Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revisiting the neurovascular unit

Abstract

The brain is supplied by an elaborate vascular network that originates extracranially and reaches deep into the brain. The concept of the neurovascular unit provides a useful framework to investigate how neuronal signals regulate nearby microvessels to support the metabolic needs of the brain, but it does not consider the role of larger cerebral arteries and systemic vasoactive signals. Furthermore, the recently emerged molecular heterogeneity of cerebrovascular cells indicates that there is no prototypical neurovascular unit replicated at all levels of the vascular network. Here, we examine the cellular and molecular diversity of the cerebrovascular tree and the relative contribution of systemic and brain-intrinsic factors to neurovascular function. Evidence supports the concept of a ‘neurovascular complex’ composed of segmentally diverse functional modules that implement coordinated vascular responses to central and peripheral signals to maintain homeostasis of the brain. This concept has major implications for neurovascular regulation in health and disease and for brain imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of the large vessels supplying the brain.
Fig. 2: Segmental heterogeneity of cerebral arteries and diversity of vascular and perivascular cells.
Fig. 3: Endothelial expression heatmap and scatter plot of differentially expressed genes in the neocortex and the hippocampus.
Fig. 4: Local and remote vascular components of NVC.
Fig. 5: Sources and targets of brain intrinsic vasoactive signals.
Fig. 6: Central and peripheral vasoactive signals regulating CBF.

Similar content being viewed by others

References

  1. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alves de Lima, K., Rustenhoven, J. & Kipnis, J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38, 597–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Koizumi, T., Kerkhofs, D., Mizuno, T., Steinbusch, H. W. M. & Foulquier, S. Vessel-associated immune cells in cerebrovascular diseases: from perivascular macrophages to vessel-associated microglia. Front. Neurosci. 13, 1291 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Faraco, G. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574, 686–690 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paredes, I., Himmels, P. & Ruiz de Almodovar, C. Neurovascular communication during CNS development. Dev. Cell 45, 10–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Tsai, H. H. et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351, 379–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 25, 621–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, Z. V. I., Bonvento, G., Lacombe, P. & Hamel, E. Serotonin control of the regulation of the brain microcirculation. Prog. Neurobiol. 50, 335–362 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan, L., Chow, B. W. & Gu, C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21, 416–432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hannocks, M.-J. et al. Molecular characterization of perivascular drainage pathways in the murine brain. J. Cereb. Blood Flow. Metab. 38, 669–686 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Hartmann, D. A. et al. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat. Neurosci. 24, 633–645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lendahl, U., Nilsson, P. & Betsholtz, C. Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep. 20, e48070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Santisteban, M. M. et al. Endothelium–macrophage crosstalk mediates blood–brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, X., De Silva, T. M., Chen, J. & Faraci, F. M. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ. Res. 120, 449–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, M. B. et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 30, 4418–4432.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pearson-Leary, J. et al. Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl. Psychiatry 7, e1160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belkhelfa, M. et al. The involvement of neuroinflammation and necroptosis in the hippocampus during vascular dementia. J. Neuroimmunol. 320, 48–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Shen, J. et al. Neurovascular coupling in the dentate gyrus regulates adult hippocampal neurogenesis. Neuron 103, 878–890.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan, C. et al. Endothelium-derived semaphorin 3G regulates hippocampal synaptic structure and plasticity via neuropilin-2/plexinA4. Neuron 101, 920–937.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Kierdorf, K., Masuda, T., Jordão, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Silver, R. & Curley, J. P. Mast cells on the mind: new insights and opportunities. Trends Neurosci. 36, 513–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Dorrier, C. E. et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat. Neurosci. 24, 234–244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iadecola, C. et al. Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels. Brain Res. 606, 148–155 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Toussay, X., Basu, K., Lacoste, B. & Hamel, E. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J. Neurosci. 33, 3390–3401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vaucher, E., Tong, X. K., Cholet, N., Lantin, S. & Hamel, E. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J. Comp. Neurol. 421, 161–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Drew, P. J., Mateo, C., Turner, K. L., Yu, X. & Kleinfeld, D. Ultra-slow oscillations in fMRI and resting-state connectivity: neuronal and vascular contributions and technical confounds. Neuron 107, 782–804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faraci, F. M. & Heistad, D. D. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ. Res. 66, 8–17 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Claassen, J., Thijssen, D. H. J., Panerai, R. B. & Faraci, F. M. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol. Rev. https://doi.org/10.1152/physrev.00022.2020 (2021).

  36. Barnes, J. N. & Charkoudian, N. Integrative cardiovascular control in women: regulation of blood pressure, body temperature, and cerebrovascular responsiveness. FASEB J. 35, e21143 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, B. A., Clayton, E. W. & Robertson, D. Experimental arrest of cerebral blood flow in human subjects: The Red Wing Studies revisited. Perspect. Biol. Med. 54, 121–131 (2011).

    Article  PubMed  Google Scholar 

  38. Kawano, Y. Diurnal blood pressure variation and related behavioral factors. Hypertens. Res. 34, 281–285 (2011).

    Article  PubMed  Google Scholar 

  39. Lidington, D., Kroetsch, J. T. & Bolz, S.-S. Cerebral artery myogenic reactivity: the next frontier in developing effective interventions for subarachnoid hemorrhage. J. Cereb. Blood Flow. Metab. 38, 17–37 (2018).

    Article  PubMed  Google Scholar 

  40. Hoiland, R. L., Fisher, J. A. & Ainslie, P. N. Regulation of the cerebral circulation by arterial carbon dioxide. Compr. Physiol. 9, 1101–1154 (2019).

    Article  PubMed  Google Scholar 

  41. Lewis, N. C. S., Messinger, L., Monteleone, B. & Ainslie, P. N. Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity. J. Appl. Physiol. 116, 1189–1196 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Willie, C. K. et al. Regional brain blood flow in man during acute changes in arterial blood gases. J. Physiol. 590, 3261–3275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iadecola, C. Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc. Natl Acad. Sci. USA 89, 3913–3916 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Faraci, F. M. et al. Acid-sensing ion channels: novel mediators of cerebral vascular responses. Circ. Res. 125, 907–920 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei, H. S. et al. Erythrocytes are oxygen-sensing regulators of the cerebral microcirculation. Neuron 91, 851–862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Golanov, E. V. & Reis, D. J. Contribution of oxygen-sensitive neurons of the rostral ventrolateral medulla to hypoxic cerebral vasodilatation in the rat. J. Physiol. 495, 201–216 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. van Veluw, S. J. et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105, 549–561.e5 (2020).

    Article  PubMed  CAS  Google Scholar 

  49. Zhu, M., Ackerman, J. J. & Yablonskiy, D. A. Body and brain temperature coupling: the critical role of cerebral blood flow. J. Comp. Physiol. B 179, 701–710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kedarasetti, R. T. et al. Functional hyperemia drives fluid exchange in the paravascular space. Fluids Barriers CNS 17, 52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoiland, R. L. et al. Nitric oxide is fundamental to neurovascular coupling in humans. J. Physiol. 598, 4927–4939 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Mishra, A. et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat. Neurosci. 19, 1619–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krawchuk, M. B., Ruff, C. F., Yang, X., Ross, S. E. & Vazquez, A. L. Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex. J. Cereb. Blood Flow. Metab. 40, 1427–1440 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Echagarruga, C., Gheres, K. W., Norwood, J. N. & Drew, P. J. nNOS-expressing interneurons control basal and behaviorally-evoked arterial dilation in somatosensory cortex of mice. eLife 9, e6053 (2020).

    Article  Google Scholar 

  55. Lee, L. et al. Key aspects of neurovascular control mediated by specific populations of inhibitory cortical interneurons. Cereb. Cortex 30, 2452–2464 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Lacroix, A. et al. COX-2-derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex. J. Neurosci. 35, 11791–11810 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, J. H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anenberg, E., Chan, A. W., Xie, Y., LeDue, J. M. & Murphy, T. H. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J. Cereb. Blood Flow. Metab. 35, 1579–1586 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vazquez, A. L., Fukuda, M. & Kim, S. G. Inhibitory neuron activity contributions to hemodynamic responses and metabolic load examined using an inhibitory optogenetic mouse model. Cereb. Cortex 28, 4105–4119 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ma, Y. et al. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. Proc. Natl Acad. Sci. USA 113, E8463–E8471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, G., Huard, J. M., Beitz, A. J., Ross, M. E. & Iadecola, C. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J. Neurosci. 20, 6968–6973 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gould, I. G., Tsai, P., Kleinfeld, D. & Linninger, A. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J. Cereb. Blood Flow. Metab. 37, 52–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nikolakopoulou, A. M. et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 22, 1089–1098 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Watson, A. N. et al. Mild pericyte deficiency is associated with aberrant brain microvascular flow in aged PDGFRβ+/− mice. J. Cereb. Blood Flow. Metab. 40, 2387–2400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rungta, R. L., Chaigneau, E., Osmanski, B. F. & Charpak, S. Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99, 362–375.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hill, R. A. et al. Regional blood flow in the normal and ischemic brain Is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fernandez-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J. & Lindauer, U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc. Natl Acad. Sci. USA 107, 22290–22295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schmid, F., Tsai, P. S., Kleinfeld, D., Jenny, P. & Weber, B. Depth-dependent flow and pressure characteristics in cortical microvascular networks. PLoS Comput. Biol. 13, e1005392 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Grant, R. I. et al. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J. Cereb. Blood Flow. Metab. 39, 411–425 (2019).

    Article  PubMed  Google Scholar 

  72. Cai, C. et al. Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proc. Natl Acad. Sci. USA 115, E5796–E5804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hogan-Cann, A. D., Lu, P. & Anderson, C. M. Endothelial NMDA receptors mediate activity-dependent brain hemodynamic responses in mice. Proc. Natl Acad. Sci. USA 116, 10229–10231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uemura, M. T., Maki, T., Ihara, M., Lee, V. M. Y. & Trojanowski, J. Q. Brain microvascular pericytes in vascular cognitive impairment and dementia. Front. Aging Neurosci. 12, 80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grubb, S. et al. Precapillary sphincters maintain perfusion in the cerebral cortex. Nat. Commun. 11, 395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hariharan, A. et al. The ion channel and GPCR toolkit of brain capillary pericytes. Front. Cell Neurosci. 14, 601324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Secomb, T. W. Theoretical models for regulation of blood flow. Microcirculation 15, 765–775 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A. & Hillman, E. M. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J. Am. Heart Assoc. 3, e000787 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Longden, T. A. et al. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat. Neurosci. 20, 717–726 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zechariah, A. et al. Intercellular conduction optimizes arterial network function and conserves blood flow homeostasis during cerebrovascular challenges. Arterioscler. Thromb. Vasc. Biol. 40, 733–750 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Thakore, P. et al. Brain endothelial cell TRPA1 channels initiate neurovascular coupling. eLife 10, e63040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chow, B. W. et al. Caveolae in CNS arterioles mediate neurovascular coupling. Nature 579, 106–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bekar, L. K., Wei, H. S. & Nedergaard, M. The locus coeruleus–norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J. Cereb. Blood Flow. Metab. 32, 2135–2145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Devor, A. et al. Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J. Neurosci. 28, 14347–14357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alarcon-Martinez, L. et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 36, 451–455 (2020).

    Google Scholar 

  86. Gonzales, A. L. et al. Contractile pericytes determine the direction of blood flow at capillary junctions. Proc. Natl Acad. Sci. USA 117, 27022–27033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, F., Xu, S. & Iadecola, C. Role of nitric oxide and acetylcholine in neocortical hyperemia elicited by basal forebrain stimulation: evidence for an involvement of endothelial nitric oxide. Neuroscience 69, 1195–1204 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Kolodziej, A. et al. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. NeuroImage 103, 171–180 (2014).

    Article  PubMed  Google Scholar 

  89. Lecrux, C. & Hamel, E. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150350 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Raichle, M. E., Hartman, B. K., Eichling, J. O. & Sharpe, L. G. Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc. Natl Acad. Sci. USA 72, 3726–3730 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tan, C. O. Anticipatory changes in regional cerebral hemodynamics: a new role for dopamine? J. Neurophysiol. 101, 2738–2740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sirotin, Y. B. & Das, A. Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 457, 475–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Willie, C. K., Tzeng, Y. C., Fisher, J. A. & Ainslie, P. N. Integrative regulation of human brain blood flow. J. Physiol. 592, 841–859 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Green, D. J., Hopman, M. T., Padilla, J., Laughlin, M. H. & Thijssen, D. H. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol. Rev. 97, 495–528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Braz, I. D. & Fisher, J. P. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans. J. Physiol. 594, 4471–4483 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Smith, K. J. & Ainslie, P. N. Regulation of cerebral blood flow and metabolism during exercise. Exp. Physiol. 102, 1356–1371 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Willie, C. K. et al. Neurovascular coupling and distribution of cerebral blood flow during exercise. J. Neurosci. Methods 198, 270–273 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Brassard, P., Tymko, M. M. & Ainslie, P. N. Sympathetic control of the brain circulation: appreciating the complexities to better understand the controversy. Auton. Neurosci. 207, 37–47 (2017).

    Article  PubMed  Google Scholar 

  99. Zhang, Q. et al. Cerebral oxygenation during locomotion is modulated by respiration. Nat. Commun. 10, 5515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kotajima, F., Meadows, G. E., Morrell, M. J. & Corfield, D. R. Cerebral blood flow changes associated with fluctuations in alpha and theta rhythm during sleep onset in humans. J. Physiol. 568, 305–313 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Corfield, D. R. & Meadows, G. E. Control of cerebral blood flow during sleep and the effects of hypoxia. Adv. Exp. Med. Biol. 588, 65–73 (2006).

    Article  PubMed  Google Scholar 

  103. Townsend, R. E., Prinz, P. N. & Obrist, W. D. Human cerebral blood flow during sleep and waking. J. Appl. Physiol. 35, 620–625 (1973).

    Article  CAS  PubMed  Google Scholar 

  104. Meadows, G. E., Dunroy, H. M., Morrell, M. J. & Corfield, D. R. Hypercapnic cerebral vascular reactivity is decreased, in humans, during sleep compared with wakefulness. J. Appl. Physiol. 94, 2197–2202 (2003).

    Article  PubMed  Google Scholar 

  105. Meadows, G. E., O’Driscoll, D. M., Simonds, A. K., Morrell, M. J. & Corfield, D. R. Cerebral blood flow response to isocapnic hypoxia during slow-wave sleep and wakefulness. J. Appl Physiol. 97, 1343–1348 (2004).

    Article  PubMed  Google Scholar 

  106. Madsen, P. L. et al. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J. Appl Physiol. 70, 2597–2601 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Ozbay, P. S. et al. Sympathetic activity contributes to the fMRI signal. Commun. Biol. 2, 421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hussein, A. et al. The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults. Hum. Brain Mapp. 41, 2121–2135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Birn, R. M., Diamond, J. B., Smith, M. A. & Bandettini, P. A. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31, 1536–1548 (2006).

    Article  PubMed  Google Scholar 

  111. Wise, R. G., Ide, K., Poulin, M. J. & Tracey, I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. NeuroImage 21, 1652–1664 (2004).

    Article  PubMed  Google Scholar 

  112. Özbay, P. S. et al. Contribution of systemic vascular effects to fMRI activity in white matter. NeuroImage 176, 541–549 (2018).

    Article  PubMed  Google Scholar 

  113. Lynch, C. J. et al. Prevalent and sex-biased breathing patterns modify functional connectivity MRI in young adults. Nat. Commun. 11, 5290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Das, A., Murphy, K. & Drew, P. J. Rude mechanicals in brain haemodynamics: non-neural actors that influence blood flow. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20190635 (2021).

    Article  PubMed  Google Scholar 

  115. Kozberg, M. G., Chen, B. R., DeLeo, S. E., Bouchard, M. B. & Hillman, E. M. C. Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain. Proc. Natl Acad. Sci. USA 110, 4380–4385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mathiesen Janiurek, M., Soylu-Kucharz, R., Christoffersen, C., Kucharz, K. & Lauritzen, M. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood–brain barrier paracellular permeability and transcytosis. eLife 8, 13–22 (2019).

    Article  Google Scholar 

  117. Nortley, R. et al. Amyloid beta oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 365, eaav9518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Park, L. et al. Tau induces PSD95–neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat. Neurosci. 23, 1079–1089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wardlaw, J. M. et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 89, 137–153 (2020).

    Article  Google Scholar 

  120. Mestre, H. et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367, eaax7171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ajami, B. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21, 541–551 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cortes-Canteli, M. & Iadecola, C. Alzheimer’s disease and vascular aging: JACC Focus Seminar. J. Am. Coll. Cardiol. 75, 942–951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Park, L. et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides. Circ. Res. 121, 258–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cruz-Hernández, J. C. et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat. Neurosci. 22, 413–420 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Ostergaard, L. Blood flow, capillary transit times, and tissue oxygenation: the centennial of capillary recruitment. J. Appl. Physiol. 129, 1413–1421 (2020).

    Article  PubMed  CAS  Google Scholar 

  127. Wingo, A. P. et al. Shared proteomic effects of cerebral atherosclerosis and Alzheimer’s disease on the human brain. Nat. Neurosci. 383, 696–700 (2020).

    Article  CAS  Google Scholar 

  128. Goldstein, D. S. Dysautonomia in Parkinson disease. Compr. Physiol. 4, 805–826 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. D’Arrigo, A. et al. Respiratory dysfunction in Parkinson’s disease: a narrative review. ERJ Open Res. 6, 00165–2020 (2020).

    PubMed  PubMed Central  Google Scholar 

  130. Gutteridge, D. S., Saredakis, D., Badcock, N. A., Collins-Praino, L. E. & Keage, H. A. D. Cerebrovascular function during cognition in Parkinson’s disease: a functional transcranial Doppler sonography study. J. Neurol. Sci. 408, 116578 (2020).

    Article  PubMed  Google Scholar 

  131. McDonald, C., Newton, J. L. & Burn, D. J. Orthostatic hypotension and cognitive impairment in Parkinson’s disease: causation or association? Mov. Disord. 31, 937–946 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Serebrovskaya, T. et al. Hypoxic ventilatory responses and gas exchange in patients with Parkinson’s disease. Respiration 65, 28–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Anang, J. B. et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology 83, 1253–1260 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Longardner, K., Bayram, E. & Litvan, I. Orthostatic hypotension is associated with cognitive decline in Parkinson disease. Front. Neurol. 11, 897 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Rosengarten, B. et al. Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment. J. Alzheimers Dis. 22, 415–421 (2010).

    Article  PubMed  Google Scholar 

  136. Camargo, C. H. et al. Abnormal cerebrovascular reactivity in patients with Parkinson’s disease. Parkinsons Dis. 2015, 523041 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. Zheng, W. et al. Spatial patterns of decreased cerebral blood flow and functional connectivity in multiple system atrophy (cerebellar-type): a combined arterial spin labeling perfusion and resting state functional magnetic resonance imaging study. Front. Neurosci. 13, 777 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Malhotra, R. K. Neurodegenerative disorders and sleep. Sleep. Med. Clin. 13, 63–70 (2018).

    Article  PubMed  Google Scholar 

  139. Andrade, A. G., Bubu, O. M., Varga, A. W. & Osorio, R. S. The relationship between obstructive sleep apnea and Alzheimer’s disease. J. Alzheimers Dis. 64, S255–S270 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Capone, C. et al. Endothelin 1-dependent neurovascular dysfunction in chronic intermittent hypoxia. Hypertension 60, 106–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Hu, M. T. REM sleep behavior disorder (RBD). Neurobiol. Dis. 143, 104996 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Qureshi, A. I. Acute hypertensive response in patients with stroke: pathophysiology and management. Circulation 118, 176–187 (2008).

    Article  PubMed  Google Scholar 

  143. Malhotra, K. et al. Association of blood pressure with outcomes in acute stroke thrombectomy. Hypertension 75, 730–739 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Zeiler, F. A. et al. Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. Br. J. Anaesth. 124, 440–453 (2020).

    Article  Google Scholar 

  145. Bhalerao, A. et al. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 17, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhao, Z. et al. Central role for PICALM in amyloid-β blood–brain barrier transcytosis and clearance. Nat. Neurosci. 18, 978–987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Utz, S. G. et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181, 557–573.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Ouellette, J. et al. Vascular contributions to 16p11.2 deletion autism syndrome modeled in mice. Nat. Neurosci. 560, 1090–1101 (2020).

    Article  CAS  Google Scholar 

  150. Grutzendler, J. & Nedergaard, M. Cellular control of brain capillary blood flow: in vivo imaging veritas. Trends Neurosci. 42, 528–536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Gupta for providing the image of human brain vessel (Fig. 1a) and J. Anrather for input on the transcriptomics analysis. Supported by NIH grants R01-NS34179, R01-NS100447, R37-NS089323, R01-NS095441 and R01-NS/HL37853 to C.I.

Author information

Authors and Affiliations

Authors

Contributions

C.I. and S.S. wrote the manuscript and prepared the figures. S.S. performed the analysis of RNA-seq data.

Corresponding author

Correspondence to Costantino Iadecola.

Ethics declarations

Competing interests

C.I. serves on the Scientific Advisory Board of Broadview Ventures. S.S. has no conflicts to declare.

Additional information

Peer review information Nature Neuroscience thanks Andy Shih and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaeffer, S., Iadecola, C. Revisiting the neurovascular unit. Nat Neurosci 24, 1198–1209 (2021). https://doi.org/10.1038/s41593-021-00904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-021-00904-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing