Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics

An Author Correction to this article was published on 21 June 2021

This article has been updated

Abstract

Decades of neurobiological research have disclosed the diverse manners in which the response properties of neurons are dynamically modulated to support adaptive cognitive functions. This neuromodulation is achieved through alterations in the biophysical properties of the neuron. However, changes in cognitive function do not arise directly from the modulation of individual neurons, but are mediated by population dynamics in mesoscopic neural ensembles. Understanding this multiscale mapping is an important but nontrivial issue. Here, we bridge these different levels of description by showing how computational models parametrically map classic neuromodulatory processes onto systems-level models of neural activity. The ensuing critical balance of systems-level activity supports perception and action, although our knowledge of this mapping remains incomplete. In this way, quantitative models that link microscale neuronal neuromodulation to systems-level brain function highlight gaps in knowledge and suggest new directions for integrating theoretical and experimental work.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Single-neuron gain.
Fig. 2: Sites of cellular neuromodulation.
Fig. 3: The ascending neuromodulatory arousal system.
Fig. 4: Neurobiological mechanisms for population gain.
Fig. 5: Macroscopic effects of neuromodulation.

Change history

References

  1. McIntosh, A. R. Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2, 175–182 (2004).

    PubMed  Google Scholar 

  2. Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl Acad. Sci. USA 113, 1435–1440 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    CAS  PubMed  Google Scholar 

  4. Thompson, E. & Varela, F. J. Radical embodiment: neural dynamics and consciousness. Trends Cogn. Sci. 5, 418–425 (2001).

    PubMed  Google Scholar 

  5. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    PubMed  Google Scholar 

  6. Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Salinas, E. & Sejnowski, T. J. Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7, 430–440 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferguson, K. A. & Cardin, J. A. Mechanisms underlying gain modulation in the cortex. Nat. Rev. Neurosci. 21, 80–92 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Noudoost, B. & Moore, T. The role of neuromodulators in selective attention. Trends Cogn. Sci. 15, 585–591 (2011).

    PubMed  PubMed Central  Google Scholar 

  10. Thiele, A. & Bellgrove, M. Neuromodulation of attention. Neuron 97, 769–785 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shu, Y., Hasenstaub, A., Badoual, M., Bal, T. & McCormick, D. A. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23, 10388–10401 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017).

    PubMed  Google Scholar 

  13. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    CAS  PubMed  Google Scholar 

  14. Shine, J. M., Aburn, M. J., Breakspear, M. & Poldrack, R. A. The modulation of neural gain facilitates a transition between functional segregation and integration in the brain. eLife 7, e31130 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Li, M. et al. Transitions in information processing dynamics at the whole-brain network level are driven by alterations in neural gain. PLoS Comput. Biol. 15, e1006957 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Servan-Schreiber, D., Printz, H. & Cohen, J. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249, 892–895 (1990).

    CAS  PubMed  Google Scholar 

  17. Eldar, E., Cohen, J. D. & Niv, Y. The effects of neural gain on attention and learning. Nat. Neurosci. 16, 1146–1153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Warren, C. M., Eldar, E. & van den Brink, R. L. Catecholamine-mediated increases in gain enhance the precision of cortical representations. J. Neurosci. 36, 5699–5708 (2016).

  19. Griffiths, T. L., Kemp, C. & Tenenbaum, J. B. in The Cambridge Handbook of Computational Psychology (ed. Sun, R.) 59–100 (Cambridge Univ. Press, 2008).

  20. Moran, R. J. et al. Free energy, precision and learning: the role of cholinergic neuromodulation. J. Neurosci. 33, 8227–8236 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sales, A. C., Friston, K. J., Jones, M. W., Pickering, A. E. & Moran, R. J. Locus coeruleus tracking of prediction errors optimises cognitive flexibility: an active inference model. PLoS Comput. Biol. 15, e1006267 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Yu, A. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    CAS  PubMed  Google Scholar 

  23. Kim, Y. et al. Brain-wide maps reveal stereotyped cell-type-based cortical architecture and subcortical sexual dimorphism. Cell 171, 456–469 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fishell, G. & Kepecs, A. Interneuron types as attractors and controllers. Annu. Rev. Neurosci. 43, 1–30 (2020).

  25. Leto, K., Carletti, B., Williams, I. M., Magrassi, L. & Rossi, F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J. Neurosci. 26, 11682–11694 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Goldberg, J. H., Farries, M. A. & Fee, M. S. Basal ganglia output to the thalamus: still a paradox. Trends Neurosci. 36, 695–705 (2013).

    CAS  PubMed  Google Scholar 

  27. Halassa, M. M. & Acsády, L. Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci. 39, 680–693 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995).

    CAS  PubMed  Google Scholar 

  31. Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B. & Buhl, E. H. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38, 315–336 (2000).

    CAS  PubMed  Google Scholar 

  32. Gouaux, E. Structure and function of AMPA receptors: structure and function of AMPA receptors. J. Physiol. 554, 249–253 (2004).

    CAS  PubMed  Google Scholar 

  33. Iacobucci, G. J. & Popescu, G. K. NMDA receptors: linking physiological output to biophysical operation. Nat. Rev. Neurosci. 18, 236–249 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerstner, W. & Kistler, W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge Univ. Press, 2002).

  35. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–836 (2005).

    PubMed  PubMed Central  Google Scholar 

  36. Self, M. W., Kooijmans, R. N., Super, H., Lamme, V. A. & Roelfsema, P. R. Different glutamate receptors convey feedforward and recurrent processing in macaque V1. Proc. Natl Acad. Sci. USA 109, 11031–11036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roth, B. L. Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat. Struct. Mol. Biol. 26, 535–544 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leenders, A. & Sheng, Z. Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol. Ther. 105, 69–84 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tringham, E. et al. T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci. Transl. Med. 4, 121ra19 (2012).

    PubMed  Google Scholar 

  40. Lesage, F. Pharmacology of neuronal background potassium channels. Neuropharmacology 44, 1–7 (2003).

    CAS  PubMed  Google Scholar 

  41. Llinás, R. R. & Steriade, M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–3308 (2006).

    PubMed  Google Scholar 

  42. Steriade, M., McCormick, D. & Sejnowski, T. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    CAS  PubMed  Google Scholar 

  43. Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep state switching. Neuron 68, 1023–1042 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown, E. N., Purdon, P. L. & Van Dort, C. J. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci. 34, 601–628 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Destexhe, A., Rudolph, M. & Paré, D. The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003).

    CAS  PubMed  Google Scholar 

  46. McCormick, D. A. Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci. 12, 215–221 (1989).

    CAS  PubMed  Google Scholar 

  47. Jones, E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601 (2001).

    CAS  PubMed  Google Scholar 

  48. Pollard, T. D. in Cell Biology (eds Pollard, T. D. et al.) 443–462 (Elsevier, 2017).

  49. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  PubMed  Google Scholar 

  50. Armstrong, C. M. & Hille, B. Voltage-gated ion channels and electrical excitability. Neuron 20, 371–380 (1998).

    CAS  PubMed  Google Scholar 

  51. Ramos, B. P. & Arnsten, A. F. T. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol. Ther. 113, 523–536 (2007).

    CAS  PubMed  Google Scholar 

  52. McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Reimer, J. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7, 13289 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Phillips, W. A., Larkum, M. E., Harley, C. W. & Silverstein, S. M. The effects of arousal on apical amplification and conscious state. Neurosci. Conscious. 2016, niw015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Harnett, M. T., Magee, J. C. & Williams, S. R. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons. J. Neurosci. 35, 1024–1037 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Larkum, M. E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009).

    CAS  PubMed  Google Scholar 

  57. Shah, M. M. Cortical HCN channels: function, trafficking and plasticity. J. Physiol. 592, 2711–2719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Labarrera, C. et al. Adrenergic modulation regulates the dendritic excitability of layer 5 pyramidal neurons in vivo. Cell Rep. 23, 1034–1044 (2018).

    CAS  PubMed  Google Scholar 

  59. Wang, M. et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).

    CAS  PubMed  Google Scholar 

  60. Shai, A. S., Anastassiou, C. A., Larkum, M. E. & Koch, C. Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS Comput. Biol. 11, e1004090 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Mehaffey, W. H. Deterministic multiplicative gain control with active dendrites. J. Neurosci. 25, 9968–9977 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Palomero-Gallagher, N. & Zilles, K. Cortical layers: cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage 197, 716–741 (2019).

    PubMed  Google Scholar 

  63. Palomero-Gallagher, N. & Zilles, K. Cyto- and receptor architectonic mapping of the human brain. Handb. Clin. Neurol. 150, 355–387 (2018).

    PubMed  Google Scholar 

  64. Zilles, K. & Palomero-Gallagher, N. Multiple transmitter receptors in regions and layers of the human cerebral cortex. Front. Neuroanat. 11, 78 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Hedrick, T. & Waters, J. Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors. J. Neurophysiol. 113, 2195–2209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dembrow, N. & Johnston, D. Subcircuit-specific neuromodulation in the prefrontal cortex. Front. Neural Circuits 8, 54 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 22, 289–296 (2019).

    CAS  PubMed  Google Scholar 

  68. Gryglewski, G. et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage 176, 259–267 (2018).

    CAS  PubMed  Google Scholar 

  69. Meador-Woodruff, J. Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology 15, 17–29 (1996).

    CAS  PubMed  Google Scholar 

  70. Katz, R. J., Turner, B. B., Roth, K. A. & Carroll, B. J. in Catecholamines: Basic and Clinical Frontiers (eds Usdin, E. et al.) (Elsevier, 1979).

  71. Miller, P. Dynamical systems, attractors, and neural circuits. F1000Res. 5, 992 (2016).

    Google Scholar 

  72. Tan, Z., Hu, H., Huang, Z. J. & Agmon, A. Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons. Proc. Natl Acad. Sci. USA 105, 2187–2192 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Haken, H. Synergetics: Introduction and Advanced Topics (Springer, 2013).

  74. Izhikevich, E. M. Spike-timing dynamics of neuronal groups. Cereb. Cortex 14, 933–944 (2004).

    PubMed  Google Scholar 

  75. Freeman, W. J. Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG (Academic Press, 1975).

  76. Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Carlu, M. et al. A mean-field approach to the dynamics of networks of complex neurons, from nonlinear integrate-and-fire to Hodgkin–Huxley models. J. Neurophysiol. 123, 1042–1051 (2020).

    CAS  PubMed  Google Scholar 

  78. Breakspear, M., Williams, L. M. & Stam, C. J. A novel method for the topographic analysis of neural activity reveals formation and dissolution of ‘dynamic cell assemblies’. J. Comput. Neurosci. 16, 49–68 (2004).

    PubMed  Google Scholar 

  79. Jirsa, V. K. & Haken, H. Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996).

    CAS  PubMed  Google Scholar 

  80. Robinson, P. A., Rennie, C. J. & Wright, J. J. Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997).

    CAS  Google Scholar 

  81. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zerlaut, Y. et al. Firing rate response of neocortical neurons in the fluctuation-driven regime. BMC Neurosci. 16, P59 (2015).

    PubMed Central  Google Scholar 

  83. Robinson, P. A., Rennie, C. J., Rowe, D. L. & O’Connor, S. C. Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum. Brain Mapp. 23, 53–72 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Berger, T., Senn, W. & Lüscher, H.-R. Hyperpolarization-activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. J. Neurophysiol. 90, 2428–2437 (2003).

    PubMed  Google Scholar 

  85. Shine, J. M. Neuromodulatory influences on integration and segregation in the brain. Trends Cogn. Sci. 23, 572–583 (2019).

    PubMed  Google Scholar 

  86. Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of seizure dynamics. Brain 137, 2210–2230 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Edelman, G. M. Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron 10, 115–125 (1993).

    CAS  PubMed  Google Scholar 

  88. Briggman, K. L. Optical imaging of neuronal populations during decision-making. Science 307, 896–901 (2005).

    CAS  PubMed  Google Scholar 

  89. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cisek, P. Making decisions through a distributed consensus. Curr. Opin. Neurobiol. 22, 927–936 (2012).

    CAS  PubMed  Google Scholar 

  91. Tononi, G., Sporns, O. & Edelman, G. M. Measures of degeneracy and redundancy in biological networks. Proc. Natl Acad. Sci. USA 96, 3257–3262 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. García-Cabezas, M. Á., Zikopoulos, B. & Barbas, H. The structural model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct. Funct. 224, 985–1008 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Harris, K. D. & Shepherd, G. M. G. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    CAS  PubMed  Google Scholar 

  95. Robinson, P. A. et al. Eigenmodes of brain activity: neural field theory predictions and comparison with experiment. Neuroimage 142, 79–98 (2016).

    CAS  PubMed  Google Scholar 

  96. Hasselmo, M. E. & McGaughy, J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 145, 207–231 (2004).

  97. Kawai, H., Lazar, R. & Metherate, R. Nicotinic control of axon excitability regulates thalamocortical transmission. Nat. Neurosci. 10, 1168–1175 (2007).

    CAS  PubMed  Google Scholar 

  98. Poorthuis, R. B. et al. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb. Cortex 23, 148–161 (2013).

    PubMed  Google Scholar 

  99. Tikhonova, T. B., Miyamae, T., Gulchina, Y., Lewis, D. A. & Gonzalez-Burgos, G. Cell type- and layer-specific muscarinic potentiation of excitatory synaptic drive onto parvalbumin neurons in mouse prefrontal cortex. eNeuro 5, ENEURO.0208-18.2018 (2018).

  100. Tiesinga, P. & Sejnowski, T. J. Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 63, 727–732 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Owen, S. F., Berke, J. D. & Kreitzer, A. C. Fast-spiking interneurons supply feedforward control of bursting, calcium, and plasticity for efficient learning. Cell 172, 683–695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pafundo, D. E., Miyamae, T., Lewis, D. A. & Gonzalez-Burgos, G. Cholinergic modulation of neuronal excitability and recurrent excitation-inhibition in prefrontal cortex circuits: implications for gamma oscillations: cholinergic modulation of mPFC local circuits. J. Physiol. 591, 4725–4748 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Disney, A. A., Aoki, C. & Hawken, M. J. Gain modulation by nicotine in macaque V1. Neuron 56, 701–713 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu, Y., Sarter, M., Zochowski, M. & Booth, V. Phasic cholinergic signaling promotes emergence of local gamma rhythms in excitatory-inhibitory networks. Eur. J. Neurosci. https://doi.org/10.1111/ejn.14744 (2020).

  107. Schmitz, T. W. & Duncan, J. Normalization and the cholinergic microcircuit: a unified basis for attention. Trends Cogn. Sci. 22, 422–437 (2018).

    PubMed  Google Scholar 

  108. Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Takahashi, N., Oertner, T. G., Hegemann, P. & Larkum, M. E. Active cortical dendrites modulate perception. Science 354, 1587–1590 (2016).

    CAS  PubMed  Google Scholar 

  110. Suzuki, M. & Larkum, M. E. General anesthesia decouples cortical pyramidal neurons. Cell 180, 666–676 (2020).

    CAS  PubMed  Google Scholar 

  111. Carhart-Harris, R. L. et al. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, 20 (2014).

  112. Williams, S. R. & Fletcher, L. N. A dendritic substrate for the cholinergic control of neocortical output neurons. Neuron 101, 486–499 (2019).

    CAS  PubMed  Google Scholar 

  113. Hearne, L. J., Cocchi, L., Zalesky, A. & Mattingley, J. B. Reconfiguration of brain network architectures between resting-state and complexity-dependent cognitive reasoning. J. Neurosci. 37, 8399–8411 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cohen, J. R. & D’Esposito, M. The segregation and integration of distinct brain networks and their relationship to cognition. J. Neurosci. 36, 12083–12094 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cruzat, J. et al. The dynamics of human cognition: increasing global integration coupled with decreasing segregation found using iEEG. Neuroimage 172, 492–505 (2018).

    PubMed  Google Scholar 

  116. Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zerbi, V. et al. Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron 103, 702–718 (2019).

    CAS  PubMed  Google Scholar 

  118. Sejnowski, T. J. The unreasonable effectiveness of deep learning in artificial intelligence. Proc. Natl Acad. Sci. USA 117, 30033–30038 (2020).

  119. Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Singer, Y. et al. Sensory cortex is optimized for prediction of future input. eLife 7, e31557 (2018).

    PubMed  PubMed Central  Google Scholar 

  121. Nadim, F. & Bucher, D. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 29, 48–56 (2014).

    CAS  PubMed  Google Scholar 

  122. O’Donnell, J., Zeppenfeld, D., McConnell, E., Pena, S. & Nedergaard, M. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS Performance. Neurochem. Res. 37, 2496–2512 (2012).

    PubMed  PubMed Central  Google Scholar 

  123. Theriault, J. E., Young, L. & Barrett, L. F. The sense of should: a biologically-based framework for modeling social pressure. Phys. Life Rev. 36, 100–136 (2021).

  124. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Freyer, F., Roberts, J. A., Ritter, P. & Breakspear, M. A canonical model of multistability and scale-invariance in biological systems. PLoS Comput. Biol. 8, e1002634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. van den Brink, R. L., Pfeffer, T. & Donner, T. H. Brainstem modulation of large-scale intrinsic cortical activity correlations. Front. Hum. Neurosci. 13, 340 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Freyer, F., Aquino, K., Robinson, P. A., Ritter, P. & Breakspear, M. Bistability and non-Gaussian fluctuations in spontaneous cortical activity. J. Neurosci. 29, 8512–8524 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Deco, G. & Jirsa, V. K. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Freyer, F. et al. Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31, 6353–6361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lord, L.-D. et al. Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. Neuroimage 199, 127–142 (2019).

    CAS  PubMed  Google Scholar 

  132. Deco, G. et al. Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Curr. Biol. 28, 3065–3074 (2018).

    CAS  PubMed  Google Scholar 

  133. Hauser, T. U. et al. Noradrenaline blockade specifically enhances metacognitive performance. eLife 6, e24901 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Marreiros, A. C., Kiebel, S. J., Daunizeau, J., Harrison, L. M. & Friston, K. J. Population dynamics under the Laplace assumption. Neuroimage 44, 701–714 (2009).

    PubMed  Google Scholar 

  135. Busse, L., Wade, A. R. & Carandini, M. Representation of concurrent stimuli by population activity in visual cortex. Neuron 64, 931–942 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Zemel, R. S., Dayan, P. & Pouget, A. Probabilistic interpretation of population codes. Neural Comput. 10, 403–430 (1998).

    CAS  PubMed  Google Scholar 

  137. Roberts, J. A., Friston, K. J. & Breakspear, M. Clinical applications of stochastic dynamic models of the brain, part I: a primer. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 216–224 (2017).

    PubMed  Google Scholar 

  138. Beck, J. M. et al. Probabilistic population codes for Bayesian decision making. Neuron 60, 1142–1152 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pouget, A., Dayan, P. & Zemel, R. S. Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003).

    CAS  PubMed  Google Scholar 

  140. Spratling, M. W. A review of predictive coding algorithms. Brain Cogn. 112, 92–97 (2017).

    CAS  PubMed  Google Scholar 

  141. Friston, K., Mattout, J. & Kilner, J. Action understanding and active inference. Biol. Cybern. 104, 137–160 (2011).

    PubMed  PubMed Central  Google Scholar 

  142. Friston, K. J. et al. Dopamine, affordance and active inference. PLoS Comput. Biol. 8, e1002327 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Iglesias, S. et al. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron 101, 1196–1201 (2019).

    CAS  PubMed  Google Scholar 

  144. Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191, 507–520 (2007).

    CAS  PubMed  Google Scholar 

  145. Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jahn, C. I. et al. Dual contributions of noradrenaline to behavioural flexibility and motivation. Psychopharmacology 235, 3081–3081 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Sara, S. J. & Bouret, S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76, 130–141 (2012).

    CAS  PubMed  Google Scholar 

  148. Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. GANEing traction: the broad applicability of NE hotspots to diverse cognitive and arousal phenomena. Behav. Brain Sci. 39, e228 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Miyazaki, K., Miyazaki, K. W. & Doya, K. The role of serotonin in the regulation of patience and impulsivity. Mol. Neurobiol. 45, 213–224 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Parr, T. & Friston, K. J. Uncertainty, epistemics and active interference. J. Royal Soc. Interface 14, 20170376 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank C. Whyte and G. Wainstein for their thoughtful comments on our manuscript. We acknowledge funding from the NHMRC (GNT1118153 (M.B.), GNT1095227 (M.B.), GNT1193857 (J.M.S.)), The University of Sydney (J.M.S.) and the Portuguese Foundation for Science and Technology projects (UIDB/50026/2020, UIDP/50026/2020 and CEECIND/03325/2017 (J.C.)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Breakspear.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Anita Disney and Eran Eldar for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shine, J.M., Müller, E.J., Munn, B. et al. Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics. Nat Neurosci 24, 765–776 (2021). https://doi.org/10.1038/s41593-021-00824-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-021-00824-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing