Abstract
Multiple studies indicate that adult male rodents perform better than females on spatial problems and have a lower threshold for long-term potentiation (LTP) of hippocampal CA3-to-CA1 synapses. We report here that, in rodents, prepubescent females rapidly encode spatial information and express low-threshold LTP, whereas age-matched males do not. The loss of low-threshold LTP across female puberty was associated with three inter-related changes: increased densities of α5 subunit-containing GABAARs at inhibitory synapses, greater shunting of burst responses used to induce LTP and a reduction of NMDAR-mediated synaptic responses. A negative allosteric modulator of α5-GABAARs increased burst responses to a greater degree in adult than in juvenile females and markedly enhanced both LTP and spatial memory in adults. The reasons for the gain of functions with male puberty do not involve these mechanisms. In all, puberty has opposite consequences for plasticity in the two sexes, albeit through different routes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia
Biology of Sex Differences Open Access 11 November 2023
-
Sex-differences in proteasome-dependent K48-polyubiquitin signaling in the amygdala are developmentally regulated in rats
Biology of Sex Differences Open Access 10 November 2023
-
Sexual differences in locus coeruleus neurons and related behavior in C57BL/6J mice
Biology of Sex Differences Open Access 28 September 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The data that support the findings of this study are available in this manuscript and the Supplementary Information. Source data are provided with this paper.
Code availability
Single and theta burst parameters for field electrophysiology were analyzed using code available at https://github.com/cdcox/Theta-burst-analyzer-for-Le-et-al. Code for FDT analysis is available upon reasonable request. The use of the FDT code is strictly prohibited without a licensing agreement from the University of California, Irvine.
References
Andreano, J. M. & Cahill, L. Sex influences on the neurobiology of learning and memory. Learn. Mem. 16, 248–266 (2009).
Koss, W. A. & Frick, K. M. Sex differences in hippocampal function. J. Neurosci. Res. 95, 539–562 (2017).
Tascón, L. et al. Sex differences in spatial memory: comparison of three tasks using the same virtual context. Brain Sci. 11, 757 (2021).
Bocchi, A. et al. The role of gender and familiarity in a modified version of the almeria boxes room spatial task. Brain Sci. 11, 681 (2021).
Voyer, D., Voyer, S. D. & Saint-Aubin, J. Sex differences in visual-spatial working memory: a meta-analysis. Psychon. Bull. Rev. 24, 307–334 (2017).
Voyer, D., Voyer, S. & Bryden, M. P. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol. Bull. 117, 250–270 (1995).
Seurinck, R., Vingerhoets, G., de Lange, F. P. & Achten, E. Does egocentric mental rotation elicit sex differences? Neuroimage 23, 1440–1449 (2004).
Yagi, S. & Galea, L. A. M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 44, 200–213 (2019).
Jones, C. M., Braithwaite, V. A. & Healy, S. D. The evolution of sex differences in spatial ability. Behav. Neurosci. 117, 403–411 (2003).
Vierk, R. et al. Aromatase inhibition abolishes LTP generation in female but not in male mice. J. Neurosci. 32, 8116–8126 (2012).
Hojo, Y. et al. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017α and P450 aromatase localized in neurons. Proc. Natl Acad. Sci. USA 101, 865–870 (2004).
Kato, A. et al. Female hippocampal estrogens have a significant correlation with cyclic fluctuation of hippocampal spines. Front. Neural Circuits 7, 149 (2013).
Tabatadze, N., Sato, S. M. & Woolley, C. S. Quantitative analysis of long-form aromatase mRNA in the male and female rat brain. PLoS ONE 9, e100628 (2014).
Mukai, H. et al. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim. Biophys. Acta 1800, 1030–1044 (2010).
Ooishi, Y. et al. Modulation of synaptic plasticity in the hippocampus by hippocampus-derived estrogen and androgen. J. Steroid Biochem. Mol. Biol. 131, 37–51 (2012).
Wang, W. et al. Memory-related synaptic plasticity is sexually dimorphic in rodent hippocampus. J. Neurosci. 38, 7935–7951 (2018).
Kight, K. E. & McCarthy, M. M. Androgens and the developing hippocampus. Biol. Sex. Differ. 11, 30 (2020).
Juraska, J. M. & Willing, J. Pubertal onset as a critical transition for neural development and cognition. Brain Res. 1654, 87–94 (2017).
Sisk, C. L. & Zehr, J. L. Pubertal hormones organize the adolescent brain and behavior. Front. Neuroendocrinol. 26, 163–174 (2005).
Baudry, M., Arst, D., Oliver, M. & Lynch, G. Development of glutamate binding sites and their regulation by calcium in rat hippocampus. Brain Res. 227, 37–48 (1981).
Muller, D., Oliver, M. & Lynch, G. Developmental changes in synaptic properties in hippocampus of neonatal rats. Brain Res. Dev. Brain Res. 49, 105–114 (1989).
Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).
Shen, H. et al. A critical role for α4βδ GABAA receptors in shaping learning deficits at puberty in mice. Science 327, 1515–1518 (2010).
Smith, S. S. The influence of stress at puberty on mood and learning: role of the α4βδ GABAA receptor. Neuroscience 249, 192–213 (2013).
Pattwell, S. S., Lee, F. S. & Casey, B. J. Fear learning and memory across adolescent development: hormones and behavior special issue: puberty and adolescence. Horm. Behav. 64, 380–389 (2013).
Romeo, R. D. Puberty: a period of both organizational and activational effects of steroid hormones on neurobehavioural development. J. Neuroendocrinol. 15, 1185–1192 (2003).
Larson, J. & Lynch, G. Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232, 985–988 (1986).
Barrett, R. M. et al. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36, 1545–1556 (2011).
Inagaki, T., Gautreaux, C. & Luine, V. Acute estrogen treatment facilitates recognition memory consolidation and alters monoamine levels in memory-related brain areas. Horm. Behav. 58, 415–426 (2010).
Boulware, M. I., Heisler, J. D. & Frick, K. M. The memory-enhancing effects of hippocampal estrogen receptor activation involve metabotropic glutamate receptor signaling. J. Neurosci. 33, 15184–15194 (2013).
Bell, M. R. Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology 159, 2596–2613 (2018).
Alger, B. E. & Nicoll, R. A. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J. Physiol. 328, 105–123 (1982).
Larson, J. & Munkácsy, E. Theta-burst LTP. Brain Res. 1621, 38–50 (2015).
Ben-Ari, Y., Krnjević, K., Reiffenstein, R. J. & Reinhardt, W. Inhibitory conductance changes and action of γ-aminobutyrate in rat hippocampus. Neuroscience 6, 2445–2463 (1981).
Pacelli, G. J., Su, W. & Kelso, S. R. Activity-induced decrease in early and late inhibitory synaptic conductances in hippocampus. Synapse 7, 1–13 (1991).
Pacelli, G. J., Su, W. & Kelso, S. R. Activity-induced depression of synaptic inhibition during LTP-inducing patterned stimulation. Brain Res. 486, 26–32 (1989).
Larson, J. & Lynch, G. Role of N-methyl-D-aspartate receptors in the induction of synaptic potentiation by burst stimulation patterned after the hippocampal θ-rhythm. Brain Res. 441, 111–118 (1988).
Rex, C. S. et al. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 186, 85–97 (2009).
Seese, R. R. et al. Synaptic abnormalities in the infralimbic cortex of a model of congenital depression. J. Neurosci. 33, 13441–13448 (2013).
Schulz, J. M., Knoflach, F., Hernandez, M. C. & Bischofberger, J. Dendrite-targeting interneurons control synaptic NMDA-receptor activation via nonlinear α5-GABA. Nat. Commun. 9, 3576 (2018).
Davies, C. H., Starkey, S. J., Pozza, M. F. & Collingridge, G. L. GABA autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).
Mott, D. D. & Lewis, D. V. Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252, 1718–1720 (1991).
Sigel, E. & Steinmann, M. E. Structure, function, and modulation of GABAA receptors. J. Biol. Chem. 287, 40224–40231 (2012).
Collinson, N. et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J. Neurosci. 22, 5572–5580 (2002).
Sieghart, W. & Sperk, G. Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem. 2, 795–816 (2002).
Sur, C., Quirk, K., Dewar, D., Atack, J. & McKernan, R. Rat and human hippocampal α5 subunit-containing γ-aminobutyric AcidA receptors have α5β3γ2 pharmacological characteristics. Mol. Pharmacol. 54, 928–933 (1998).
Wainwright, A., Sirinathsinghji, D. J. & Oliver, K. R. Expression of GABAA receptor α5 subunit-like immunoreactivity in human hippocampus. Brain Res. Mol. Brain Res. 80, 228–232 (2000).
Mukherjee, J. et al. Estradiol modulates the efficacy of synaptic inhibition by decreasing the dwell time of GABA. Proc. Natl Acad. Sci. USA 114, 11763–11768 (2017).
Weiland, N. G. & Orchinik, M. Specific subunit mRNAs of the GABAA receptor are regulated by progesterone in subfields of the hippocampus. Brain Res. Mol. Brain Res. 32, 271–278 (1995).
Herbison, A. E. & Fénelon, V. S. Estrogen regulation of GABAA receptor subunit mRNA expression in preoptic area and bed nucleus of the stria terminalis of female rat brain. J. Neurosci. 15, 2328–2337 (1995).
Vastagh, C., Rodolosse, A., Solymosi, N. & Liposits, Z. Altered expression of genes encoding neurotransmitter receptors in GnRH neurons of proestrous mice. Front. Cell Neurosci. 10, 230 (2016).
Franco-Enzástiga, Ú. et al. Sex-dependent pronociceptive role of spinal α5-GABAA receptor and its epigenetic regulation in neuropathic rodents J. Neurochem. 156, 897–916 (2021).
Spiegel, I. et al. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157, 1216–1229 (2014).
Sim, S. et al. Increased cell-intrinsic excitability induces synaptic changes in new neurons in the adult dentate gyrus that require Npas4. J. Neurosci. 33, 7928–7940 (2013).
Shepard, R., Heslin, K., Hagerdorn, P. & Coutellier, L. Downregulation of Npas4 in parvalbumin interneurons and cognitive deficits after neonatal NMDA receptor blockade: relevance for schizophrenia. Transl. Psychiatry 9, 99 (2019).
Morgan, P. J., Bourboulou, R., Filippi, C., Koenig-Gambini, J. & Epsztein, J. Kv1.1 contributes to a rapid homeostatic plasticity of intrinsic excitability in CA1 pyramidal neurons in vivo. eLife 8, e49915 (2019).
Monaghan, M. M., Trimmer, J. S. & Rhodes, K. J. Experimental localization of Kv1 family voltage-gated K+ channel α and β subunits in rat hippocampal formation. J. Neurosci. 21, 5973–5983 (2001).
Dore, K., Aow, J. & Malinow, R. The emergence of NMDA receptor metabotropic function: insights from imaging. Front. Synaptic Neurosci. 8, 20 (2016).
Nabavi, S. et al. Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc. Natl Acad. Sci. USA 110, 4027–4032 (2013).
Clayton, T. et al. A review of the updated pharmacophore for the α5 GABAA benzodiazepine receptor model. Int J. Med. Chem. 2015, 430248 (2015).
Navarro, J. F., Burón, E. & Martín-López, M. Anxiogenic-like activity of L-655,708, a selective ligand for the benzodiazepine site of GABAA receptors which contain the alpha-5 subunit, in the elevated plus-maze test. Prog. Neuropsychopharmacol. Biol. Psychiatry 26, 1389–1392 (2002).
Magnin, E. et al. Input-specific synaptic location and function of the α5 GABA. J. Neurosci. 39, 788–801 (2019).
Costello, E. J., Copeland, W. & Angold, A. Trends in psychopathology across the adolescent years: what changes when children become adolescents, and when adolescents become adults? J. Child Psychol. Psychiatry 52, 1015–1025 (2011).
Asher, M., Asnaani, A. & Aderka, I. M. Gender differences in social anxiety disorder: a review. Clin. Psychol. Rev. 56, 1–12 (2017).
Altemus, M., Sarvaiya, N. & Neill Epperson, C. Sex differences in anxiety and depression clinical perspectives. Front. Neuroendocrinol. 35, 320–330 (2014).
Eichenbaum, H. Prefrontal–hippocampal interactions in episodic memory. Nat. Rev. Neurosci. 18, 547–558 (2017).
Schwabe, M. R., Taxier, L. R. & Frick, K. M. It takes a neural village: circuit-based approaches for estrogenic regulation of episodic memory. Front. Neuroendocrinol. 59, 100860 (2020).
Tuscher, J. J., Taxier, L. R., Schalk, J. C., Haertel, J. M. & Frick, K. M. Chemogenetic suppression of medial prefrontal-dorsal hippocampal interactions prevents estrogenic enhancement of memory consolidation in female mice. eNeuro 6, ENEURO.0451-18.2019 (2019).
Caligioni, C. S. Assessing reproductive status/stages in mice. Curr. Protoc. Neurosci. 48, A.4I.1–A.4I.8 (2009).
Cora, M. C., Kooistra, L. & Travlos, G. Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol. Pathol. 43, 776–793 (2015).
Seese, R. R., Wang, K., Yao, Y. Q., Lynch, G. & Gall, C. M. Spaced training rescues memory and ERK1/2 signaling in fragile X syndrome model mice. Proc. Natl Acad. Sci. USA 111, 16907–16912 (2014).
Cox, B. M. et al. Acquisition of temporal order requires an intact CA3 commissural/associational (C/A) feedback system in mice. Commun. Biol. 2, 251 (2019).
Babayan, A. H. et al. Integrin dynamics produce a delayed stage of long-term potentiation and memory consolidation. J. Neurosci. 32, 12854–12861 (2012).
Acknowledgements
The authors thank E. Tran and G. Zalaya for assistance with behavioral studies. A.A.L. was supported by National Institute of Mental Health training grant T32-MH119049-02. J.C.L., Y.J., W.W., C.M.G. and G.L. were supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development grant HD-089491, and G.L. was supported by National Science Foundation grant BCS-1941216. J.C.L., C.M.G. and G.L. were supported by National Institute on Drug Abuse grant DA-044118. G.L. and C.D.C. were supported by Office of Naval Research grant N00014182114, and C.D.C. was also supported by National Institutues of Health grant T32 AG00096-34.
Author information
Authors and Affiliations
Contributions
A.A.L., C.M.G., G.L. and J.C.L. wrote the manuscript and designed experiments. A.A.L., J.C.L., Y.J. and W.W. performed experiments. C.D.C. constructed computerized analyses for the imaging and electrophysiological experiments.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Neuroscience thanks Paul Frankland, Natalie Tronson, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Sampling times for each cue in Object Location Memory (OLM), ‘Where’, and ‘What’ tasks across age and sex.
