Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ventral striatal islands of Calleja neurons control grooming in mice

Abstract

The striatum comprises multiple subdivisions and neural circuits that differentially control motor output. The islands of Calleja (IC) contain clusters of densely packed granule cells situated in the ventral striatum, predominantly in the olfactory tubercle (OT). Characterized by expression of the D3 dopamine receptor, the IC are evolutionally conserved, but have undefined functions. Here, we show that optogenetic activation of OT D3 neurons robustly initiates self-grooming in mice while suppressing other ongoing behaviors. Conversely, optogenetic inhibition of these neurons halts ongoing grooming, and genetic ablation reduces spontaneous grooming. Furthermore, OT D3 neurons show increased activity before and during grooming and influence local striatal output via synaptic connections with neighboring OT neurons (primarily spiny projection neurons), whose firing rates display grooming-related modulation. Our study uncovers a new role of the ventral striatum’s IC in regulating motor output and has important implications for the neural control of grooming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The islands of Calleja contain densely packed granule cells expressing the D3 dopamine receptor.
Fig. 2: Activation of olfactory tubercle D3-Cre/ChR2 neurons induces grooming.
Fig. 3: Activation of olfactory tubercle D3-Cre/ChR2 neurons induces grooming while suppressing alternative ongoing behaviors.
Fig. 4: Inactivation of D3-Cre/eArchT neurons halts ongoing grooming.
Fig. 5: Ablation of olfactory tubercle D3 neurons reduces spontaneous grooming.
Fig. 6: Whole-brain mapping of presynaptic partners of olfactory tubercle D3 neurons.
Fig. 7: Olfactory tubercle D3 neurons make local synaptic contacts.
Fig. 8: Olfactory tubercle neurons show grooming-related activity.

Data availability

The raw data generated and/or analyzed during the current study are available from the corresponding authors on reasonable request. The Allen Mouse Brain Connectivity Atlas (https://connectivity.brain-map.org/transgenic/experiment/304168043/) was used for Fig. 1d and the Allen Mouse Brain Common Coordinate Framework version 3 (https://scalablebrainatlas.incf.org/mouse/ABA_v3/) was used to outline brain structures in Figs. 2b and 4a and Extended Data Figs. 4 and 5. Source data are provided with this paper.

Code availability

All commercial software used to collect and analyze the data in this study are described. Custom code for CLARITY brain imaging has been previously published and is publicly available74,75.

References

  1. 1.

    Grillner, S. & Robertson, B. The basal ganglia over 500 million years. Curr. Biol. 26, R1088–R1100 (2016).

    CAS  PubMed  Google Scholar 

  2. 2.

    Burke, D. A., Rotstein, H. G. & Alvarez, V. A. Striatal local circuitry: a new framework for lateral inhibition. Neuron 96, 267–284 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cox, J. & Witten, I. B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 20, 482–494 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Millhouse, O. E. Granule cells of the olfactory tubercle and the question of the islands of Calleja. J. Comp. Neurol. 265, 1–24 (1987).

    CAS  PubMed  Google Scholar 

  5. 5.

    De Marchis, S., Fasolo, A. & Puche, A. C. Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J. Comp. Neurol. 476, 290–300 (2004).

    PubMed  Google Scholar 

  6. 6.

    Fallon, J. H., Riley, J. N., Sipe, J. C. & Moore, R. Y. The islands of Calleja: organization and connections. J. Comp. Neurol. 181, 375–395 (1978).

    CAS  PubMed  Google Scholar 

  7. 7.

    Meyer, G., Gonzalez-Hernandez, T., Carrillo-Padilla, F. & Ferres-Torres, R. Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man. J. Comp. Neurol. 284, 405–428 (1989).

    CAS  PubMed  Google Scholar 

  8. 8.

    Adjei, S. & Wesson, D. W. Laminar and spatial localization of the islands of Calleja in mice. Neuroscience 287, 137–143 (2015).

    CAS  PubMed  Google Scholar 

  9. 9.

    Fallon, J. H., Loughlin, S. E. & Ribak, C. E. The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striatopallidal system. J. Comp. Neurol. 218, 91–120 (1983).

    CAS  PubMed  Google Scholar 

  10. 10.

    Hsieh, Y. C. & Puche, A. C. Development of the islands of Calleja. Brain Res. 1490, 52–60 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Hsieh, Y. C. & Puche, A. C. GABA modulation of SVZ-derived progenitor ventral cell migration. Dev. Neurobiol. 75, 791–804 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Martin-Lopez, E., Xu, C., Liberia, T., Meller, S. J. & Greer, C. A. Embryonic and postnatal development of mouse olfactory tubercle. Mol. Cell Neurosci. 98, 82–96 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    Suzuki, M., Hurd, Y. L., Sokoloff, P., Schwartz, J. C. & Sedvall, G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 779, 58–74 (1998).

    CAS  PubMed  Google Scholar 

  14. 14.

    Neddens, J. & Buonanno, A. Expression of the neuregulin receptor ErbB4 in the brain of the rhesus monkey (Macaca mulatta). PLoS ONE 6, e27337 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Giessel, A. J. & Datta, S. R. Olfactory maps, circuits and computations. Curr. Opin. Neurobiol. 24, 120–132 (2014).

    CAS  PubMed  Google Scholar 

  16. 16.

    Wesson, D. W. The tubular striatum. J. Neurosci. 40, 7379–7386 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Levant, B. Differential distribution of D3 dopamine receptors in the brains of several mammalian species. Brain Res. 800, 269–274 (1998).

    CAS  PubMed  Google Scholar 

  18. 18.

    Bouthenet, M. L. et al. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 564, 203–219 (1991).

    CAS  PubMed  Google Scholar 

  19. 19.

    Li, Y. & Kuzhikandathil, E. V. Molecular characterization of individual D3 dopamine receptor-expressing cells isolated from multiple brain regions of a novel mouse model. Brain Struct. Funct. 217, 809–833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Landwehrmeyer, B., Mengod, G. & Palacios, J. M. Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res. Mol. Brain Res. 18, 187–192 (1993).

    CAS  PubMed  Google Scholar 

  21. 21.

    Ridray, S. et al. Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur. J. Neurosci. 10, 1676–1686 (1998).

    CAS  PubMed  Google Scholar 

  22. 22.

    Le Moine, C. & Bloch, B. Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 73, 131–143 (1996).

    PubMed  Google Scholar 

  23. 23.

    Novejarque, A., Gutierrez-Castellanos, N., Lanuza, E. & Martinez-Garcia, F. Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Front. Neuroanat. 5, 54 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ubeda-Banon, I. et al. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neurosci. 8, 103 (2007).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Joyce, J. N. & Gurevich, E. V. D3 receptors and the actions of neuroleptics in the ventral striatopallidal system of schizophrenics. Ann. N. Y. Acad. Sci. 877, 595–613 (1999).

    CAS  PubMed  Google Scholar 

  26. 26.

    Inta, D., Meyer-Lindenberg, A. & Gass, P. Alterations in postnatal neurogenesis and dopamine dysregulation in schizophrenia: a hypothesis. Schizophr. Bull. 37, 674–680 (2011).

    PubMed  Google Scholar 

  27. 27.

    Calaresu, F. R., Zhang, J., Chitravanshi, V. C. & Mckitrick, D. J. Cardiovascular and single-unit responses elicited by stimulation of the islands of Calleja and by changes in arterial pressure. Brain Res. 655, 45–50 (1994).

    CAS  PubMed  Google Scholar 

  28. 28.

    Meyer, G., Gonzalez-Hernandez, T., Galindo-Mireles, D., Carrillo-Padilla, F. & Ferres-Torres, R. NADPH-d activity in the islands of Calleja: a regulatory system of blood flow to the ventral striatum/pallidum? Neuroreport 5, 1281–1284 (1994).

    CAS  PubMed  Google Scholar 

  29. 29.

    Kalueff, A. V. et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neurosci. 17, 45–59 (2016).

    CAS  PubMed  Google Scholar 

  30. 30.

    Smolinsky, A. N., Bergner, C. L., LaPorte, J. L. & Kalueff, A. V. Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In Mood and Anxiety-Related Phenotypes in Mice, Characterirzation Using Behavioral Tests, (ed. Gould, T. D.) 21–36 (Humana Press, 2009).

  31. 31.

    Fuccillo, M. V. Striatal circuits as a common node for autism pathophysiology. Front Neurosci. 10, 27 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Burguiere, E., Monteiro, P., Mallet, L., Feng, G. & Graybiel, A. M. Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr. Opin. Neurobiol. 30, 59–65 (2015).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kalueff, A. V., Aldridge, J. W., LaPorte, J. L., Murphy, D. L. & Tuohimaa, P. Analyzing grooming microstructure in neurobehavioral experiments. Nat. Protoc. 2, 2538–2544 (2007).

    CAS  PubMed  Google Scholar 

  34. 34.

    Berridge, K. C., Fentress, J. C. & Parr, H. Natural syntax rules control action sequence of rats. Behav. Brain Res. 23, 59–68 (1987).

    CAS  PubMed  Google Scholar 

  35. 35.

    Berntson, G. G., Jang, J. F. & Ronca, A. E. Brainstem systems and grooming behaviors. Ann. N. Y. Acad. Sci. 525, 350–362 (1988).

    CAS  PubMed  Google Scholar 

  36. 36.

    Berridge, K. C. Progressive degradation of serial grooming chains by descending decerebration. Behav. Brain Res. 33, 241–253 (1989).

    CAS  PubMed  Google Scholar 

  37. 37.

    Spruijt, B. M., van Hooff, J. A. & Gispen, W. H. Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–852 (1992).

    CAS  PubMed  Google Scholar 

  38. 38.

    Alo, R., Avolio, E., Mele, M., Di Vito, A. & Canonaco, M. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster. J. Neurol. Sci. 351, 46–51 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Hong, W., Kim, D. W. & Anderson, D. J. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Dunn, A. J., Berridge, C. W., Lai, Y. I. & Yachabach, T. L. CRF-induced excessive grooming behavior in rats and mice. Peptides 8, 841–844 (1987).

    CAS  PubMed  Google Scholar 

  41. 41.

    Roeling, T. A., Veening, J. G., Peters, J. P., Vermelis, M. E. & Nieuwenhuys, R. Efferent connections of the hypothalamic ‘grooming area’ in the rat. Neuroscience 56, 199–225 (1993).

    CAS  PubMed  Google Scholar 

  42. 42.

    Kruk, M. R. et al. The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci. Biobehav. Rev. 23, 163–177 (1998).

    CAS  PubMed  Google Scholar 

  43. 43.

    Dunn, A. J. Studies on the neurochemical mechanisms and significance of ACTH-induced grooming. Ann. N. Y. Acad. Sci. 525, 150–168 (1988).

    CAS  PubMed  Google Scholar 

  44. 44.

    Mangieri, L. R. et al. A neural basis for antagonistic control of feeding and compulsive behaviors. Nat. Commun. 9, 52 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mu, M. D. et al. A limbic circuitry involved in emotional stress-induced grooming. Nat. Commun. 11, 2261 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Cromwell, H. C. & Berridge, K. C. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J. Neurosci. 16, 3444–3458 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Rapanelli, M., Frick, L., Bito, H. & Pittenger, C. Histamine modulation of the basal ganglia circuitry in the development of pathological grooming. Proc. Natl Acad. Sci. USA 114, 6599–6604 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008).

    CAS  PubMed  Google Scholar 

  50. 50.

    Graybiel, A. M. & Grafton, S. T. The striatum: where skills and habits meet. Cold Spring Harb. Perspect. Biol. 7, a021691 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Aldridge, J. W., Berridge, K. C. & Rosen, A. R. Basal ganglia neural mechanisms of natural movement sequences. Can. J. Physiol. Pharmacol. 82, 732–739 (2004).

    CAS  PubMed  Google Scholar 

  52. 52.

    Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006).

    CAS  PubMed  Google Scholar 

  53. 53.

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Wickersham, I. R., Sullivan, H. A. & Seung, H. S. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat. Protoc. 5, 595–606 (2010).

    CAS  PubMed  Google Scholar 

  56. 56.

    White, K. A. et al. Glutamatergic neurons in the piriform cortex influence the activity of D1- and D2-type receptor-expressing olfactory tubercle neurons. J. Neurosci. 39, 9546–9559 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Halliwell, J. V. & Horne, A. L. Evidence for enhancement of gap junctional coupling between rat island of Calleja granule cells in vitro by the activation of dopamine D3 receptors. J. Physiol. 506, 175–194 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Ribak, C. E. & Fallon, J. H. The island of Calleja complex of rat basal forebrain. I. Light and electron microscopic observations. J. Comp. Neurol. 205, 207–218 (1982).

    CAS  PubMed  Google Scholar 

  59. 59.

    Le Foll, B., Diaz, J. & Sokoloff, P. Neuroadaptations to hyperdopaminergia in dopamine D3 receptor-deficient mice. Life Sci. 76, 1281–1296 (2005).

    PubMed  Google Scholar 

  60. 60.

    Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  Google Scholar 

  62. 62.

    Shuen, J. A., Chen, M., Gloss, B. & Calakos, N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J. Neurosci. 28, 2681–2685 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Choi, K., Holly, E. N., Davatolhagh, M. F., Beier, K. T. & Fuccillo, M. V. Integrated anatomical and physiological mapping of striatal afferent projections. Eur. J. Neurosci. 49, 623–636 (2019).

    PubMed  Google Scholar 

  64. 64.

    Herman, A. M. et al. A cholinergic basal forebrain feeding circuit modulates appetite suppression. Nature 538, 253–256 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    CAS  PubMed  Google Scholar 

  66. 66.

    Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Onigbogi, O., Ajayi, A. A. & Ukponmwan, O. E. Mechanisms of chloroquine-induced body-scratching behavior in rats: evidence of involvement of endogenous opioid peptides. Pharmacol. Biochem. Behav. 65, 333–337 (2000).

    CAS  PubMed  Google Scholar 

  68. 68.

    Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  Google Scholar 

  69. 69.

    Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 10, 508–513 (2013).

    CAS  PubMed  Google Scholar 

  70. 70.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Gretenkord, S. et al. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice. PLoS Biol. 17, e2006994 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Marom, K. et al. The vomeronasal system can learn novel stimulus response pairings. Cell Rep. 27, 676–684 (2019).

    CAS  PubMed  Google Scholar 

  73. 73.

    Pietroni, N., Tarini, M. & Cignoni, P. Almost isometric mesh parameterization through abstract domains. IEEE Trans. Vis. Comput. Graph. 16, 621–635 (2010).

    PubMed  Google Scholar 

  74. 74.

    Stegmaier, J. et al. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks. PLoS ONE 9, e90036 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Bartschat, A., Hubner, E., Reischl, M., Mikut, R. & Stegmaier, J. XPIWIT–an XML pipeline wrapper for the Insight Toolkit. Bioinformatics 32, 315–317 (2016).

    CAS  PubMed  Google Scholar 

  76. 76.

    Schott, B. et al. EmbryoMiner: a new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos. PLoS Comput. Biol. 14, e1006128 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Wright, K. N. & Wesson, D. W. The tubular striatum and nucleus accumbens distinctly represent reward-taking and reward-seeking. J. Neurophysiol. 125, 166–183 (2021).

    PubMed  Google Scholar 

  78. 78.

    Gadziola, M. A., Tylicki, K. A., Christian, D. L. & Wesson, D. W. The olfactory tubercle encodes odor valence in behaving mice. J. Neurosci. 35, 4515–4527 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Thompson, K. G., Hanes, D. P., Bichot, N. P. & Schall, J. D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76, 4040–4055 (1996).

    CAS  PubMed  Google Scholar 

  80. 80.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  81. 81.

    Esmaeili, V. et al. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron 109, 2183–2201 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Acal BFi and Andor for providing access to the Dragonfly 500 spinning-disk confocal microscope platform. This work was supported by the NIH (R01NS117061 to D.W.W., M.V.F. and M.M., R01DC006213 to M.M., R01DA049545 and R01DA049449 to M.M. and D.W.W., R01DC016519 and R01DC014443 to D.W.W., R01MH118369 to M.V.F., R21DC019193 to J.P.B., F32DC018452 to K.N.W., F31DC017054 to M. Schreck and F31MH124372 to E.J.), by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; 368482240/GRK2416 to M. Spehr and 269953372/GRK2150 to J.M. and M. Spehr) and by the Whitehall Foundation and Foundation for OCD Research to M.V.F. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

Conceptualization, Y.-F.Z., D.W.W., M. Spehr, M.V.F. and M.M.; methodology, all authors; investigation, Y.-F.Z., L.V.C., K.N.W., J.P.B., J.M., D.F., E.J., S.L.C., N.G., M. Schreck, A.H.M., Y.Y., J.S. and D.W.W.; formal analysis, data curation and visualization, Y.-F.Z., L.V.C., K.N.W., J.P.B., J.M., D.F., E.J., C.J., J.S., D.W.W., M. Spehr, M.V.F. and M.M.; writing—original draft, Y.-F.Z., D.W.W., M. Spehr, M.V.F. and M.M.; writing—review and editing, all authors; resources, B.R.A., J.N.B., W.L., J.S., D.W.W., M. Spehr, M.V.F. and M.M.; supervision and funding acquisition, D.W.W., M. Spehr, M.V.F. and M.M.

Corresponding authors

Correspondence to Daniel W. Wesson, Marc Spehr, Marc V. Fuccillo or Minghong Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Eric Burguiere, Xin Jin, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quantification of D3-Cre/tdTomato neurons in the ventral striatum.

a, Left, ventral view of location(s) of D3-Cre/tdTomato neurons within a mouse brain mapped onto a sample-adjusted version of the Allen Mouse Brain Atlas. The OT and hippocampus are outlined as light blue volumes. Right, 3D projection of the OT region outlined (black rectangle). Scale bars = 400 µm (upper left), 100 µm (upper right), 150 µm (lower left), and 50 µm (lower right). b, Left, frontal view projection of the location(s) of D3-Cre/tdTomato neurons. Right, 3D projection of the ventral striatum. Scale bar = 300 µm. c, Left, frontal side view projection of the location(s) of D3-Cre/tdTomato neurons. Right, 3D surface rendering of the IC network. Scale bar = 500 µm. d-e, Quantification of D3 neurons in the ventral striatum and ventral pallidum. Absolute numbers of dense versus loose neurons in d, total numbers of neurons in e (left) and cell density in e (right) in the VP, the NAc and the OT. n = 6 hemispheres from 3 mice. All averaged data are shown as mean ± s.e.m. OT, olfactory tubercle. HF, hippocampal formation. IC, islands of Calleja. islm, major island. VP, ventral pallidum. NAc, nucleus accumbens.

Source data

Extended Data Fig. 2 Quantification of the IC between hemispheres and among individuals.

a, Left, 3D reconstruction of D3-Cre/tdTomato neurons in the OT demonstrating that the IC form a continuous branched network. Similar results were observed in 6 OTs from 3 mice. Right, map of registered neurons categorized as dense or loose neurons, respectively. Scale bars = 600 µm (left) and 500 µm (right). b, Top, 3D reconstructions of OT IC structures in individual hemispheres (left and middle panel), and the area of maximal overlap (right panel). Bottom left, IC overlap between the two hemispheres from the same mouse. Mirrored 3D objects were merged and aligned to create maximum overlap (white voxels). Scale bar = 500 µm. Bottom right, maximum volume overlap of the IC network between two hemispheres and among individuals. All averaged data are shown as mean ± s.e.m.

Source data

Extended Data Fig. 3 D3-Cre/tdTomato neurons in the piriform cortex, the hypothalamus and the hippocampus.

Location(s) of D3 neurons within the mouse brain are mapped onto a sample-adjusted version of the Allen Mouse Brain Atlas. The OT and hippocampal formation (HF) are outlined as light blue volumes. a, D3 neurons in the piriform cortex do not project to targets outside this region. a’, 3D projection of the piriform cortex region outlined in a (black rectangle). Different areas are shown at higher magnification. Note that no projection fibers are evident; in frontal view, D3 neurons appear to adhere to a layer-specific organization. Scale bars = 500 μm (left), 200 μm (middle), and 100 μm (right). b, Two areas in the hypothalamus harbor D3 neurons. Of these, neurons in the caudal aspect of the hypothalamus exhibit some projections. b’, 3D maximum projection of the hypothalamic region outlined in b (black rectangle). Different areas are shown at higher magnification. Relatively sparse, but consistent tdTomato expression is observed at both a relatively caudal and rostral region within the hypothalamus (close to midline). Note that few fibers are evident at the caudal site, whereas no fibers are found at the rostral site. Scale bars = 1000 μm (left), 300 μm (middle), and 100 μm (right). c, D3 neurons in the hippocampus. c’, 3D projection of the hippocampal region outlined in c (black rectangle). Different areas are shown at higher magnification. Scale bars = 1000 μm (left), 1000 μm (middle, upper panel), 100 μm (middle, lower panel), 200 μm (right, upper panel) and 100 μm (right, lower panel). Similar results were observed in 3 mice for a-c.

Extended Data Fig. 4 Retrograde tracing of presynaptic partners of OT D3 neurons.

Representative images showing labeled presynaptic partners of OT D3 neurons from the anterior (upper left) to posterior brain sections (lower right). Similar results were observed in 3 mice. MOB, main olfactory bulb. ORB, orbital area. AI, agranular insular area. AON, anterior olfactory nucleus. PC, piriform cortex. NAc, nucleus accumbens. VP, ventral pallidum. OT, olfactory tubercle. LS, lateral septal nucleus. NDB, diagonal band nucleus. SH, septohippocampal nucleus. LPO, lateral preoptic area. LHA, lateral hypothalamic area. AMY (AAA), anterior amygdalar area. AMY (CEA), central amygdalar nucleus. AMY (MEA), medial amygdalar nucleus. AMY (LA), lateral amygdalar nucleus. AMY (COA), cortical amygdalar area. PVH, paraventricular hypothalamic nucleus. TU, tuberal nucleus. ARH, arcuate hypothalamic nucleus. PH, posterior hypothalamic nucleus. PMv, ventral premammillary nucleus. TH, thalamus (mostly in the subparafascicular area). AMY (BLA), basolateral amygdalar nucleus. SN, substantia nigra. VTA, ventral tegmental area. MRN, midbrain reticular nucleus. PAG, periaqueductal gray. RAmb (CRN), medbrain raphe nuclei, central part. RM, nucleus raphe magnus. PRNc, pontine reticular nucleus, caudal part. RAmb (DRN), medbrain raphe nuclei, dorsal part. PCG, pontine central gray. PB, parabrachial nucleus. Brain atlas images are modified from Allen Mouse Brain Common Coordinate Framework version 3 (https://scalablebrainatlas.incf.org/mouse/ABA_v3). Scale bars = 500 µm.

Extended Data Fig. 5 Viral injection/expression sites and optical fiber placements for experiments in Figs. 28.

Coronal brain sections at the bregma levels showing viral injection sites (dots)/expression areas (gray shadow areas with red borders) and/or optical fiber tracts (vertical bars) for mice included. a-b, Optogenetic experiments (Figs. 2, 3 in a and Fig. 4 in b). c, DTA ablation experiments (Fig. 5). d-e, Retrograde (Fig. 6 in d) and anterograde (Fig. 7 in e) tracing experiments. f, Electrophysiological recordings (Fig. 7 in f), and (g) fiber photometry experiments (Fig. 8). For clarity, an optical fiber (400 µm) is shown as a thin vertical bar at the center of the tract. h, Electrode array locations from in vivo unit recording experiments (Fig. 8). i, Schematic showing viral expression and fiber covered areas for the two coordinates used in the OT. Scale bar = 500 µm. Each dot or line represents one animal except for bilateral AAV8-DTA injection in c. Brain atlas images are modified from Allen Mouse Brain Common Coordinate Framework version 3 (https://scalablebrainatlas.incf.org/mouse/ABA_v3). IC, islands of Calleja. OT, olfactory tubercle. NAc, nucleus accumbens. PVH, paraventricular hypothalamic nucleus.

Extended Data Fig. 6 Properties of postsynaptic currents (PSCs) upon optogenetic stimulation of D3-Cre/ChR2 neurons in the OT.

a and c, Latency to PSC onset in D3-Cre/tdTomato neurons (4.73 ± 0.19 ms) (a) and SPNs (4.63 ± 0.11 ms) (c). b and d, Jitter of PSCs (SD of latencies during repeated light stimuli) in D3-Cre/tdTomato neurons (1.28 ± 0.08 ms) (b) and SPNs (1.14 ± 0.10 ms) (d). Data are quantified in 16 D3-Cre/tdTomato neurons and 38 SPNs (6-10 traces/neuron) showing light-evoked PSCs. All averaged data are shown as mean ± s.e.m.

Source data

Extended Data Fig. 7 Single unit quality control metrics.

a, Upper panel, PCA plot of two putative single units recorded from the same electrode. Ellipses denote 2.5x SD of each K-means cluster. Lower panel, overlaid waveforms of the same neurons. b-c, Inter-spike intervals (ISIs, 2 ms bins) for the same two neurons as in (a) indicating significantly different distributions (two-sample Kolmogorov-Smirnov test D (2493) = 0.22, p <0.0001). Insets, ISI distributions (1 ms bins) showing limited numbers (< 2%) of ISI events < 2ms. d, Distribution of the proportion of ISI violations (< 2ms between spikes) among all single units. 100% of units had <2% of their spikes occurring within 2ms of each other. e, Distribution of mean firing rates during entire recording session of all single units (median: 1.97 Hz, typical of spiny projection neurons). f, Distribution of spike amplitude: noise floor values for all single units.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and legends of Supplementary Videos 1–13.

Reporting Summary

Supplementary Video 1

3D reconstruction of the IC in the OT. Red, D3-Cre/tdTomato neurons. Green, axonal fibers from the MOB projection neurons labeled via viral injection of AAV9-EGFP. Blue, cell nuclei labeled by DRAQ5TM, a far-red fluorescent DNA dye.

Supplementary Video 2

3D reconstruction of individual D3 neurons in and between two IC in the OT showing the neuronal processes of these neurons. Colors are the same as in Supplementary Video 1.

Supplementary Video 3

Blue-light (but not green-light) activation of OT D3-Cre/ChR2 neurons induces grooming.

Supplementary Video 4

Grooming behavior induced by blue-light stimulation of OT D3-Cre/ChR2 neurons with different durations (1 to 20 s at 20 Hz).

Supplementary Video 5

Grooming behavior induced by blue-light stimulation of OT D3-Cre/ChR2 neurons with different frequencies (1–20 Hz for 10 s).

Supplementary Video 6

Genotype and stimulation site controls. Blue-light stimulation of OT D3-Cre/tdTomato neurons or blue-light stimulation of D3-Cre/ChR2 neurons in the NAc and hippocampus (dentate gyrus and CA3 region) do not induce grooming.

Supplementary Video 7

Grooming behavior induced by blue-light activation of the OT in D3-Cre/tdTomato mice injected with Cre-dependent AAV1-DIO-ChR2-EYFP virus. Additional conditions include green light or optical fiber implanted in the PVH.

Supplementary Video 8

Blue-light (but not green-light) activation of OT D3 neurons stops social investigation and initiates grooming in D3-Cre/ChR2 mice.

Supplementary Video 9

Blue-light (but not green-light) activation of OT D3 neurons stops feeding and initiates grooming in D3-Cre/ChR2 mice.

Supplementary Video 10

Blue-light (but not green-light) activation of OT D3 neurons stops itch-induced scratching and initiates grooming in D3-Cre/ChR2 mice.

Supplementary Video 11

Blue-light (but not green-light) activation of OT D3 neurons stops body licking and initiates grooming in D3-Cre/ChR2 mice.

Supplementary Video 12

Green-light (but not blue-light) inactivation of OT D3-Cre/eArchT neurons shortens spontaneous grooming.

Supplementary Video 13

Green-light (but not blue-light) inactivation of OT D3-Cre/eArchT neurons halts water-spray-induced grooming.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Vargas Cifuentes, L., Wright, K.N. et al. Ventral striatal islands of Calleja neurons control grooming in mice. Nat Neurosci (2021). https://doi.org/10.1038/s41593-021-00952-z

Download citation

Search

Quick links