Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits

Abstract

Cerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC. Modulation of this circuit induced social deficits and repetitive behaviors, whereas activation of Purkinje cells (PCs) in Rcrus1 and posterior vermis improved social preference impairments and repetitive/inflexible behaviors, respectively, in male PC-Tsc1 mutant mice. These data raise the possibility that these circuits might provide neuromodulatory targets for the treatment of ASD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Modulation of elevated PRL activity in PC-Tsc1 mutants rescues social deficits and repetitive/inflexible behaviors.
Fig. 2: Rcrus1 and PRL are functionally connected and play important roles in ASD behaviors.
Fig. 3: The cerebellar LN is functionally connected to the PRL cortex and regulates social behaviors.
Fig. 4: VM thalamus connects to the PRL cortex to regulate ASD behaviors.
Fig. 5: Posterior cerebellar vermis is structurally and functionally connected to PRL, and stimulation specifically rescues repetitive/inflexible behaviors.

Data availability

The authors confirm that all relevant non-MRI data are included in the paper and/or its supplementary information files. Raw MRI data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All code is publicly available on GitHub (https://github.com/Mouse-Imaging-Centre/RMINC) or is available upon reasonable request.

References

  1. 1.

    D’Mello, A. M. & Stoodley, C. J. Cerebro-cerebellar circuits in autism spectrum disorder. Front. Neurosci. 9, 408 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Fatemi, S. H. et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11, 777–807 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Mosconi, M. W., Wang, Z., Schmitt, L. M., Tsai, P. & Sweeney, J. A. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front. Neurosci. 9, 296 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Tsai, P. T. Autism and cerebellar dysfunction: evidence from animal models. Semin. Fetal Neonatal Med. 21, 349–355 (2016).

  5. 5.

    Tsai, P. T. et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Pierce, K. & Courchesne, E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol. Psychiatry 49, 655–664 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    D’Mello, A. M., Crocetti, D., Mostofsky, S. H. & Stoodley, C. J. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 7, 631–639 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Stoodley, C. J. et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat. Neurosci. 20, 1744–1751 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Krienen, F. M. & Buckner, R. L. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb. Cortex 19, 2485–2497 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Middleton, F. A. & Strick, P. L. Cerebellar projections to the prefrontal cortex of the primate. J. Neurosci. 21, 700–712 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Van Overwalle, F. & Marien, P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage 124, 248–255 (2015).

    PubMed  Article  Google Scholar 

  12. 12.

    Watson, T. C., Becker, N., Apps, R. & Jones, M. W. Back to front: cerebellar connections and interactions with the prefrontal cortex. Front. Syst. Neurosci. 8, 4 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Steriade, M. Two channels in the cerebellothalamocortical system. J. Comp. Neurol. 354, 57–70 (1995).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hazlett, H. C. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 542, 348–351 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Dichter, G. S. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin. Neurosci. 14, 319–351 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Gilbert, S. J., Meuwese, J. D., Towgood, K. J., Frith, C. D. & Burgess, P. W. Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis. Brain 132, 869–878 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Rogers, T. D. et al. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse 65, 1204–1212 (2011).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Rogers, T. D. et al. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder. Cerebellum 12, 547–556 (2013).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Gilbert, S. J., Bird, G., Brindley, R., Frith, C. D. & Burgess, P. W. Atypical recruitment of medial prefrontal cortex in autism spectrum disorders: an fMRI study of two executive function tasks. Neuropsychologia 46, 2281–2291 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Pirone, A. et al. Social stimulus causes aberrant activation of the medial prefrontal cortex in a mouse model with autism-like behaviors. Front. Synaptic Neurosci. 10, 35 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Kobayashi, M., Hayashi, Y., Fujimoto, Y. & Matsuoka, I. Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in BRINP1-KO mice. Neurosci. Lett. 683, 82–88 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Selimbeyoglu, A. et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl. Med. 9, eaah6733 (2017).

  25. 25.

    Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Baribeau, D. A. et al. Structural neuroimaging correlates of social deficits are similar in autism spectrum disorder and attention-deficit/hyperactivity disorder: analysis from the POND. Netw. Transl. Psychiatry 9, 72 (2019).

    Article  Google Scholar 

  27. 27.

    Jansen, J. & Brodal, A.Experimental studies on the intrinsic fibers of the cerebellum II. The cortico-nuclear projection. Cerebellum 10, 126–180 (1940).

    Google Scholar 

  28. 28.

    Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Kuramoto, E. et al. Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. Cereb. Cortex 25, 221–235 (2015).

    PubMed  Article  Google Scholar 

  30. 30.

    Mitchell, B. D. & Cauller, L. J. Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats. Brain Res. 921, 68–77 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Urbain, N., Fourcaud-Trocme, N., Laheux, S., Salin, P. A. & Gentet, L. J. Brain-state-dependent modulation of neuronal firing and membrane potential dynamics in the somatosensory thalamus during natural sleep. Cell Rep. 26, 1443–1457 (2019).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Badura, A. et al. Normal cognitive and social development require posterior cerebellar activity. eLife. 7, e36401 (2018).

  33. 33.

    Srivastava, S. et al. Volumetric analysis of the basal ganglia and cerebellar structures in patients with Phelan–McDermid syndrome. Pediatr. Neurol. 90, 37–43 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Courville, J. & Diakiw, N. Cerebellar corticonuclear projection in the cat. The vermis of the anterior and posterior lobes. Brain Res. 110, 1–20 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Groenewegen, H. J. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24, 379–431 (1988).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Haroian, A. J., Massopust, L. C. & Young, P. A. Cerebellothalamic projections in the rat: an autoradiographic and degeneration study. J. Comp. Neurol. 197, 217–236 (1981).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Takarae, Y. & Sweeney, J. Neural hyperexcitability in autism spectrum disorders. Brain Sci. 7, 129 (2017).

  39. 39.

    Contractor, A., Klyachko, V. A. & Portera-Cailliau, C. Altered neuronal and circuit excitability in fragile X syndrome. Neuron 87, 699–715 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Mouginot, D. & Gahwiler, B. H. Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience 64, 699–712 (1995).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Ryu, Y. H. et al. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: comparison with findings on magnetic resonance imaging. Eur. J. Nucl. Med. 26, 253–259 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Carta, I., Chen, C. H., Schott, A. L., Dorizan, S. & Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science 363, eaav0581 (2019).

  44. 44.

    Bicks, L. K., Koike, H., Akbarian, S. & Morishita, H. Prefrontal cortex and social cognition in mouse and man. Front. Psychol. 6, 1805 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Popa, L. S. & Ebner, T. J. Cerebellum, predictions and errors. Front. Cell Neurosci. 12, 524 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Carmi, L. et al. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimulation 11, 158–165 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    van Dun, K., Bodranghien, F., Manto, M. & Marien, P. Targeting the cerebellum by noninvasive neurostimulation: a review. Cerebellum 16, 695–741 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Parker, K. L. et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol. Psychiatry 22, 647–655 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Brady, R. O., Jr. et al. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am. J. Psychiatry 176, 512–520 (2019).

  50. 50.

    Tsai, P. T. et al. Sensitive periods for cerebellar-mediated autistic-like behaviors. Cell Rep. 25, 357–367 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Barski, J. J., Dethleffsen, K. & Meyer, M. Cre recombinase expression in cerebellar Purkinje cells. Genesis 28, 93–98 (2000).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Kwiatkowski, D. J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2009).

  54. 54.

    Paxinos, G. & Franklin, K. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates 4th edn (Academic Press, 2012).

  55. 55.

    Watson, C., Paxinos, G. & Puelles, L. The Mouse Nervous System (Academic Press, 2011).

  56. 56.

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  57. 57.

    Cahill, L. S. et al. Preparation of fixed mouse brains for MRI. Neuroimage 60, 933–939 (2012).

    PubMed  Article  Google Scholar 

  58. 58.

    Lerch, J. P., Sled, J. G. & Henkelman, R. M. MRI phenotyping of genetically altered mice. Methods Mol. Biol. 711, 349–361 (2011).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Nieman, B. J. et al. MR technology for biological studies in mice. NMR Biomed. 20, 291–303 (2007).

    PubMed  Article  Google Scholar 

  60. 60.

    Nieman, B. J. et al. Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed. 18, 447–468 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Nieman, B. J., Flenniken, A. M., Adamson, S. L., Henkelman, R. M. & Sled, J. G. Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiological Genomics 24, 154–162 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Dazai, J. et al. Multiple mouse biological loading and monitoring system for MRI. Magn. Reson. Med. 52, 709–715 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Dazai, J., Spring, S., Cahill, L. S. & Henkelman, R. M. Multiple-mouse neuroanatomical magnetic resonance imaging. J. Vis. Exp. 48, 2497 (2011).

  64. 64.

    Thomas, D. L. et al. High-resolution fast spin echo imaging of the human brain at 4.7T: implementation and sequence characteristics. Magn. Reson. Med. 51, 1254–1264 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Nieman, B. J. et al. Fast spin-echo for multiple mouse magnetic resonance phenotyping. Magn. Reson. Med. 54, 532–537 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Dorr, A. E., Lerch, J. P., Spring, S., Kabani, N. & Henkelman, R. M. High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42, 60–69 (2008).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Richards, K. et al. Segmentation of the mouse hippocampal formation in magnetic resonance images. Neuroimage 58, 732–740 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Steadman, P. E. et al. Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res. 7, 124–137 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Ullmann, J. F., Watson, C., Janke, A. L., Kurniawan, N. D. & Reutens, D. C. A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex. Neuroimage 78, 196–203 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Chakravarty, M. M. et al. Performing label-fusion-based segmentation using multiple automatically generated templates. Hum. Brain Mapp. 34, 2635–2654 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Park, M. T. et al. Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. Neuroimage 95, 217–231 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Kim, J. S. et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27, 210–221 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Lerch, J. P. & Evans, A. C. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24, 163–173 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Lyttelton, O., Boucher, M., Robbins, S. & Evans, A. An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34, 1535–1544 (2007).

    PubMed  Article  Google Scholar 

  75. 75.

    Reardon, P. K. et al. Normative brain size variation and brain shape diversity in humans. Science 360, 1222–1227 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Holmes, A. et al. Behavioral characterization of dopamine D5 receptor null mutant mice. Behav. Neurosci. 115, 1129 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Buitrago, M. M., Schulz, J. B., Dichgans, J. & Luft, A. R. Short and long-term motor skill learning in an accelerated rotarod training paradigm. Neurobiol. Learn. Mem. 81, 211–216 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Yang, M., Silverman, J. L. & Crawley, J. N. Automated three-chambered social approach task for mice. Curr. Protoc. Neurosci. 56, 8.26.21–28.26.16 (2011).

    Article  Google Scholar 

  81. 81.

    Silverman, J. L. et al. Sociability and motor functions in Shank1 mutant mice. Brain Res. 1380, 120–137 (2011).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Yang, M. & Crawley, J. N. Simple behavioral assessment of mouse olfaction. Curr. Protoc. Neurosci. 48, 8.24.1–8.24.12 (2009).

    Article  Google Scholar 

  83. 83.

    Bednar, I. et al. Selective nicotinic receptor consequences in APPSWE transgenic mice. Mol. Cell. Neurosci. 20, 354–365 (2002).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

P.T.T. acknowledges support from the National Institute of Neurologic Disorders and Stroke (NS083733), the National Institute of Mental Health (MH116882), the Tuberous Sclerosis Alliance and the Department of Defense. E.K. acknowledges support from National Institute of Neurologic Disorders and Stroke (NS107004) and Autism Speaks. H.F. and S.d.L. acknowledge support from the National Institute of Neurologic Disorders and Stroke (NS095232 and NS105039). F. Morgado, J.E. and J.P.L. acknowledge support from the Canadian Institute for Health Research and the Ontario Brain Institute. L.C.R and C.J.S. acknowledge support from the National Institute for Health (MH106957). M.A.B. acknowledges support from the Medical Research Council (MR/K022377/1). N.K. acknowledges support from the National Institute of Mental Health (MH094268) and declares that he is a paid consultant for Rescindo Therapeutics, although this does not provide a competing interest with this study. P.T.T. and E.K. acknowledge support from V. Jakkamsetti and J. Pascual for support with in vivo extracellular and acute slice recordings recordings and analysis; S. Birnbaum for assistance in behavioral studies; G. Konopka, C. Powell, L. Osburne, J. Foster, J. Lai, K. Rilett, E. Kim and A. Raznahan for generous provision of animal models; and J. Chadwick for graphics assistance.

Author information

Affiliations

Authors

Contributions

E.K., F. Meng, H. F., J.P.L., S.d.L. and P.T.T. formulated experiments and analysis. E.K., F. Meng, H.F., Y.K., C.O.E., J.M.G., S.S., C.R., D.J., R.P., T.T. and B.E.P. performed experiments and analysis. F. Morgado, J.E. and J.P.L. carried out the mouse structural imaging experiments and analysis. F. Morgado, J.E., M.J.T, C.H., E.A. and J.P.L. carried out the human structural imaging experiments and analysis. L.C.R. and C.J.S. performed functional imaging in humans and analysis of these studies. M.A.B., R.D.B., S.D., C.G., M.K.H., N.K., D.M.R., J.L.S, K.K.S. and R.W. provided critical reagents. E.K., H.F., J.P.L., S.d.L. and P.T.T. prepared the manuscript.

Corresponding author

Correspondence to Peter T. Tsai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Ted Abel, Sarah Ferri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 mPFC Gi DREADDs in PC-Tsc1 mutant mice.

a, Sample of injection site locations from PC-Tsc1 mutants injected with Gi (inhibitory) DREADDs/GFP into left prelimbic (PRL) medial prefrontal cortex (mPFC). b, Awake in vivo single unit recordings in the left PRL of control or PC- Tsc1 mutant mice. c, Three chambered social approach assay; time spent sniffing novel animal (NA), or novel object (NO). d, Three chambered social novelty testing; time spent sniffing NA or familiar animal (FA). e, Time in the open arm and distance traveled in the elevated plus maze assay. f, Time in the center of the open field and g, distance traveled in the open field. h, Latency to fall in accelerating rotarod test. Box line denoted median/whiskers denoted 5–95%. n ≥ 10 for all experiments. All behavioral tests were analyzed with two or three-way ANOVA and Sidak post test and single unit recordings were analyzed with Mann-Whitney test, shown as mean SEM. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. P values and complete animal numbers can be found in Supplementary Table 2.

Extended Data Fig. 2 Left Prelimbic Synaptic Properties in PC- Tsc1 Mutant Mice.

a, mini EPSC (mEPSC) representative traces with zoomed in views below initial traces as noted; b, mEPSC frequency; c, mEPSC amplitude; d, mEPSC rise time; e, mEPSC decay time; f, representative mIPSC traces with zoomed in views blow initial traces as noted; g, mIPSC frequency; h, mIPSC amplitude; i, mIPSC rise time; j, and mIPSC decay time in PC-Tsc1 mutant mice and control mice. Groups had 12–15 cells from 5 animals in each. Students t-test, ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.

Extended Data Fig. 3 Impact of chemogenetic inhibition of mPFC on Rcrus1 PC inhibition-regulated behaviors.

a, Sample injection site locations in area Rcrus1. b, Awake in vivo single unit recordings in prelimbic cortex (PRL) in mice with Rcrus1 Gi DREADD inhibition (CNO) or vehicle treatment. c, In vivo single unit recordings in motor cortex of anesthetized mice with Rcrus1 Gi DREADDs inhibition compared to baseline. No significant change identified. d, In vivo single unit recordings in right PRL of anesthetized mice with Rcrus1 Gi DREADD inhibition compared to baseline. No significant change identified. e, In vivo single unit recordings in left PRL of anesthetized mice with Rcrus1 Gi DREADD inhibition and either GFP or Gi injection in the mPFC. f, Three chambered social approach assay; time spent sniffing novel animal (NA), or novel object (NO). g, Three chambered social novelty testing; time spent sniffing NA, or familiar animal (FA). h, Time in the open arm and distance traveled in the elevated plus maze assay. i, Time in the center of the open field and j, distance traveled in the open field. k, Latency to fall in accelerating rotarod test. All behavioral tests were analyzed with two or three-way ANOVA and Sidak post test. Single unit recordings were analyzed with Mann-Whitney test, shown as mean SEM. All raw values for frequency of spiking that are shown in figures as normalized values can be found in Supplementary Fig. 12. Box line denoted median/whiskers denoted 5–95%. n ≥ 10 for all behavioral experiments. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. P values and complete animal numbers can be found in Supplementary Table 2.

Extended Data Fig. 4 Inhibition of LN in PC-Tsc1 mutant mice.

a, Sample injection site locations and injection site pictures of Gi DREADDs injected into LN of PC-Tsc1 mutant mice. b, Single unit activity in the right lateral nucleus (LN) with chemogenetic inhibition (Gi) or control GFP injection. c, Three chambered social approach assay; time spent sniffing novel animal (NA), or novel object (NO). d, Three chambered social novelty testing; time spent sniffing NA, or familiar animal (FA). e, Time in the open arm and distance traveled in the elevated plus maze assay. f, Time in the center of the open field and g, distance traveled in the open field. h, Latency to fall in accelerating rotarod test. All behavioral tests were analyzed with two or three-way ANOVA and Sidak post hoc testing. Recordings were analyzed with Mann-Whitney test, shown as mean SEM. For frequency of spiking shown in figures as normalized values, raw values can be found in Supplementary Fig. 12. Box line denoted median/whiskers denoted 5-95%. n ≥ 10 for all behavioral experiments. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. P values and complete animal numbers can be found in Supplementary Table 2.

Extended Data Fig. 5 Thalamic and layer 1 cortical areas targeted by the medial and lateral cerebellar nuclei.

a, Thalamic nuclei with monosynaptic inputs from the right medial nucleus (MN) and lateral nucleus (LN) identified via AAV1-mediated anterograde transsynaptic tracing. The number of the trans-synaptically labeled thalamic neurons in each nucleus indicated as + + (high), + (low), and - (none). b, Disynaptic inputs from the right MN and LN to distinct cortical regions of the left cerebral cortex, identified via transsynaptic tracing. Labeled input density to layer 1 of each cortical area is indicated as + + (high), + (low), and - (none). c, Representative tracing results of disynaptic inputs from the right MN and LN to distinct areas in the left cerebral cortex. Axons and terminals of thalamic neurons trans-synaptically labeled from injections to MN and LN are indicated in black. Results from injections to MN and LN are in the left and right, respectively, of each panel. Top and bottom parts of each panel correspond to layer 1 and 6. Inputs to layer 1 originate predominantly from the VM thalamus. Arrowheads indicate layer 1. Scale bar applies to all panels. d, representative injection site in the LN and e, representative injection site in the MN. Scale bar applies to all panels. Abbreviations; Aud, auditory cortex; Cg, cingulate cortex; CL, centrolateral thalamic nucleus; FrA, frontal association cortex; IL, infralimbic cortex; LD, laterodorsal thalamic nucleus; LO, lateral orbital cortex; LP, lateroposterior thalamic nucleus; M1 and M2, primary and secondary motor cortex; MD, mediodorsal thalamic nucleus; MO, medial orbital cortex; PF, parafascicular thalamic nucleus; Po, posterior thalamic group; PrL, prelimbic cortex; Ptl, parietal association cortex; Rhi, ecto-/peri-/ento-entorhinal cortex; Rsp, retrosplenial cortex; S1 and S2, primary and secondary sensory cortex; Tem, temporal association cortex; VL, ventrolateral thalamic nucleus; VM, ventromedial thalamic nucleus; VO, ventral orbital cortex.

Extended Data Fig. 6 ChR2 activation of VM thalamus-PRL mPFC circuit.

a, Sample injection site locations for ChR2/Arch injection into the left VM thalamus. b, To test for possible antidromic activation, in vivo anesthetized single unit recordings in the VM thalamus-targeted parietal association cortex (PAC) were performed upon mPFC laser stimulation of ChR2 or GFP VM-thalamus terminals at 20 Hz or 4 Hz. Image of TdTomato positive terminals in PAC from LN AAV-1 tracing injection (top left). c, Three chambered social approach assay; time spent sniffing novel animal (NA), or novel object (NO) with 20 Hz (left) or 4 Hz (right) stimulation. d, Three chambered social novelty testing; time spent sniffing NA, or familiar animal (FA) with 20 Hz (left) or 4 Hz (right) stimulation. e, Time in the open arm and distance traveled in the elevated plus maze assay. f, Distance traveled in the open field and g, time in the center of the open field. All behavioral tests were analyzed with two or three-way ANOVA and Sidak post test and recordings were analyzed with two way ANOVA (unmarked = not significant). For frequency of spiking shown in figures as normalized values (mean SEM), raw values can be found in Supplementary Fig. 12. Box line denoted median/whiskers denoted 5-95%. n ≥ 10 for all behavioral experiments. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. P values and complete animal numbers can be found in Supplementary Table 2.

Extended Data Fig. 7 Arch inhibition of VM thalamus-PRL mPFC circuit on PC-Tsc1 mutant mice.

a, Three chambered social approach assay; time spent sniffing novel animal (NA), or novel object (NO) with 20 Hz (left) or 4 Hz (right) stimulation. b, Three chambered social novelty testing; time spent sniffing NA, or familiar animal (FA) with 20 Hz (left) or 4 Hz (right) stimulation. c, Time in the open arm and distance traveled in the elevated plus maze assay. d, Time in the center of the open field and distance traveled in the open field. All behavioral tests were analyzed with two or three-way ANOVA and Sidak post test. Box line denoted median/whiskers denoted 5-95%. N ≥ 10 for all behavioral experiments. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. P values and complete animal numbers can be found in Supplementary Table 2.

Extended Data Fig. 8 Structural covariance MRI of cerebellar vermis and mPFC.

Structural covariance MRI in mouse models of ASD vs. controls. Comparisons between vermis lobule VII (top), VIII (middle) or IX (bottom) and mPFC (left) or Prelimbic (PRL) mPFC (right). q values are stated. Each dot represents single imaged brain. Additional demographic information can be found in Supplementary Table 3.

Extended Data Fig. 9 Gi DREADDs inhibition of PCs in the posterior vermis and Gq DREADDs activation of posterior vermis in PC-Tsc1 mutant mice.

a, Injection sites from MN and LN tracing to VM thalamus (top) and sample locations of Gi (inhibitory) or Gq (excitatory) DREADD injections into posterior vermis of PC-Tsc1 mice (bottom). b, Three chambered social approach assay; time spent sniffing novel animal (NA), or novel object (NO). c, Three chambered social novelty testing; time spent sniffing NA, or familiar animal (FA). d, Time in the open arm and e, distance traveled in the elevated plus maze assay. f, Time in the center of the open field and g, distance traveled in the open field. h, Latency to fall in accelerating rotarod test. i, Three chambered social approach assay; time spent sniffing novel animal (NA), or novel object (NO). j, Three chambered social novelty testing; time sniffing novel animal (NA), or familiar animal (FA). k, Time in the open arm and distance traveled in the elevated plus maze assay. l, Time in the center of the open field and distance traveled in the open field. m, Latency to fall in accelerating rotarod test. All behavioral tests were analyzed with two or three-way ANOVA and Sidak post test. Box line denoted median/whiskers denoted 5-95%. n ≥ 10 for all behavioral tests. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. P values and complete animal numbers can be found in Supplementary Table 2.

Extended Data Fig. 10 Raw frequency values for all normalized single unit graphs.

a, Frequency of firing of single units recorded in the left medial prefrontal cortex (mPFC) with control or inhibitory (Gi) DREADDs. b, Frequency of firing recorded in the left mPFC or motor cortex, with Rcrus1 Gi inhibition. c, Spike frequency in the mPFC with Rcrus1 Gi and mPFC Gi inhibition. d, Right mPFC spike frequency with Rcrus1 Gi. e, Spike Frequency in the Lateral Nucleus (LN) with LN Gi inhibition. f, mPFC spike frequency with LN Gi DREADDs. g, mPFC spike frequency with VM thalamic-mpfc Channel Rhodopsin (ChR2) activation of 4 Hz or h, 20 Hz. i, mPFC spike frequency with VM thalamus-mPFC Archaerhodopsin (Arch) inhibition at 4 Hz or j, 20 Hz. k, Parietal Association Cortex (PAC) firing with VM thalamic-mPFC ChR2 stimulation at 4 Hz and l, 20 Hz. m, mPFC spike frequency with posterior vermis Gi inhibition. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. P values complete animal numbers can be found in Supplementary Table 2. Statistical analysis was done with the Wilcoxon matched pairs signed ranks test.

Supplementary information

Supplementary Information

Supplementary Tables 1–5.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kelly, E., Meng, F., Fujita, H. et al. Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nat Neurosci 23, 1102–1110 (2020). https://doi.org/10.1038/s41593-020-0665-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing