Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation

Abstract

Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca2+ is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca2+-induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CaMKII and GluN2Bc form LLPS condensates.
Fig. 2: Segregation of AMPAR and NMDAR in protein condensate by active CaMKII.
Fig. 3: Dispersion of protein condensates by competing T-site interaction.
Fig. 4: Reduction of synaptic glutamate receptor segregation by competing T-site interaction.
Fig. 5: Neuroligin-1 segregates into the STGc/PSD-95 phase by CaMKII.

Data availability

All relevant data of this manuscript are available from the corresponding author upon reasonable request. Protein sequences are available from NCBI (https://www.ncbi.nlm.nih.gov/protein/).

References

  1. 1.

    Biederer, T., Kaeser, P. S. & Blanpied, T. A. Transcellular nanoalignment of synaptic function. Neuron 96, 680–696 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Scheefhals, N. & MacGillavry, H. D. Functional organization of postsynaptic glutamate receptors. Mol. Cell Neurosci. 91, 82–94 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Kellermayer, B. et al. Differential nanoscale topography and functional role of GluN2-NMDA receptor subtypes at glutamatergic synapses. Neuron 100, 106–119 e107 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Goncalves, J. et al. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. Proc. Natl Acad. Sci. USA 117, 14503–14511 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Tang, A. H. et al. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536, 210–214 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Hruska, M., Henderson, N., Le Marchand, S. J., Jafri, H. & Dalva, M. B. Synaptic nanomodules underlie the organization and plasticity of spine synapses. Nat. Neurosci. 21, 671–682 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Chen, X., Wu, X., Wu, H. & Zhang, M. Phase separation at the synapse. Nat. Neurosci. 23, 301–310 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Bayer, K. U., De Koninck, P., Leonard, A. S., Hell, J. W. & Schulman, H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411, 801–805 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Saneyoshi, T. et al. Reciprocal activation within a Kinase-Effector complex underlying persistence of structural LTP. Neuron 102, 1199–1210 e1196 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Chao, L. H. et al. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146, 732–745 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Hayashi, M. K. et al. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137, 159–171 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187 e1116 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175 e1112 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Bayer, K. U. et al. Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J. Neurosci. 26, 1164–1174 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Halt, A. R. et al. CaMKII binding to GluN2B is critical during memory consolidation. EMBO J. 31, 1203–1216 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 275 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Nicoll, R. A., Tomita, S. & Bredt, D. S. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311, 1253–1256 (2006).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Zeng, M. et al. Phase separation-mediated TARP/MAGUK complex condensation and AMPA receptor synaptic transmission. Neuron 104, 529–543 e526 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Lepicard, E. M., Mizuno, K., Antunes-Martins, A., von Hertzen, L. S. & Giese, K. P. An endogenous inhibitor of calcium/calmodulin-dependent kinase II is up-regulated during consolidation of fear memory. Eur. J. Neurosci. 23, 3063–3070 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Vest, R. S., Davies, K. D., O’Leary, H., Port, J. D. & Bayer, K. U. Dual mechanism of a natural CaMKII inhibitor. Mol. Biol. Cell 18, 5024–5033 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Trotter, J. H. et al. Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters. J. Cell Biol. 218, 2677–2698 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Xie, X., Liaw, J. S., Baudry, M. & Berger, T. W. Novel expression mechanism for synaptic potentiation: alignment of presynaptic release site and postsynaptic receptor. Proc. Natl Acad. Sci. USA 94, 6983–6988 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Haas, K. T. et al. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 7, e31755 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Futai, K. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nat. Neurosci. 10, 186–195 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Shen, K. & Meyer, T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Bosch, M. et al. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82, 444–459 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Cai, Q. et al. CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Res. 31, 37–51 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. 32.

    Takao, K. et al. Visualization of synaptic Ca2+/calmodulin-dependent protein kinase II activity in living neurons. J. Neurosci. 25, 3107–3112 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Patneau, D. K. & Mayer, M. L. Structure–activity relationships for amino acid transmitter candidates acting at N-methyl-d-aspartate and quisqualate receptors. J. Neurosci. 10, 2385–2399 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Tong, G. & Jahr, C. E. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13, 1195–1203 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Liu, G., Choi, S. & Tsien, R. W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22, 395–409 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Hell, J. W. CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81, 249–265 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Hosokawa, T., Mitsushima, D., Kaneko, R. & Hayashi, Y. Stoichiometry and phosphoisotypes of hippocampal AMPA type glutamate receptor phosphorylation. Neuron 85, 60–67 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Diering, G. H. & Huganir, R. L. The AMPA receptor code of synaptic plasticity. Neuron 100, 314–329 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Chamma, I. et al. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat. Commun. 7, 10773 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Beghin, A. et al. Localization-based super-resolution imaging meets high-content screening. Nat. Methods 14, 1184–1190 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Kechkar, A., Nair, D., Heilemann, M., Choquet, D. & Sibarita, J. B. Real-time analysis and visualization for single-molecule based super-resolution microscopy. PLoS One 8, e62918 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Levet, F. et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 12, 1065–1071 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Levet, F. et al. A tessellation-based colocalization analysis approach for single-molecule localization microscopy. Nat. Commun. 10, 2379 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. A. Nicoll, J. W. Hell and T. A. Blanpied for comments on the manuscript, E. Gouaux, O. Thoumine, M. Sainlos, M. Rosendale and Bordeaux Imaging Center for the reagents and assistance and L. Yu, A. Z. Weitemier and E. Agnello for editing. This work was supported by RIKEN Presidents Fund, SPIRITS 2019 of Kyoto University, Grant-in-Aid for Scientific Research JP20240032, JP22110006, JP16H01292, JP18H04733 and JP18H05434 from the MEXT, Japan, JST, CREST JPMJCR20E4, Japan, Programme Exploration France from Ambassade de France au Japon, The Uehara Memorial Foundation, The Naito Foundation, Research Foundation for Opto-Science and Technology, Novartis Foundation, The Takeda Science Foundation and Japan Foundation for Applied Enzymology to Y.H., The Takeda Science Foundation and Grants-in-Aid for Scientific Research JP17K14947, JP18KK0421 and JP19K06885 from the MEXT, Japan to T.H., grants from the Simons Foundation (Award ID 510178) and Research Grant Council of Hong Kong (AoE-M09-12 and C6004-17G) to M.Z., HFSP Research Grant (RGP0020/2019) jointly to Y.H. and M.Z, CRCNS-NIH-ANR AMPAR-T fellowship to E.H. and The National Center for Scientific Research (CNRS), Agence Nationale de la Recherche (DynHippo) to L.G. and J.F.

Author information

Affiliations

Authors

Contributions

T.H. and P.-W.L. conducted and managed all experiments. Y.H. managed the overall project. Q.C. and M.Z. participated in LLPS experiments. J.S.F., F.L., C.B., J.-B.S., D.C., L.G. and E.H. participated in super-resolution microscopy.

Corresponding authors

Correspondence to Mingjie Zhang or Yasunori Hayashi.

Ethics declarations

Competing interests

Y.H. is partly supported by Fujitsu Laboratories and Dwango.

Additional information

Peer review information Nature Neuroscience thanks Thomas Biederer, Dragomir Milovanovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–13.

Reporting Summary

Supplementary Video 1

Time-lapse imaging of CaMKII–GluN2Bc condensates.

Supplementary Video 2

Time-lapse imaging of CaMKII, GluN2Bc, PSD-95 and STGc condensates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosokawa, T., Liu, PW., Cai, Q. et al. CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation. Nat Neurosci (2021). https://doi.org/10.1038/s41593-021-00843-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing