Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-scale neural recordings call for new insights to link brain and behavior

Abstract

Neuroscientists today can measure activity from more neurons than ever before, and are facing the challenge of connecting these brain-wide neural recordings to computation and behavior. In the present review, we first describe emerging tools and technologies being used to probe large-scale brain activity and new approaches to characterize behavior in the context of such measurements. We next highlight insights obtained from large-scale neural recordings in diverse model systems, and argue that some of these pose a challenge to traditional theoretical frameworks. Finally, we elaborate on existing modeling frameworks to interpret these data, and argue that the interpretation of brain-wide neural recordings calls for new theoretical approaches that may depend on the desired level of understanding. These advances in both neural recordings and theory development will pave the way for critical advances in our understanding of the brain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Insights from large-scale neural recordings.
Fig. 2: Understanding trial-to-trial neural variability across scales.

Data availability

All data used to generate Fig. 2 are available at https://github.com/anne-urai/largescale_recordings under a CC-BY 4.0 license.

Code availability

All code used to generate Fig. 2 are available at https://github.com/anne-urai/largescale_recordings under a CC-BY 4.0 license.

References

  1. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Neuronal spike trains and stochastic point processes. Biophys. J. 7, 391–418 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abbott, L. F. & Dayan, P. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11, 91–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Sompolinsky, H., Yoon, H., Kang, K. & Shamir, M. Population coding in neuronal systems with correlated noise. Phys. Rev. E 64, 051904 (2001).

    Article  CAS  Google Scholar 

  4. Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory. (Wiley, 1949).

  5. Abeles, M. Corticonics: Neural Circuits of the Cerebral Cortex. (Cambridge Univ. Press, 1991).

  6. Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. K. & Josić, K. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19, 383–393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barlow, H. in Sensory Communication (ed. Rosenblith, W. A.) 217–234 (MIT Press, 1961).

  9. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    Article  PubMed  Google Scholar 

  13. Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, P. H. et al. Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings. J. Neurosci. 35, 4663–4675 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    CAS  PubMed  Google Scholar 

  18. Siegle, J. H. et al. Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. eLife 10, e69068 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Humphries, M. The Spike: An Epic Journey through the Brain in 2.1 Seconds (Princeton Univ. Press, 2021).

  20. de Vries, S. E. J. et al. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nat. Neurosci. 23, 138–151 (2020).

    Article  PubMed  Google Scholar 

  21. Shoham, S., O’Connor, D. H. & Segev, R. How silent is the brain: is there a ‘dark matter’ problem in neuroscience? J. Comp. Physiol. A 192, 777–784 (2006).

    Article  Google Scholar 

  22. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    Article  CAS  Google Scholar 

  24. Salkoff, D. B., Zagha, E., McCarthy, E. & McCormick, D. A. Movement and performance explain widespread cortical activity in a visual detection task. Cereb. Cortex 30, 421–437 (2020).

    Article  PubMed  Google Scholar 

  25. Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Erisken, S. et al. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24, 2899–2907 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roth, M. M. et al. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19, 299–307 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Dolensek, N., Gehrlach, D. A., Klein, A. S. & Gogolla, N. Facial expressions of emotion states and their neuronal correlates in mice. Science 368, 89–94 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pang, R., Lansdell, B. J. & Fairhall, A. L. Dimensionality reduction in neuroscience. Curr. Biol. 26, R656–R660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ni, A., Ruff, D. A., Alberts, J. J., Symmonds, J. & Cohen, M. R. Learning and attention reveal a general relationship between population activity and behavior. Science 359, 463–465 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nat. Neurosci. 23, 1410–1420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kato, S. et al. Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell 163, 656–669 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Briggman, K. L., Abarbanel, H. D. I. & Kristan, W. B. Optical imaging of neuronal populations during decision-making. Science 307, 896–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Gao, P. et al. A theory of multineuronal dimensionality, dynamics and measurement. Preprint at bioRxiv https://doi.org/10.1101/214262 (2017).

  40. Humphries, M. D. Strong and weak principles of neural dimension reduction. Neurons Behav. Data Anal. Theory 5, 1–28 (2021).

    Google Scholar 

  41. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 1, 197 (2019).

  42. Georgopoulos, A., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Russo, A. A. et al. Neural trajectories in the supplementary motor area and motor cortex exhibit distinct geometries, compatible with different classes of computation. Neuron 107, 745–758.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Saxena, S., Russo, A. A., Cunningham, J. P. & Churchland, M. M. Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity. Preprint at bioRxiv https://doi.org/10.1101/2021.02.01.429168 (2021).

  47. Saxena, S. & Cunningham, J. P. Towards the neural population doctrine. Curr. Opin. Neurobiol. 55, 103–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  CAS  PubMed  Google Scholar 

  49. Constantinidis, C. et al. Persistent spiking activity underlies working memory. J. Neurosci. 38, 7020–7028 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murray, J. D. et al. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proc. Natl Acad. Sci. USA 114, 394–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent network models of sequence generation and memory. Neuron 90, 128–142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Herrmann, M. J., Hertz, J. A. & Prügel-Bennett, A. Analysis of synfire chains. Netw. Comput. Neural Syst. 6, 403–414 (1995).

    Article  Google Scholar 

  53. Ólafsdóttir, F., Bush, D. & Barry, C. The role of hippocampal replay in memory and planning. Curr. Biol. 28, R37–R50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ruff, D. A. & Cohen, M. R. Stimulus dependence of correlated variability across cortical areas. J. Neurosci. 36, 7546–7556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cowley, B. R. et al. Slow drift of neural activity as a signature of impulsivity in macaque visual and prefrontal cortex. Neuron 108, 551–567.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a aommunication subspace. Neuron 102, 249–259.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Das, A. & Fiete, I. R. Systematic errors in connectivity inferred from activity in strongly recurrent networks. Nat. Neurosci. 23, 1286–1296 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Witvliet, D. et al. Connectomes across development reveal principles of brain maturation. Nature 596, 257–261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eichler, K. et al. The complete connectome of a learning and memory centre in an insect brain. Nature 548, 175–182 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849–853 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Hulse, B. K. et al. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife https://elifesciences.org/articles/66039 (2021).

  65. Lu, J. et al. Transforming representations of movement from body- to world-centric space. Nature (in the press).

  66. Lyu, C., Abbott, L. F. & Maimon, G. A neuronal circuit for vector computation builds an allocentric traveling-direction signal in the Drosophila fan-shaped body. Nature (in the press).

  67. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Preprint at bioRxiv https://doi.org/10.1101/2021.02.25.432776 (2021).

  68. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brunton, B. W., Botvinick, M. M. & Brody, C. D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Churchland, A. K. & Kiani, R. Three challenges for connecting model to mechanism in decision-making. Curr. Opin. Behav. Sci. 11, 74–80 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meister, M. L. R., Hennig, J. A. & Huk, A. C. Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making. J. Neurosci. 33, 2254–2267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kubo, R., Toda, M. & Hashitsume, N. Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer, 1991).

  74. Rajan, K., Abbott, L. F. & Sompolinsky, H. Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82, 011903 (2010).

    Article  Google Scholar 

  75. Churchland, A. K. et al. Variance as a signature of neural computations during decision making. Neuron 69, 818–831 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, C. et al. Circuit models of low-dimensional shared variability in cortical networks. Neuron 101, 337–348.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Churchland, A. K. & Abbott, L. F. Conceptual and technical advances define a key moment for theoretical neuroscience. Nat. Neurosci. 19, 348–349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calvin, W. H. & Stevens, C. F. Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiol. 31, 574–587 (1968).

    Article  CAS  PubMed  Google Scholar 

  80. Branco, T. & Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat. Rev. Neurosci. 10, 373–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article  CAS  PubMed  Google Scholar 

  82. White, J. A., Rubinstein, J. T. & Kay, A. R. Channel noise in neurons. Trends Neurosci. 23, 131–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goris, R. L. T., Movshon, J. A. & Simoncelli, E. P. Partitioning neuronal variability. Nat. Neurosci. 17, 858–865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E. & Doiron, B. The spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Darshan, R., van Vreeswijk, C. & Hansel, D. Strength of correlations in strongly recurrent neuronal networks. Phys. Rev. X 8, 031072 (2018).

    CAS  Google Scholar 

  87. Landau, I. D. & Sompolinsky, H. Coherent chaos in a recurrent neural network with structured connectivity. PLoS Comput. Biol. 14, e1006309 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mastrogiuseppe, F. & Ostojic, S. Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. Neuron 99, 609–623.e29 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Gómez-Laberge, C., Smolyanskaya, A., Nassi, J. J., Kreiman, G. & Born, R. T. Bottom-up and top-down input augment the variability of cortical neurons. Neuron 91, 540–547 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Woolley, S. C., Rajan, R., Joshua, M. & Doupe, A. J. Emergence of context-dependent variability across a basal ganglia network. Neuron 82, 208–223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hires, A., Gutnisky, D. A., Yu, J., O’Connor, D. H. & Svoboda, K. Low-noise encoding of active touch by layer 4 in the somatosensory cortex. eLife 4, e06619 (2015).

    Article  Google Scholar 

  92. Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W. & Bialek, W. Collective behavior of place and non-place neurons in the hippocampal network. Neuron 96, 1178–1191.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Williamson, R. C., Doiron, B., Smith, M. A. & Yu, B. M. Bridging large-scale neuronal recordings and large-scale network models using dimensionality reduction. Curr. Opin. Neurobiol. 55, 40–47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Musall, S., Urai, A. E., Sussillo, D. & Churchland, A. K. Harnessing behavioral diversity to understand neural computations for cognition. Curr. Opin. Neurobiol. 58, 229–238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Juavinett, A. L., Erlich, J. C. & Churchland, A. K. Decision-making behaviors: weighing ethology, complexity, and sensorimotor compatibility. Curr. Opin. Neurobiol. 49, 42–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, X. et al. Brain-wide organization of neuronal activity and convergent sensorimotor transformations in larval zebrafish. Neuron 100, 876–890.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pacheco, D. A., Thiberge, S. Y., Pnevmatikakis, E. & Murthy, M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat. Neurosci. 24, 93–104 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Ji, N. et al. A neural circuit for flexible control of persistent behavioral states. eLife 10, e62889 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kaplan, H. S., Salazar Thula, O., Khoss, N. & Zimmer, M. Nested neuronal dynamics orchestrate a behavioral hierarchy across timescales. Neuron 105, 562–576.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hallinen, K. M. et al. Decoding locomotion from population neural activity in moving C. elegans. eLife 10, e66135 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bargmann, C. I. & Marder, E. From the connectome to brain function. Nat. Methods 10, 483–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Taylor, S. R. et al. Molecular topography of an entire nervous system. Cell 184, 4329–4347.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Dworkin, J. D. et al. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. 23, 918–926 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Couto, J. et al. Spatially segregated responses to visuo-tactile stimuli in mouse neocortex during active sensation. Preprint at bioRxiv https://doi.org/10.1101/199364 (2019).

  111. Bos, H., Oswald, A.-M. & Doiron, B. Untangling stability and gain modulation in cortical circuits with multiple interneuron classes. Preprint at bioRxiv https://doi.org/10.1101/2020.06.15.148114 (2020).

  112. Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M. & Vaziri, A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013–1020 (2013).

    Article  PubMed  Google Scholar 

  113. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Yamamoto, W. & Yuste, R. Whole-body imaging of neural and muscle activity during behavior in Hydra vulgaris: effect of osmolarity on contraction bursts. eNeuro https://doi.org/10.1101/2019.12.20.883835 (2020).

  115. Mann, K., Gallen, C. L. & Clandinin, T. R. Whole-brain calcium imaging reveals an intrinsic functional network in Drosophila. Curr. Biol. 27, 2389–2396.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aimon, S. et al. Fast near-whole–brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biol. 17, e2006732 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Marblestone, A. H. et al. Physical principles for scalable neural recording. Front. Comput. Neurosci. 7, 134 (2013).

    Article  Google Scholar 

  118. Kleinfeld, D. et al. Can one concurrently record electrical spikes from every neuron in a mammalian brain? Neuron 103, 1005–1015 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stevenson, I. H. & Kording, K. P. How advances in neural recording affect data analysis. Nat. Neurosci. 14, 139–142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Steinmetz, N. A. et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

  121. Juavinett, A. L., Bekheet, G. & Churchland, A. K. Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8, e47188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nguyen, J. P. et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E1074–E1081 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Sofroniew, N. J. Q&A: the brain under a mesoscope: the forest and the trees. BMC Biol. 15, 82 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Harris, K. D., Quiroga, R. Q., Freeman, J. & Smith, S. L. Improving data quality in neuronal population recordings. Nat. Neurosci. 19, 1165–1174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Magland, J. et al. SpikeForest, reproducible web-facing ground-truth validation of automated neural spike sorters. eLife 9, e55167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Demas, J. et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy. Nat. Methods 18, 1103–1111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Aharoni, D., Khakh, B. S., Silva, A. J. & Golshani, P. All the light that we can see: a new era in miniaturized microscopy. Nat. Methods 16, 11–13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Najafi, F. et al. Excitatory and inhibitory subnetworks are equally selective during decision-making and emerge simultaneously during learning. Neuron 105, 165–179.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Huang, L. et al. Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice. eLife 10, e51675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brennan, C. & Proekt, A. A quantitative model of conserved macroscopic dynamics predicts future motor commands. eLife 8, e46814 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Costa, A. C., Ahamed, T. & Stephens, G. J. Adaptive, locally linear models of complex dynamics. Proc. Natl Acad. Sci. USA 116, 1501–1510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Linderman, S., Nichols, A., Blei, D., Zimmer, M. & Paninski, L. Hierarchical recurrent state space models reveal discrete and continuous dynamics of neural activity in C. elegans. Preprint at bioRxiv https://doi.org/10.1101/621540 (2019).

  138. Fieseler, C., Zimmer, M. & Kutz, N. Unsupervised learning of control signals and their encodings in Caenorhabditis elegans whole-brain recordings. J. R. Soc. Interface 17, 20200459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Venkatachalam, V. et al. Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E1082–E1088 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Cong, L. et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, e28158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods 14, 1107–1114 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Symvoulidis, P. et al. NeuBtracker—imaging neurobehavioral dynamics in freely behaving fish. Nat. Methods 14, 1079–1082 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Yemini, E. et al. NeuroPAL: a multicolor atlas for whole-brain neuronal identification in C. elegans. Cell 184, 272–288.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Machado, A. S., Darmohray, D. M., Fayad, J., Marques, H. G. & Carey, M. R. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. eLife 4, e07892 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped behaviour of freely moving fruit flies. J. R. Soc. Interface 11, 20140672 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Batty, E. et al. BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos. in Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) 15680–15691 (Curran, 2019).

  149. Calhoun, A. J., Pillow, J. W. & Murthy, M. Unsupervised identification of the internal states that shape natural behavior. Nat. Neurosci. 22, 2040–2049 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Carandini, M. & Churchland, A. K. Probing perceptual decisions in rodents. Nat. Neurosci. 16, 824–831 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. The International Brain Laboratory et al. Standardized and reproducible measurement of decision-making in mice. eLife 10, e63711 (2021).

    Article  PubMed Central  Google Scholar 

  152. Dulac, C., O’Connell, L. A. & Wu, Z. Neural control of maternal and paternal behaviors. Science 345, 765–770 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Karigo, T. et al. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589, 258–263 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.E.U. is supported by the German National Academy of Sciences Leopoldina and the International Brain Research Organization. B.D. is supported by National Institutes of Health (NIH) (grant no. 1U19NS107613-01, R01EB026953), Vannevar Bush faculty fellowship (no. N00014-18-1-2002) and the Simons Foundation Collaboration on the Global Brain. A.M.L. is supported by the National Institute of Neurological Disorders and Stroke of the NIH (under New Innovator award no. DP2NS116768), and Simons Foundation Award (no. SCGB 543003). A.K.C. is supported by the NIH (nos. R01EY022979 and R01EB026949) and the Simons Collaboration on the Global Brain. We thank N. Sofroniew for sharing the mesoscope image panel shown in the figure in Box 2, panel b, E. Trautman and K. Shenoy for the primate electrophysiology (Neuropixels) data in the figure in Box 2, panel c, and D. Maizels for graphic design. I. Stevenson, K. Svoboda, P. Rupprecht, A. Charles and G. Meijer suggested data points shown in Box 1, and J. Couto provided helpful comments on an earlier version of the manuscript. J. Tuthill provided insights on interpreting data from the fly connectome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne K. Churchland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urai, A.E., Doiron, B., Leifer, A.M. et al. Large-scale neural recordings call for new insights to link brain and behavior. Nat Neurosci 25, 11–19 (2022). https://doi.org/10.1038/s41593-021-00980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-021-00980-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing