of the predicted distal regions 
correlated with changes in gene expression (and not accessibility of the promoter), 
we adapted the approach first described by Granja et al. (2019)28. Briefly, the 
correlation between the log-normalized matched grouped scATAC and scRNA 
values was calculated for each pair of distal scATAC peaks (at least 5 kb away 
from any annotated TSS) and gene promoters within a maximum genomic 
distance of 500 kb. The significance of the calculated correlations was determined 
using a trans-based null correlation and peak-to-gene links with significance 
of FDR < 0.1 and a Pearson correlation > 0.35 were considered as positively 
correlated (referred to as putative enhancer–gene pairs, or EGPs, for simplicity). 
In addition, we also identified two additional classes of peak-to-gene relationships: 
negatively correlated (FDR < 0.1 and r < −0.35) and control pairs (FDR > 0.1 and 
−0.35 < r < 0.35). As the number of control pairs was much higher than either 
positively or negatively correlated EGPs, we subsampled this category to match 
the positively correlated pairs (n = 16,978). Cluster-specific pairs were determined 
using pseudobulk feature binarization as described above.

Integrated pseudotime analysis. Pseudotime on the combined integrated scRNA–
scATAC object was calculated using Monocle3, analogous to scRNA-seq alone. 
Imputed gene expression values based on gene body accessibility and integration 
vectors as described previously were used together with measured scRNA values 
to construct a cellDataSet object, retaining cluster assignment (scRNA based) 
and UMAP coordinates from Seurat. To calculate the change of accessibility and 
motifs deviations as a function of the pseudotime, we fitted a generalized additive 
model using cubic regression splines and REML smoothing, analogous to gene 
expression for scRNA-seq data. The values were then rescaled per gene from 0 to 1. 
For each EGP, we then ordered the cells based on their pseudotime and calculated 
the pseudotime difference between their respective maxima, which was used to 
infer the relationship between enhancer accessibility and gene expression (Fig. 3). 
An analogous process was repeated for TF motif deviations and the correlation 
between the gene expression pattern of each TF and its corresponding motif 
accessibility along the pseudotime was computed as well.

MPRA data processing. In total, 50-bp paired-end (PE) reads from the 
CRE barcode association were trimmed using cutadapt with the following 
parameters: --m 12 --a GAATTCATCTGGTA --G GACCGGATCAACT --u 1 
discard-untrimmed. Two 150-bp PE reads were first filtered using cutadapt  
(--m 12 --a GAATTCATCTGGTACCTCGGTTCACGCAATG --G CCAGG 
ACCGGATCAACT --u 1 --discard-untrimmed --action = none  
--interleaved | cutadapt --g GAATTCATCTGGTACCTCGGTTCACGCA 
ATG --G CCAGGACCGGATCAACT --discard-untrimmed 
--action = none --interleaved) and, subsequently, forward and reverse 
reads were trimmed individually using --l 12 for the barcode, --g 
CCAGGACCGGATCAACT --discard-untrimmed (forward CRE reads) or 
--g GAATTCATCTGGTACCTCGGTTCACGCAATG --discard-untrimmed 
(reverse CRE read). Trimmed fastq reads for both 50-bp PE and 150-bp PE 
reads were separated based on a 5′ 4-bp identifier and CRE barcode association 
was performed separately on WT and mutant sequences using the MPRAflow 
association pipeline66. The resulting pickle libraries were merged to increase the 
number of recovered CREs and filtered for 50-bp PE reads from the DNA or RNA 
libraries were trimmed using cutadapt with the following parameters: --u 1 --a 
GAATTCTCATTAC --A TCGACCGCAAGTTGG --discard-untrimmed. Count 
tables for RNA and DNA reads were generated using MPRAflow (--bc-length 12 
and --mpranalyze) and subsequently imported into MPRAnalyse30 to calculate 
the MPRA signal, which represents either alpha.score or mad.score for pooled 
or cell-type-specific MPRA libraries, respectively. Statistically significant active 
enhancers are defined by a mad.score P value ≤ 0.05. For comparison of replicates 
the normalized DNA/RNA read counts as well as ratio of sums were calculated as 
previously described67. Motif enrichment was calculated using MonaLisa68.

Hi-C mapping and quality control. We mapped the joint Hi-C/DNA  
methylation data to the mm10 genome using JuiceMe69. In situ Hi-C data were 
mapped using Juicer. Only uniquely mapping reads (mapq > 30) were retained 
for further analysis. After removal of PCR duplicates, reads were translated into a 
pair of fragment ends (fends) by associating each read with its downstream fend. 
CpG methylation was assessed using MethylDackel (https://github.com/dpryan79/
MethylDackel/), in a ‘mergeContext’ mode with the first six nucleotides omitted 
from further analysis. Reads from individual replicates were pooled and only  
Cs in a CpG context with at least 10× total coverage were further analyzed. For  
Hi-C, reads mapping to the same restriction fragment or separated by less 
than 1 kb were excluded from further analysis. The QC metrics are reported in 
Supplementary Data 1.

NOMe-seq mapping and quality control. NOMe-seq reads were first trimmed 
using trim galore in a PE mode with --clip_R1 = 1 and --clip_R2 = 15 to  
account for the A-tail deposited by adaptase. Reads were then mapped using 
bismark in PE mode, deduplicated and methylation calls were extracted  
(--ignore 6 and --CX). Coverage files were then produced using coverage2cytosine 
in --nome-seq mode. Only calls with at least 5× coverage per replicate or  
10× coverage in the merged data were used for the subsequent analysis.  
Pearson correlation of CpG methylation in 1-kb bins displays a correlation  
of ≥0.77 between replicates.

Quality control of bisulfite conversion efficiency. To determine the efficiency of 
the bisulfite conversion, we determined the proportion of CpG methylation that 
was detected in fragments mapping to the unmethylated lambda DNA sequence. 
For Methyl-HiC (Extended Data Fig. 7f) and NOMe-seq, this represents ~0.5% or 
~3.0, suggesting a conversion rate of 99.5% or 97%, respectively. To calculate the 
detection rate for the Methyl-HiC, we determined the proportion of CpG on fully 
methylated pUC19 plasmid DNA and observed >96.5%, suggesting a false negative 
rate of less than 3.5% (Extended Data Fig. 7f). Furthermore, we detected a high 
Pearson correlation of CpG methylation levels in 1-kb bins across replicates for 
both Methyl-HiC (r ≥ 0.93) and NOMe-seq (r ≥ 0.87).

Hi-C data processing. The filtered fend-transformed read pairs were converted 
into ‘misha’ tracks and imported into the genomic mm10 database. They were 
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normalized using the Shaman package (https://tanaylab.bitbucket.io/shaman/
index.html) and the Hi-C score was calculated using a kNN strategy on the pooled 
replicates as previously described15 with a kNN of 100.

Contact probability, insulation and TAD boundary calling. Contact probability 
as a function of the genomic distance was calculated as previously described15.

To define insulation based on observed contacts, we used the insulation score 
as previously defined15,70. The insulation score was computed on the pooled contact 
map at 1-kb resolution within a region of ±250 kb and was multiplied by (−1) 
so that a high insulation score represents strong insulation. Domain boundaries 
were then defined as the local 2-kb maxima in regions where the insulation 
score is above the 90% quantile of the genome-wide distribution. Differential 
TAD boundaries were identified as previously described15 using genome-wide 
normalized insulation scores.

Compartments and compartment strength. We first calculated the dominant 
eigenvector of the contact matrices binned at 250 kb as described previously71 using 
scripts available at https://github.com/dekkerlab/cworld‐dekker/. To determine 
the compartment strength, we plotted the log2 ratio of observed versus expected 
contacts (intrachromosomal separated by at least 10 Mb) either between domains 
of the same (A–A, B–B) or different type (A–B), as previously described15. We 
calculated compartment strength as the ratio between the sum of observed contacts 
within the A and B compartments and the sum of intercompartment contacts 
(AA + BB)/(AB + BA).

Average topologically associated domain contact enrichment. The insulation 
and contact enrichment within TADs was calculated as previously described15. 
Briefly, TAD coordinates were extended upstream and downstream by the TAD 
length and this distance was split into 100 equal bins. The observed versus 
expected enrichment ratio was calculated in each resulting 100 × 100 grid (per 
TAD) and the average enrichment was plotted per bin. Average CpG DNA 
methylation was calculated for each of these 100 bins per TAD and was represented 
as the mean ± 0.25 quantiles.

Aggregated and individual contact strength at pairs of genomic features. To 
calculate the contact enrichment ratio at pairs of genomic features (such as ChIP–
seq peaks, accessible motif sites or linked pairs of enhancers and promoters), 
we used two complementary approaches. First, we aggregated Hi-C maps to 
calculate the log2 ratio of the observed versus expected contacts within a window 
of a specific size, centered on the pair of interest, as described previously15. 
Furthermore, we calculated the average enrichment ratio of the contact strength 
in the center of the window (central nine bins) versus each of the corners. This 
analysis is useful to identify general patterns of changes in chromatin interactions 
in the data, but cannot distinguish the heterogeneity and the contribution of 
individual pairs. To address this question, we also extracted the kNN-based 
Hi-C score in a 10-kb window centered around each of the pairs separately and 
represented the data as a scatterplot or box plot. Significance was then calculated 
using the Wilcoxon rank test.

Average enrichment of linear marks at genomic features. We used SeqPlots72 to 
calculate the average enrichment of linear chromatin marks (DNA methylation, 
chromatin accessibility, ChIP–seq) in window centered around the genomic feature 
of interest, or along scaled gene bodies.

Inferring Hi-C contact strength and CpG DNA methylation associated with 
transcription factor binding motifs. Although ChIP–seq (and related techniques) 
remains the method of choice to identify the real binding sites of a TF, in many 
cases this is not feasible due to the lack of suitable antibodies. We reasoned that 
we could use predicted TF motifs at highly accessible peaks to examine how such 
potentially occupied motifs are spatially positioned to each other and how they 
are associated with changes in DNA methylation. Briefly, for each TF motif, we 
first identified the scATAC-based peaks that contain the predicted binding motif 
and then ranked these sites based on their maximum accessibility in aggregated 
pseudobulk scATAC-based clusters. To not over-penalize rare motifs, we selected 
the top 5,000 most highly accessible regions per motif and created point-based 
regions centered at the corresponding motif. TFs (and their corresponding motifs) 
that were not expressed in our data (reads per kilobase per million (RPKM) > 1 
based on pseudobulk scRNA-seq data) or were not within the top 3,000 most 
variable genes (based on scRNA-seq) were discarded from further analysis.

To create a set of control regions, not enriched for any particular motif, 
we first selected a set of the top 50,000 most highly accessible sites, analogous 
to motif-based analysis. Then, we sampled 5,000 peaks randomly 1,000 times 
to create a set of highly robust background peaks with similar characteristics. 
Next, we created pairs of these regions separated by at least 10 kb, filtered for 
intraTAD interactions and extracted the maximum Hi-C score (for each cell type) 
within a square window of 10 × 10 kb centered on each pair. We then calculated 
the median value per TF motif for each cell type and repeated this for each of 
the 1,000 controls to generate a background distribution. To normalize for any 
non-specific interaction, we calculated the mean of the 1,000 controls per cell type 

and subtracted it from the TF motif values. We then calculated the maximum Hi-C 
score (from all three cell types) and the standard deviation per motif and plotted 
them as a scatterplot using ggplot2. To calculate the statistical significance, we used 
permutation-based analysis (utilizing the 1,000 repeated sampling of the random 
regions) and considered motifs with P < 0.05 as significant. We also depicted the 
Pearson’s correlation between the motif deviation scores and the expression of the 
matching TF as described for Fig. 3e.

For the analysis of DNA methylation, we extracted the average CpG 
methylation in 500-bp windows centered on the motif-based regions described 
above. We then generated a random permutation-based background exactly as 
described for the Hi-C and plotted the minimum DNA methylation and standard 
deviation for the three cell types as a scatterplot. Statistical significance was 
calculated as described above.

As a complementary analysis, we calculated the average Hi-C score and 
enhancer DNA methylation for positively correlated EGPs and presented the data 
as scaled median Hi-C score per TF motif.

External datasets. The following external datasets were used: Sox2 ChIP–seq 
(GSE35496)73, Pax6 ChIP–seq (GSE66961)74, Neurog2 ChIP–seq (GSE63621)75, 
Eomes ChIP–seq (GSE63621)75, Neurod2 ChIP–seq (GSE67539)76 and Tbr1 
ChIP–seq (GSE71384)77. The ChIP–seq datasets were uniformly processed 
using the ENCODE ChIP–seq pipeline (https://github.com/ENCODE-DCC/
chip-seq-pipeline2/). Publicly available 10× multiome data from the 
E18 mouse brain were obtained from https://support.10xgenomics.com/
single-cell-multiome-atac-gex/datasets/2.0.0/e18_mouse_brain_fresh_5k/ and 
reanalyzed as described above.

Sample sizes. No statistical methods were used to predetermine sample sizes but 
our sample sizes are similar to those reported in previous publications3,4,8,15,34.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw and processed sequencing data are available in the Gene Expression 
Omnibus repository under accession code GSE155677. An interactive version  
of the single-cell and the genomics data can be visualized at https://shiny. 
bonevlab.com/.

Code availability
The code used for generating the data and all the figures are freely available 
under https://github.com/BonevLab/Noack_et_al_NatNeuro2021/. Methyl-HiC 
data were processed using the JuiceMe pipeline, available at https://github.com/
aidenlab/JuiceMe/. The R package to compute the expected tracks and the Hi-C 
scores is available at https://bitbucket.org/tanaylab/shaman/.
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Extended Data Fig. 1 | Quality control and further validation of the scRNa-seq data. (a) Scatterplot of gene expression values in the two biological 
scrNa-seq replicates, colored by density. The correlation (r) represents the Pearson correlation across all genes. (b) Barplot showing the number of 
cells passing quality filtering in each replicate. (c-d) Violin and box-whisker plots depicting the distribution of unique transcripts per cell across the two 
replicates and the identified clusters. (e-f) same as in (c-d) but showing the number of genes per cell. (g) Dot plot depicting the percentage of cells  
and gene expression levels of marker genes across the identified scrNa-seq clusters. (h) Overlay of replicate identity on the UMaP scrNa projection.  
(i) Stacked barplot showing the percentage of cells contributing to each cluster per replicate. (j) GOterm enrichment analysis of cluster specific  
marker genes.
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Extended Data Fig. 2 | Pseudo-temporal analysis and comparison to human data. (a) UMaP visualization with expression levels of cell-type-specific 
marker genes identified in the human cortex4. (b) rNa velocity based inferred pseudotime depicted on the UMaP projection. Note the similarities with 
a trajectory-based approach (Fig. 1f) (c) Violin plots depicting the distribution of pseudotime values per cluster. (d) UMaP visualization with expression 
levels of the indicated genes. (e) Gene expression changes along differentiation pseudotime. each dot shows the expression per cell of the indicated gene, 
the line represents the smoothed fit of expression levels along pseudotime.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Quality control and validation of the scataC-seq data. (a) Scatterplot of the aggregated accessibility values in the two biological 
scaTaC-seq replicates, colored by density. The correlation (r) represents the Pearson correlation across all 370975 peaks. (b) Scatter plot of the quality 
control metrics (TSS enrichment and unique fragments per cell) per replicate, colored by density. Dashed lines represent the filters for high-quality 
cells, retained for further analysis. (c) Barplot showing the number of cells passing quality filtering in each replicate. (d) Violin and box-whisker plots 
depicting the distribution of unique fragments per cell across the two replicates. (e) aggregated scaTaC-seq fragment size distribution across replicates 
demonstrating sub-, mono- and multi-nucleosome spanning fragments. (f) Overlay of the replicate identity on the UMaP scaTaC projection. (g) Stacked 
barplot showing the percentage of cells contributing to each cluster per replicate. (h) Dot plot depicting the percentage of cells and the average gene body 
accessibility of marker genes across the identified scaTaC-seq clusters. (i) UMaP visualization with gene body accessibility of the indicated genes (j) 
Same as in (h) but based on promoter accessibility.
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Extended Data Fig. 4 | scataC-scRNa integration metrics and identification of enhancer-gene pairs. (a) scaTaC UMaP projection with labels 
transferred from scrNa-seq. (b) Histogram-density plot depicting the distribution of prediction scores obtained during the scrNa-seq to scaTaC-seq 
label transfer. Only cells with scores above the cutoff (dashed line) were retained. (c) Sankey plot showing the correspondence between scrNa-based 
labels (left) to scaTaC-based cluster identities (right). (d) UMaP projection of the integrated scrNa-scaTaC dataset, colored by method. (e) Venn 
diagram displaying the overlap between enhancer gene pairs identified using either multiome or computational integrate singleome data (74%).  
(f) Scatterplot depicting the linkage scores of enhancer-gene pairs identified using the two complementary methods (computational vs multiome) 
(Pearson’s r=0.63). (g) Box-plot depicting the number of distal linked peaks per gene (n=3246 posCor, 1675 negCor and 10163 control genes). Statistical 
significance is calculated using a two-sided wilcoxon rank-sum test. Plot displays median with corresponding value on the side (line), 25th or 75th 
percentiles (box), 10th or 90th percentiles (whisker) as well as outliers (dots). (h) Histogram displaying the genomic distance between TSS and positively, 
negatively or non-correlated (Control) peak-gene pairs. (i) aggregated average accessibility plot (± 2kb) of the three categories of peak-gene pairs.  
(j-k) Heatmaps of aggregated accessibility of distal elements and gene expression levels of their linked genes for each of the identified non-correlated 
(Control) and negatively correlated pairs (NegCor). rows were clustered by enhancer accessibility using feature binarization (Methods).

NatuRe NeuRoSCieNCe | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Articles NATurE NEurOScIENcE

Extended Data Fig. 5 | Properties of the identified enhancer-gene links. (a-c) Violin plots depicting gene expression levels (left) and deviation in 
accessibility between clusters (right) of the indicated transcription factors and their corresponding binding motifs. (d) Motif footprint of different 
transcription factors (with Tn5 insertion bias) in the indicated scaTaC clusters. (e) Left heatmaps depict scaled gene body as well as promoter 
accessibility and gene expression levels of enhancer-gene pairs in individual cells ordered along the same integrated pseudotime as in Fig. 3d. Outmost 
right heatmap depicting the pseudo-temporal difference between maximum promoter accessibility and expression of the linked gene (referred to as 
‘dPD’), as well as box-whisker plots with the median of these differences (M). Negative values mean that promoter accessibility precedes gene expression. 
Significance was calculated using one-sample Wilcoxon signed rank test. (f) Heatmaps depict the pseudotemporal ordering of chromVar scaled 
deviation scores (left), the correlation between motif accessibility and TF expression (middle) and difference between maximum motif accessibility and 
TF expression (referred to as ‘dPD’). (g) Genomic tracks depicting the aggregated accessibility (per cluster) at the Neurod2 gene locus with arcs on top 
representing the identified enhancer-gene pairs, colored by Pearson correlation of the enhancer accessibility and gene expression. Neurog2 ChIPseq track 
is also depicted (black). (h) Smoothed fit line plots depicting the scaled aggregated enhancer accessibility, expression of the linked transcription factors 
and its motif accessibility across pseudotime. Dashed lines indicate the pseudo-temporal maxima.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | in vivo immunoMPRa validates cell type specific activity of identified CRes and their regulation by transcription factors.  
(a) Overview of MPra pool generation and sequencing. (b) Barplot displaying the fraction of recovered Cres (≥1 unique barcode) in the MPra plasmid 
pool. (c) Violin and box-whisker plots depicting the number of unique barcodes per Cre in the MPra plasmid library. (d) exemplary immunofluorescence 
image of a coronal section from a e15.5 neocortex 48h after IUe of the MPra plasmid pool. red= mScarlet-I; blue= DaPI; Scale = 50μm (e) FaCS strategy 
used to purify IUe electroporated mScarlet-I+ cells. a low stringency of the gate was chosen in order to capture also electroporated cells with lowly active 
MPra plasmids. Number represent mean ± SD from the parental singlet population. (f) Barplot displaying the fraction of recovered Cres in DNa MPra 
libraries. Dots represent biological replicates. (g) Violin and box-plots depicting the number of unique barcodes per Cre in DNa the MPra libraries.  
(h) Scatter plot depicting log transformed ratio of sums for both biological replicates. (i) and (j) Scatter plot shows barcode read counts normalized to 
total read depth for rNa (i) or DNa (j) for each replicate. Numbers represent Pearson correlation coefficient and statistical significance (two-sided). 
(k) Box-plots depicts MPra signal of scrambled control (white; n=1713) and Cres overlapping with VISTa forebrain enhancer (grey; n=81). Statistical 
significance is calculated using wilcoxon rank-sum test. (l) Box-plots depicts MPra signal of scrambled controls (white; n=1713) and positive correlated 
enhancers separated by their cluster specificity (n for NSC=3439; IPC=777; PN1=1067; PN2=1566; Cr=923). (m) example FaCS gate displaying the low 
residual mScarlet-I fluorescence (≤0.59%) after fixation. (n) Gating strategy for the immunoFaCS of NSC, IPC and PN. Numbers represent mean ± SD 
from the parental singlet population. (o) expression levels of NSC-(Pax6), IPC-(eomes) and PN-(Tubb3) specific marker genes in the three isolated cell 
populations determined by rT-qPCr. Data are represented as a barplot showing the mean ± SD, as well as individual biological replicates (black dots; 
n=2). red= NSC, green= IPC, blue= PN. (p) Barplot displaying the fraction of recovered Cres (DNa) from NSC (red), IPC (green) and PN (blue). (q) Violin 
and box-whisker plots depicting the number of unique barcodes per Cre in both DNa and rNa MPra libraries from isolated cell populations. (r) Principal 
component analysis performed on the ratio of sums for the replicates of NPC (red), IPC (green) and PN (blue). (s-t) Heatmaps displaying the mean MPra 
signal per cell type for positive (s) and negatively (t) correlated Cres. In contrast to Fig. 4e cell type specificity of the enhancer-gene pairs was determined 
by maximal expression levels of the linked genes (see Methods). Box-plots (g,k,l) display median (line), 25th or 75th percentiles (box) as well as 10th or  
90th percentiles (whisker).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Global reorganization of the 3D genome in vivo during differentiation. (a) Gating strategy for the immunoFaCS of NSC, IP 
and PN. Singlets in G0/G1 based on their DNa content (DaPI) were selected first (left), followed by separation of nuclei with high or low Tubb3 signal 
(middle). Tubb3 low cells were further subdivided based on Pax6 and eomes (right). Number represent mean ± SD from the parental singlet population. 
(b) expression levels of NSC- (Hes1, Pax6, Sox2), IPC- (Btg2, eomes) and PN- (Sox5, Tubb3) specific marker genes in the three isolated cell populations 
determined by rT-qPCr. Data are represented as a bar plot showing the mean ± SD, as well as individual biological replicates (black dots). red= 
NSC, green= IPC, blue= PN. n=3 biological replicates (c-d) Bar plots depicting methylation levels (mean ± SD) of the spiked-in bisulfite conversion 
controls: either completely unmethylated lambda DNa (c), or fully methylated pUC19 DNa. n=3 biological replicates. (d). Black dots indicate individual 
biological replicates. (e) Contact probability in logarithmic bins. Lines: mean values from biological replicates; semi-transparent ribbons: SeM. (f-g) Per 
sample pairwise Pearson’s correlation of either HiC contacts (f; at 50 kb resolution and considering only contacts separated by at least 100 kb) or DNa 
methylation levels (g; 500bp bins of union peakset). Note that the major separation occurs between cell types. (h) Stacked bar plot depicts cell type 
specific compartment transitions. (i) Box-plots indicate cell type specific insulation scores at TaD boundaries (top, n=4609) or gene promoters (bottom, 
n=23702). Plot displays median (line), 25th or 75th percentiles (box) as well as 10th or 90th percentiles (whisker). Statistical significance is calculated using 
a two-sided wilcoxon rank-sum test. (j) Scatterplot of insulation scores (left) and average DNa methylation levels (right) at TaD boundaries (top) and 
gene promoters (bottom) in the indicated cell types. (k) average DNa methylation levels of the three isolated cell types (top) and average accessibility 
from matched scaTaC-seq clusters (bottom) at CTCF peaks (NPC CTCF track). Note the nucleosomal pattern of DNa methylation around the CTCF sites. 
Lines: mean values from biological replicates; semi-transparent ribbons: SeM. (i) Contact maps (top) and aggregated accessibility of matched scaTaC-
seq clusters (bottom) for a representative example of an IPC specific TaD boundary (arrow) at the Cxcl12 gene locus. Dynamic contacts are highlighted 
with a dashed ellipse.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Non-correlated enhancer-gene pairs are not associated with dynamic chromatin looping or changes at DNa methylation levels. 
(a) HiC scores measured in NSC (left), IPC (middle) or PN (right) between cluster-specific positive (posCor), negatively (negCor) or non-correlated 
(noCor) enhancer-gene pairs indicating the strongest chromatin looping between posCor pairs. n= 4116 posCor, 1097 negCor and 1408 noCor NSC pairs; 
797 posCor, 216 negCor and 797 noCor IPC pairs and 1571 posCor, 348 negCor and 1526 noCor PN pairs. Statistical significance is calculated using a two-
sided wilcoxon rank-sum test. (b) aggregated Hi-C maps between the linked distal peak and the transcription start site (TSS) of cluster specific randomly 
selected non-correlated (Control) enhancer-gene pairs (n=16978; Methods), displaying constant, cell type independent, low interactions between both. 
Genes are oriented according to transcription. Number in the top-right corner indicates the ratio of the center enrichment to the mean of the four corners 
(Methods). (c-d) Box- (c) and scatter plots colored by density (d), depicting the Hi-C score at non-correlated (Control) intraTaD enhancer-gene pairs 
at the indicated non-correlated cluster-specific pairs (Control). Statistical significance is calculated using a two-sided wilcoxon rank-sum test. n=1408 
NSC, 797 IPC and 1526 PN eGPs. (e-f) Box- (e) and scatter plots colored by density (f), depicting the average DNa methylation levels at enhancers of 
non-correlated (Control) cluster-specific pairs. Statistical significance is calculated using a two-sided wilcoxon rank-sum test. n=1378 NSC, 782 IPC and 
1487 PN noCor intraTaD enhancers. (g) average DNa methylation levels at the enhancers (± 2kb) of non-correlated (Control) correlated cluster-specific 
pairs. Lines: mean values from biological replicates; semi-transparent ribbons: SeM. (h-i) Box-plots depicting the Hi-C scores at intraTaD peak-gene pairs 
(h, n=1097 NSC, 216 IPC and 348 PN eGPs) or DNa methylation levels (I, n=897 NSC, 183 IPC and 290 PN regions) at enhancers of intraTaD negative 
correlated cluster-specific pairs. Statistical significance is calculated using a two-sided wilcoxon rank-sum test. (j) Box-plots display cell-type-specific 
DNa methylation levels at positive correlated enhancers clustered according to their enhancer activity in the in vivo immunoMPra assay (see Fig. 4f) (k) 
analogous to (j) but displaying the cell-type-specific HiC-scores between enhancer and associated gene. Box-plots (a, c, e, h-k) display median (line),  
25th or 75th percentiles (box), 10th or 90th percentiles (whisker) as well as outliers (dots; only i).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | transcription factors associated with cell-type-specific looping based on positively correlated enhancer-gene pairs. (a) 
Heatmaps depicting the scaled Hi-C score at positively correlated cluster-specific enhancer-gene pairs, where the TF motifs overlap with both the 
enhancer and the promoter. Only significant (p<0.05, permutation test) and expressed TFs are displayed. (b) aggregated Hi-C plots of intraTaD pairs 
of ChIP-seq based bound sites. Number in the top-right corner indicates the ratio of the center enrichment to the mean of the four corners (Methods). 
(c) average accessibility per cluster centered at the indicated ChIP-seq based binding sites. (d) as (b) but for motif based bound sites of indicated 
transcription factors. (e) average DNa methylation levels centered at motif based Tead2 and Fosb::Jun binding sites. (f) as (a) but plotting the scaled 
DNa methylation levels at enhancers, overlapping with TF motifs. (g) as (e) but with centered ChIP-seq based Neurog2 and Neurod2 binding sites. 
(h) Contact maps (top) and aggregated accessibility of matched scaTaC-seq clusters (bottom) at the rnd2 locus. arcs represent positively correlated 
enhancers-rnd2 pairs and are colored based on the correlation between the enhancer accessibility and rnd2 expression. Shown is also Neurog2 ChIP-seq 
track. Note the IPC-specific chromatin loops established between Neurog2-bound enhancers and rnd2 promoter.
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Extended Data Fig. 10 | No global reorganization of chromatin accessibility, DNa methylation and 3D genome architecture upon Neurog2 
overexpression. (a) FaCS strategy used for purifying Neurog2-IreS-GFP electroporated cells after 24h. Number represent mean ± SD from the parental 
singlet population. (b) Schematic (left) and quantification (right) of the distribution of GFP+ electroporated cells across 5 equal size bins, spanning the 
whole cortical area. Black dots indicate individual replicates. Statistical significance is calculated using unpaired t-test. (c) Boxplots depict expression 
levels of Neurog2 bound (n=133) or unbound (n=33) IPC-specific genes based on its motif in the indicated samples or aggregated scrNa-seq clusters 
(grey boxplots). Statistical significance is calculated using a two-sided wilcoxon rank-sum test. (d-f) average accessibility at Ctcf peaks Neurog2 motifs 
overlapping with Neurog2 peaks, or eomes motifs overlapping with eomes peaks. Lines: mean values from biological replicates; semi-transparent ribbons: 
SeM. (g) as (d) but for average DNa methylation levels. (h) average contact enrichment between pairs of 250 kb loci arranged by their eigenvalue 
(shown on top). (i) Stacked barplots depicting compartment transitions. (j) average contact enrichment and DNa methylation levels at TaDs. (k) Boxplot 
showing the insulation scores at TaD boundaries of the indicated samples. n=4609 (l) Contact probability in logarithmic bins. Lines: mean values from 
biological replicates; semi-transparent ribbons: SeM. (m-n) aggregated Hi-C plots and bar-plot displaying quantification of intraTaD pairs of Pax6-bound 
sites. Statistical significance is calculated using a two-sided paired t-test. n=3. Box-plots (c, k) display median (line), 25th or 75th percentiles (box) as well 
as 10th or 90th percentiles (whisker).
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection. 

Data analysis imageJ (1.53c), FlowJo (10.8.0), cellranger (v3.1.0), cellranger-atac (v1.2.0), Seurat (v3.1.5), Harmony (v0.1),  MAST, Velocyto (v0.17), scVelo, 

Monocle3, ArchR, Signac, chromvar, JuiceMe, MethylDackel, Shaman package, Cworld, SeqPlots, R. All code as well as a list of all used 

packages including version numbers is available at https://github.com/BonevLab/Noack_et_al_NatNeuro2021.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

All raw and processed sequencing data are available in the Gene Expression Omnibus (GEO) repository: GSE155677. An interactive version of the single-cell and the 

genomics data can be visualized at https://shiny.bonevlab.com. 
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes for all data types are provided in the Supplementary Data Table 2. Sample sizes for scRNA-seq/scATAC-seq were chosen based 

upon the ability to get representative data described based upon numerous studies in the field. Sample size for MPRA and methylHiC/HiC/

NOMe-seq to ensure replication of the results with affordable cost. 

Data exclusions No samples were excluded from the analysis. For scRNA and scATAC, cells with low quality control (QC) values were excluded from the final 

analysis as described in the methods section. 

Replication For scRNA/scATAC/MPRA two and for methylHiC three biological replicates were used. For Neurog2 functional experiments the following 

biological replicates were used: 3x for Hi-C, 2x for NOMe-seq, 2x RNA-seq. Unless otherwise stated, all other experiments were performed in 

biological triplicates. All attempts of replications were successful.

Randomization  For all experiments involving mice, embryos from one litter were randomly assigned to the experimental group. For the scRNA, scATAC, 

MPRA and Methyl-HiC experiments, there was no randomization performed as they do not involve multiple study groups. For the in utero 

electroporation experiments animals were assigned to the control (GFP) or experimental (Neurog2) group based on the construct used during 

the procedure. 

Blinding The authors were not blinded to the group during the data collection and analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Pax6, mouse, Alexa Fluor 488 (BD Bioscience, Cat. N: 561552); Eomes, mouse, PE (BD Bioscience,Cat. N: 566749); anti-β-Tubulin Class 

III, mouse, Alexa Fluor 647 (BD Bioscience,Cat. N: 560394); anti-GFP, chicken (Abcam, Cat. N: ab13970); anti-Neurog2, rabbit (Cell 

Signalling, Cat. N: 13144). Antibodies were used both for immunohistochemistry and flow-cytometry.

Validation Antibodies were validated by by the corresponding manufacturer: 

Pax6: (https://www.bdbiosciences.com/us/applications/research/intracellular-flow/intracellular-antibodies-and-isotype-controls/

anti-human-antibodies/pe-mouse-anti-human-pax-6-o18-1330/p/561552) 

Eomes: https://www.bdbiosciences.com/eu/reagents/research/antibodies-buffers/immunology-reagents/anti-human-antibodies/

cell-surface-antigens/pe-mouse-anti-eomes-x4-83/p/566749 

Tubb3: https://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/cell-biology-reagents/cell-biology-antibodies/

alexa-fluor-647-mouse-anti--tubulin-class-iii-tuj1/p/560394 

Neurog2 (https://www.cellsignal.com/products/primary-antibodies/neurogenin-2-d2r3d-rabbit-mab/13144) 

GFP (https://www.abcam.com/gfp-antibody-ab13970.html) 

Additionally, the specificity of antibodies for ImmunoFACS (Pax6, Eomes, Tubb3) were confirmed by qPCR (Extended Data Fig. 7b). 
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Time-mated pregnant C57BL/6JRj female mice (embryonic day E14). Mice were kept under standard housing conditions (room 

temperature 22C̊, humidity 55%) according to local regulations of the Regierung Oberbayern, Germany. Mouse embryos were used 

sex independent. 

Wild animals No wild animals were used.

Field-collected samples No field-collect samples were used. 

Ethics oversight Animal experiments were approved by the animal welfare commission of the Regierung Oberbayern, Germany under the animal 

license number: ROB-55.2-2532.Vet_02-19-175

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Dissected cortex was dissociated using a papain-based neural dissociation kit (Miltenyi Biotec, Cat. N: 130-092-628) according 

to the manufacturer protocol with minor modifications. Dissociated cells were fixed in 1% Formaldehyde, quenched with 

0.2M Glycine followed by permeabilization using 0.1% Saponin (Sigma-Aldrich, Cat. N: SAE0073). Cells were stained for 1h at 

4C̊ for Pax6 (1:40; BD Bioscience, Cat. N: 561664), Eomes (1:33; BD Bioscience, Cat. N: 566749) and Tubb3 (1:14; BD 

Bioscience, Cat. N: 560394) in staining buffer containing 0.1 % Saponin. Stained cells were washed 4 times including one 

wash with washing buffer containing DAPI (1:1000; ThermoFisher, Cat. N: 62248). Cells were passed through a 40µM cell 

strainer and immediately FAC-sorted. A detailed protocol for the immunoFACS can be found at:  https://www.protocols.io/

private/AFB8DC003DF7C61EA1E62D534934FD23.   

Instrument FAC-sorting was performed on a BD FACSAria Fusion (BD Bioscience) with four lasers (405, 488, 561, 640) using a 100µm 

nozzle.

Software BD FACSDiva

Cell population abundance Abundance of relevant cell populations are shown in Extended Data Fig. 7a. Briefly, Pax6+ cells (7.67%), Eomes+ cells 

(11.19%), Tubb3+ cells (23.6%). Purity of FAC-sorted cells were determined by qPCR of relevant marker genes (Extended Data 

Fig. 7b). 

Gating strategy After selecting singlets using forward and side scatter, cells in G0G1 were identified by genomic content based on DAPI 

staining. Subsequently, these cells were divided into Tubb3 high for PN and low for progenitor cell types. The progenitor 

population was further subdivided into Pax6-high/Eomes-low for NSC and Eomes-high for IPC. The set gates are displayed in 

Extended Data Fig. 6n and 7a. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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