(a) OLM (5-min training session, tested 24 hours later): Sampling times of displaced (Novel) vs the stationary (Familiar) objects were compared for male and female mice of prepubescent (Prepub) and adult ages. Prepubescent females and adult males preferentially sampled the displaced object (***P = 0.0001, ***P = 0.0006, respectively; 2-tailed paired t-test), whereas non-proestrus adult females and prepubescent males did not (n.s. P = 0.21, P = 0.73, respectively; N = 7-18/group). (b) OLM (5- or 10-min training, tested 24-hours later): Adult females trained for 5 minutes during proestrus stage preferentially sampled the displaced object over the stationary object (**P = 0.004). Non-proestrus adult females and prepubescent males were trained for 10 minutes. Non-proestrus females preferred the displaced object (**P = 0.01), but the prepubescent males did not (n.s. P = 0.46; N = 6-9/group). (c) OLM (5-min training, 15-min delay): Adult females did not spend more time with the moved object (P = 0.99), whereas Prepub males preferred the moved object (***P = 0.0002; N = 8/group). (d) Left. Schematic for episodic ‘Where’ task with four odors (see Methods). Right. Sampling times of odors A-D for each group during the 5-minute training trial (One-way ANOVA: P > 0.05 within all age groups). (e) Sampling times for the ‘switched’ pair (Novel) vs the stationary pair. Prepubescent females and adult males sampled the ‘switched’ pair more than the stationary pair (2-tailed paired t-test: Prepub female **P = 0.008, Adult male ****P = 0.00004). Prepubescent male and adult females showed no preference (P = 0.65, P = 0.97, respectfully; N = 8-11). (f) Left. Schematic of the ‘What’ task (see Methods). Right. Sampling times for each odor (One-way ANOVA: P > 0.05 within all age groups; N = 8-9/group). (g) Sampling times for novel odor vs mean of the three familiar odors (2-tailed paired t-test: ***P < 0.001, **P < 0.01; N = 8-9/group). Data are represented as mean ± SEM. Detailed statistics are found in Supplementary Table 1.
Extended Data Fig. 2 Exploration data for 24-hour delay Object Location Memory in adult, non-proestrus female mice given L655,708.
(a) Sampling times for displaced (Novel) vs stationary (Familiar) object for Vehicle (2-tailed paired t-test: n.s. P = 0.85) and L655,708 (**P = 0.009). (b) Total sampling times for training and testing were comparable for treated vs. vehicle groups (2-tailed unpaired t-test: n.s. training P = 0.95, testing P = 0.98). (c) Distance traveled was comparable (2-tailed unpaired t-test: training P = 0.29, testing P = 0.71) and (d) velocity was similar between treatments (training P = 0.30, testing P = 0.73). For all panels, Vehicle N = 8, L655,708 N = 7. Data presented as mean ± SEM. Further statistics found in Supplementary Table 1.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2
Supplementary Table
Summary table for all statistical analysis
Supplementary Data
Source data for Supplementary Fig. 1
Supplementary Data
Source data for Supplementary Fig. 2
Source data
Source Data Fig. 1
Statistical Source Data for Fig. 1
Source Data Fig. 2
Statistical Source Data for Fig. 2
Source Data Fig. 3
Statistical Source Data for Fig. 3
Source Data Fig. 4
Statistical Source Data for Fig. 4
Source Data Fig. 5
Statistical Source Data for Fig. 5
Source Data Fig. 6
Statistical Source Data for Fig. 6
Source Data Extended Data Fig. 1
Statistical Source Data for Extended Data Fig. 1
Source Data Extended Data Fig. 2
Statistical Source Data for Extended Data Fig. 2
Rights and permissions
About this article
Cite this article
Le, A.A., Lauterborn, J.C., Jia, Y. et al. Prepubescent female rodents have enhanced hippocampal LTP and learning relative to males, reversing in adulthood as inhibition increases. Nat Neurosci 25, 180–190 (2022). https://doi.org/10.1038/s41593-021-01001-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41593-021-01001-5
This article is cited by
-
Sexual differences in locus coeruleus neurons and related behavior in C57BL/6J mice
Biology of Sex Differences (2023)
-
Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia
Biology of Sex Differences (2023)
-
Sex-differences in proteasome-dependent K48-polyubiquitin signaling in the amygdala are developmentally regulated in rats
Biology of Sex Differences (2023)
-
Neurogenesis in the neonatal rat hippocampus is regulated by sexually dimorphic epigenetic modifiers
Biology of Sex Differences (2022)
-
Puberty reverses sex differences in learning
Nature Neuroscience (2022)