Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spinal astroglial cannabinoid receptors control pathological tremor


Cannabinoids reduce tremor associated with motor disorders induced by injuries and neurodegenerative disease. Here we show that this effect is mediated by cannabinoid receptors on astrocytes in the ventral horn of the spinal cord, where alternating limb movements are initiated. We first demonstrate that tremor is reduced in a mouse model of essential tremor after intrathecal injection of the cannabinoid analog WIN55,212-2. We investigate the underlying mechanism using electrophysiological recordings in spinal cord slices and show that endocannabinoids released from depolarized interneurons activate astrocytic cannabinoid receptors, causing an increase in intracellular Ca2+, subsequent release of purines and inhibition of excitatory neurotransmission. Finally, we show that the anti-tremor action of WIN55,212-2 in the spinal cords of mice is suppressed after knocking out CB1 receptors in astrocytes. Our data suggest that cannabinoids reduce tremor via their action on spinal astrocytes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Activation of CB receptors in the spinal cord has an anti-tremor effect.
Fig. 2: Depolarization of ventral horn interneurons induces suppression of excitatory synaptic transmission.
Fig. 3: DSE in the spinal cord occurs between interneurons.
Fig. 4: Neuronal depolarization activates astrocytic CB1 receptors.
Fig. 5: DSE in the ventral horn is mediated by astrocytes.
Fig. 6: Purines mediate suppression of excitation induced by 2-AG and depolarization.
Fig. 7: DSE occurs in the adult spinal cord but not in animals lacking astrocytic CB1 receptors.
Fig. 8: Knocking out astrocytic CB1 receptors prevents the anti-tremor effect of WIN55,212-2.

Data availability

Electrophysiological, imaging and tremor data are available at; Data for immunohistochemistry are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

Code written for data analysis of this study is available at


  1. 1.

    Deuschl, G., Bain, P. & Brin, M. Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov. Disord. 13, 2–23 (1998).

    PubMed  Google Scholar 

  2. 2.

    Alty, J. E. & Kempster, P. A. A practical guide to the differential diagnosis of tremor. Postgrad. Med. J. 87, 623–629 (2011).

    PubMed  Google Scholar 

  3. 3.

    Biary, N., Cleeves, L., Findley, L. & Koller, W. Post-traumatic tremor. Neurology 39, 103–106 (1989).

    CAS  PubMed  Google Scholar 

  4. 4.

    Koch, M., Mostert, J., Heersema, D. & De Keyser, J. Tremor in multiple sclerosis. J. Neurol. 254, 133–145 (2007).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rinker, J. R. 2nd et al. Prevalence and characteristics of tremor in the NARCOMS multiple sclerosis registry: a cross-sectional survey. BMJ Open 5, e006714 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Louis, E. D. Essential tremors: a family of neurodegenerative disorders? Arch. Neurol. 66, 1202–1208 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Consroe, P., Musty, R., Rein, J., Tillery, W. & Pertwee, R. The perceived effects of smoked cannabis on patients with multiple sclerosis. Eur. Neurol. 38, 44–48 (1997).

    CAS  PubMed  Google Scholar 

  8. 8.

    Clifford, D. B. Tetrahydrocannabinol for tremor in multiple sclerosis. Ann. Neurol. 13, 669–671 (1983).

    CAS  PubMed  Google Scholar 

  9. 9.

    Meinck, H. M., Schonle, P. W. & Conrad, B. Effect of cannabinoids on spasticity and ataxia in multiple sclerosis. J. Neurol. 236, 120–122 (1989).

    CAS  PubMed  Google Scholar 

  10. 10.

    Arjmand, S. et al. Cannabinoids and tremor induced by motor-related disorders: friend or foe? Neurotherapeutics 12, 778–787 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Baker, D. et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404, 84–87 (2000).

    CAS  PubMed  Google Scholar 

  12. 12.

    Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    CAS  PubMed  Google Scholar 

  13. 13.

    Kreitzer, A. C. & Regehr, W. G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001).

    CAS  PubMed  Google Scholar 

  14. 14.

    Navarrete, M. & Araque, A. Endocannabinoids mediate neuron–astrocyte communication. Neuron 57, 883–893 (2008).

    CAS  PubMed  Google Scholar 

  15. 15.

    Navarrete, M. & Araque, A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68, 113–126 (2010).

    CAS  PubMed  Google Scholar 

  16. 16.

    Navarrete, M., Diez, A. & Araque, A. Astrocytes in endocannabinoid signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130599 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Metna-Laurent, M. & Marsicano, G. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors. Glia 63, 353–364 (2015).

    PubMed  Google Scholar 

  18. 18.

    Rodriguez, J. J., Mackie, K. & Pickel, V. M. Ultrastructural localization of the CB1 cannabinoid receptor in µ-opioid receptor patches of the rat caudate putamen nucleus. J. Neurosci. 21, 823–833 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Piomelli, D., Beltramo, M., Giuffrida, A. & Stella, N. Endogenous cannabinoid signaling. Neurobiol. Dis. 5, 462–473 (1998).

    CAS  PubMed  Google Scholar 

  20. 20.

    Kjaerulff, O. & Kiehn, O. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J. Neurosci. 16, 5777–5794 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Llinas, R. & Volkind, R. A. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp. Brain Res. 18, 69–87 (1973).

    CAS  PubMed  Google Scholar 

  22. 22.

    Carlsen, E. M. M., Amrutkar, D. V., Nielsen, K. S. & Perrier, J. F. Accurate and affordable assessment of physiological and pathological tremor in rodents with the accelerometer of a smartphone. J. Neurophysiol. 122, 970–974 (2019).

  23. 23.

    Handforth, A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. Tremor Other Hyperkinet. Mov. (N Y) 2, 02-92-769-1 (2012).

  24. 24.

    Sykova, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wolf, D. A. et al. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery. JCI Insight 1, e85311 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    McAuley, J. H. & Marsden, C. D. Physiological and pathological tremors and rhythmic central motor control. Brain 123, 1545–1567 (2000).

    PubMed  Google Scholar 

  27. 27.

    Chevaleyre, V., Takahashi, K. A. & Castillo, P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev. Neurosci. 29, 37–76 (2006).

    CAS  PubMed  Google Scholar 

  28. 28.

    Araque, A., Castillo, P. E., Manzoni, O. J. & Tonini, R. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 124, 13–24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    CAS  PubMed  Google Scholar 

  30. 30.

    Oliveira da Cruz, J. F., Robin, L. M., Drago, F., Marsicano, G. & Metna-Laurent, M. Astroglial type-1 cannabinoid receptor (CB1): a new player in the tripartite synapse. Neuroscience 323, 35–42 (2016).

    CAS  PubMed  Google Scholar 

  31. 31.

    Gomez-Gonzalo, M. et al. Endocannabinoids induce lateral long-term potentiation of transmitter release by stimulation of gliotransmission. Cereb. Cortex 25, 3699–3712 (2015).

    PubMed  Google Scholar 

  32. 32.

    Nolte, C. et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72–86 (2001).

    CAS  PubMed  Google Scholar 

  33. 33.

    Hegyi, Z. et al. CB1 receptor activation induces intracellular Ca2+ mobilization and 2-arachidonoylglycerol release in rodent spinal cord astrocytes. Sci. Rep. 8, 10562 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lalo, U. et al. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol. 12, e1001747 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Carlsen, E. M. & Perrier, J. F. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord. Front. Neural Circuits 8, 60 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Han, J. et al. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148, 1039–1050 (2012).

    CAS  PubMed  Google Scholar 

  37. 37.

    Broadhead, M. J. & Miles, G. B. Bi-directional communication between neurons and astrocytes modulates spinal motor circuits. Front. Cell. Neurosci. 14, 30 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Witts, E. C., Panetta, K. M. & Miles, G. B. Glial-derived adenosine modulates spinal motor networks in mice. J. Neurophysiol. 107, 1925–1934 (2012).

    CAS  PubMed  Google Scholar 

  39. 39.

    Robin, L. M. et al. Astroglial CB1 receptors determine synaptic d-serine availability to enable recognition memory. Neuron 98, 935–944 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Alger, B. E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 68, 247–286 (2002).

    CAS  PubMed  Google Scholar 

  41. 41.

    Williams, E. R. & Baker, S. N. Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. J. Neurosci. 29, 6616–6624 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    CAS  PubMed  Google Scholar 

  43. 43.

    Hirrlinger, P. G., Scheller, A., Braun, C., Hirrlinger, J. & Kirchhoff, F. Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia 54, 11–20 (2006).

    PubMed  Google Scholar 

Download references


We thank F. Kirchhoff (University of Saarland) for providing the Tgn(hgFAPEGEP) mice, M. Beato (UCL) for his help with the adult spinal cord slice preparation, A. Fletcher-Jones and A. Eraso for technical support and L. Anson for helping edit the manuscript. The study was funded by the Offerfonden (to J.F.P.), the Aase og Ejnar Danielsens Fond (to E.M.C.), the Den Owensenske Fond (to J.F.P.), the Læge Sofus Carl Emil Friis og hustru Olga Doris Fond (to J.F.P.), the Danmarks Frie Forskningsfond (9039-00072B to J.F.P.), the European Research Council (grant MiCaBra, ERC-2017-AdG-786467 to G.M.), Region Nouvelle Aquitaine, Agence Nationale de la Recherche ANR, NeuroNutriSens (ANR-13-BSV4-0006 and ORUPS ANR-16-CE37-0010-01), BRAIN (ANR-10-LABX-0043, to G.M.) and the Fondation pour la Recherche Médicale (grant no. FRM SPF201809006908 to U.S.).

Author information




E.M.C. and J.F.P. designed the project. E.M.C. performed the electrophysiological and imaging experiments. S.F. and E.M.C. performed the behavioral experiments. U.S., L.R. and A.P.Z. performed the validation of the transgenic model. G.M. and J.F.P. supervised the research. E.M.C. and J.F.P. wrote the paper. All authors approved the final version.

Corresponding author

Correspondence to Jean-François Perrier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Alexander Gourine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Source Data Fig. 7

Statistical Source Data

Source Data Fig. 8

Statistical Source Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carlsen, E.M.M., Falk, S., Skupio, U. et al. Spinal astroglial cannabinoid receptors control pathological tremor. Nat Neurosci (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing