Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic representations in networked neural systems


A group of neurons can generate patterns of activity that represent information about stimuli; subsequently, the group can transform and transmit activity patterns across synapses to spatially distributed areas. Recent studies in neuroscience have begun to independently address the two components of information processing: the representation of stimuli in neural activity and the transmission of information in networks that model neural interactions. Yet only recently are studies seeking to link these two types of approaches. Here we briefly review the two separate bodies of literature; we then review the recent strides made to address this gap. We continue with a discussion of how patterns of activity evolve from one representation to another, forming dynamic representations that unfold on the underlying network. Our goal is to offer a holistic framework for understanding and describing neural information representation and transmission while revealing exciting frontiers for future research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Neural representations and tools to analyze them.
Fig. 2: Network models abstract neural systems.
Fig. 3: Integrating network models and neural representations.
Fig. 4: Dynamic representations in networked neural systems.
Fig. 5: Dynamic representations as trajectories in neural state space.


  1. 1.

    Summerfield, C. et al. Predictive codes for forthcoming perception in the frontal cortex. Science 314, 1311–1314 (2006).

    CAS  PubMed  Google Scholar 

  2. 2.

    Tavares, R. M. et al. A map for social navigation in the human brain. Neuron 87, 231–243 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gallego, J. A. et al. Cortical population activity within a preserved neural manifold underlies multiple motor behaviors. Nat. Commun. 9, 4233 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 22, 289–296 (2019).

    CAS  PubMed  Google Scholar 

  5. 5.

    Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22, 1512–1520 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Saxena, S. & Cunningham, J. P. Towards the neural population doctrine. Curr. Opin. Neurobiol. 55, 103–111 (2019).

    CAS  PubMed  Google Scholar 

  8. 8.

    Danjo, T., Toyoizumi, T. & Fujisawa, S. Spatial representations of self and other in the hippocampus. Science 359, 213–218 (2018).

    CAS  PubMed  Google Scholar 

  9. 9.

    Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Parthasarathy, A. et al. Mixed selectivity morphs population codes in prefrontal cortex. Nat. Neurosci. 20, 1770–1779 (2017).

    CAS  PubMed  Google Scholar 

  12. 12.

    Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019b).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B. & Botvinick, M. M. Neural representations of events arise from temporal community structure. Nat. Neurosci. 16, 486–492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X.-J. Task representations in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).

    CAS  PubMed  Google Scholar 

  15. 15.

    Levy, D. R. et al. Dynamics of social representation in the mouse prefrontal cortex. Nat. Neurosci. 22, 2013–2022 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Arana, S., Marquand, A., Hultén, A., Hagoort, P. & Schoffelen, J.-M. Sensory modality-independent activation of the brain network for language. J. Neurosci. 40, 2914–2924 (2020).

    CAS  PubMed  Google Scholar 

  17. 17.

    Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255 (2019a).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Mobbs, D., Headley, D. B., Ding, W. & Dayan, P. Space, time, and fear: survival computations along defensive circuits. Trends Cogn. Sci. 24, 228–241 (2020).

    PubMed  Google Scholar 

  20. 20.

    Tang, E. et al. Effective learning is accompanied by high-dimensional and efficient representations of neural activity. Nat. Neurosci. 22, 1000–1009 (2019).

    CAS  PubMed  Google Scholar 

  21. 21.

    McIntosh, A. R. & Mišić, B. Multivariate statistical analyses for neuroimaging data. Annu. Rev. Psychol. 64, 499–525 (2013).

    PubMed  Google Scholar 

  22. 22.

    Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis - connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Mahmoudi, A., Takerkart, S., Regragui, F., Boussaoud, D. & Brovelli, A. Multivoxel pattern analysis for fMRI data: a review. Comput. Math. Methods Med. 2012, 961257 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Dragoi, G. & Buzsáki, G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145–157 (2006).

    CAS  PubMed  Google Scholar 

  25. 25.

    Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lisman, J. E. & Idiart, M. A. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    CAS  PubMed  Google Scholar 

  27. 27.

    Taghia, J. et al. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition. Nat. Commun. 9, 2505 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol. 3, 261 (2020).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19, 566–578 (2018). This review covers the types and uses of network models in neuroscience.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Johansen-Berg, H. Human connectomics - what will the future demand? Neuroimage 80, 541–544 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    PubMed  Google Scholar 

  32. 32.

    Neumaier, A. & Schneider, T. Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27, 27–57 (2001).

    Google Scholar 

  33. 33.

    Ito, S. et al. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS One 6, e27431 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    CAS  PubMed  Google Scholar 

  35. 35.

    Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).

    PubMed  Google Scholar 

  36. 36.

    Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    PubMed  Google Scholar 

  37. 37.

    Rombach, M. P., Porter, M. A., Fowler, J. H. & Mucha, P. J. Core-periphery structure in networks. SIAM J. Appl. Math. 74, 167–190 (2014).

    Google Scholar 

  38. 38.

    van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bullmore, E. & Vértes, P. From Lichtheim to rich club: brain networks and psychiatry. JAMA Psychiatry 70, 780–782 (2013).

    PubMed  Google Scholar 

  40. 40.

    Avena-Koenigsberger, A., Mišič, B. & Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17–33 (2017).

    PubMed  Google Scholar 

  41. 41.

    Mišić, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).

    PubMed  Google Scholar 

  42. 42.

    Faber, S. P., Timme, N. M., Beggs, J. M. & Newman, E. L. Computation is concentrated in rich clubs of local cortical networks. Netw. Neurosci. 3, 384–404 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Bettinardi, R. G. et al. How structure sculpts function: unveiling the contribution of anatomical connectivity to the brain’s spontaneous correlation structure. Chaos 27, 047409 (2017).

    CAS  PubMed  Google Scholar 

  44. 44.

    Anzellotti, S., Caramazza, A. & Saxe, R. Multivariate pattern dependence. PLOS Comput. Biol. 13, e1005799 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Curry, J. Sheaves, cosheaves and applications. Preprint at arXiv (2013).

  46. 46.

    Ito, T., Hearne, L., Mill, R., Cocuzza, C. & Cole, M. W. Discovering the computational relevance of brain network organization. Trends Cogn. Sci. 24, 25–38 (2020).

    PubMed  Google Scholar 

  47. 47.

    Coutanche, M. N. & Thompson-Schill, S. L. Informational connectivity: identifying synchronized discriminability of multi-voxel patterns across the brain. Front. Hum. Neurosci. 7, 15 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Shannon, C.E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).

  49. 49.

    Ju, H., Kim, J.Z. & Bassett, D.S. Network structure of cascading neural systems predicts stimulus propagation and recovery. Preprint at arXiv (2019).

  50. 50.

    Wibral, M., Finn, C., Wollstadt, P., Lizier, J. T. & Priesemann, V. Quantifying information modification in developing neural networks via partial information decomposition. Entropy (Basel) 19, 494 (2017).

    Google Scholar 

  51. 51.

    Bansal, K., Nakuci, J. & Muldoon, S. F. Personalized brain network models for assessing structure-function relationships. Curr. Opin. Neurobiol. 52, 42–47 (2018).

    CAS  PubMed  Google Scholar 

  52. 52.

    Hermundstad, A. M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl. Acad. Sci. USA 110, 6169–6174 (2013).

    PubMed  Google Scholar 

  53. 53.

    Kim, J. Z. et al. Role of graph architecture in controlling dynamical networks with applications to neural systems. Nat. Phys. 14, 91–98 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Stiso, J. et al. White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell Rep. 28, 2554–2566.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Vázquez-Rodríguez, B. et al. Gradients of structure-function tethering across neocortex. Proc. Natl. Acad. Sci. USA 116, 21219–21227 (2019).

    PubMed  Google Scholar 

  56. 56.

    Wolf, F., Engelken, R., Puelma-Touzel, M., Weidinger, J. D. & Neef, A. Dynamical models of cortical circuits. Curr. Opin. Neurobiol. 25, 228–236 (2014).

    CAS  PubMed  Google Scholar 

  57. 57.

    Weber, A. I. & Fairhall, A. L. The role of adaptation in neural coding. Curr. Opin. Neurobiol. 58, 135–140 (2019).

    CAS  PubMed  Google Scholar 

  58. 58.

    Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian computation through cortical latent dynamics. Neuron 103, 934–947.e5 (2019).

    CAS  PubMed  Google Scholar 

  59. 59.

    van den Heuvel, M. P., Stam, C. J., Boersma, M. & Hulshoff Pol, H. E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008).

    PubMed  Google Scholar 

  60. 60.

    Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl. Acad. Sci. USA 112, E6798–E6807 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Kailath, T. Linear Systems (Prentice-Hall, 1980).

  62. 62.

    Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  PubMed  Google Scholar 

  63. 63.

    Chang, C. et al. Tracking brain arousal fluctuations with fMRI. Proc. Natl. Acad. Sci. USA 113, 4518–4523 (2016).

    CAS  PubMed  Google Scholar 

  64. 64.

    Beggs, J. M. & Plenz, D. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Wilting, J. & Priesemann, V. 25 years of criticality in neuroscience - established results, open controversies, novel concepts. Curr. Opin. Neurobiol. 58, 105–111 (2019).

    CAS  PubMed  Google Scholar 

  66. 66.

    Shew, W. L. et al. Adaptation to sensory input tunes visual cortex to criticality. Nat. Phys. 11, 659–663 (2015).

    CAS  Google Scholar 

  67. 67.

    Nusbaum, M. P. & Beenhakker, M. P. A small-systems approach to motor pattern generation. Nature 417, 343–350 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    PubMed  Google Scholar 

  69. 69.

    Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 (2007).

    CAS  PubMed  Google Scholar 

  70. 70.

    Joo, H. R. & Frank, L. M. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Gu, S. et al. The energy landscape of neurophysiological activity implicit in brain network structure. Sci. Rep. 8, 2507 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Hopfield, J. J. & Tank, D. W. Computing with neural circuits: a model. Science 233, 625–633 (1986).

    CAS  PubMed  Google Scholar 

  73. 73.

    Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011).

    CAS  PubMed  Google Scholar 

  74. 74.

    Cools, R., Froböse, M., Aarts, E. & Hofmans, L. Dopamine and the motivation of cognitive control. Handb. Clin. Neurol. 163, 123–143 (2019).

    PubMed  Google Scholar 

  75. 75.

    Badre, D. & Desrochers, T. M. Hierarchical cognitive control and the frontal lobes. Handb. Clin. Neurol. 163, 165–177 (2019).

    PubMed  Google Scholar 

  76. 76.

    Lavie, N., Hirst, A., de Fockert, J. W. & Viding, E. Load theory of selective attention and cognitive control. J. Exp. Psychol. Gen. 133, 339–354 (2004).

    PubMed  Google Scholar 

  77. 77.

    Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550, 519–523 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Hatsopoulos, N. G. & Donoghue, J. P. The science of neural interface systems. Annu. Rev. Neurosci. 32, 249–266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Katz, P. S. & Frost, W. N. Intrinsic neuromodulation: altering neuronal circuits from within. Trends Neurosci. 19, 54–61 (1996).

    CAS  PubMed  Google Scholar 

  81. 81.

    Barbas, H. & Zikopoulos, B. The prefrontal cortex and flexible behavior. Neuroscientist 13, 532–545 (2007).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Stringer, C. et al. Inhibitory control of correlated intrinsic variability in cortical networks. eLife 5, e19695 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Eschbach, C. et al. Recurrent architecture for adaptive regulation of learning in the insect brain. Nat. Neurosci. 23, 544–555 (2020).

    CAS  PubMed  Google Scholar 

  84. 84.

    Bartos, M., Manor, Y., Nadim, F., Marder, E. & Nusbaum, M. P. Coordination of fast and slow rhythmic neuronal circuits. J. Neurosci. 19, 6650–6660 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Cohen, M. R. & Newsome, W. T. Context-dependent changes in functional circuitry in visual area MT. Neuron 60, 162–173 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108, 7641–7646 (2011).

    CAS  PubMed  Google Scholar 

  87. 87.

    Kilteni, K. & Ehrsson, H. H. Functional connectivity between the cerebellum and somatosensory areas implements the attenuation of self-generated touch. J. Neurosci. 40, 894–906 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Palmigiano, A., Geisel, T., Wolf, F. & Battaglia, D. Flexible information routing by transient synchrony. Nat. Neurosci. 20, 1014–1022 (2017).

    CAS  PubMed  Google Scholar 

  89. 89.

    Kirst, C., Timme, M. & Battaglia, D. Dynamic information routing in complex networks. Nat. Commun. 7, 11061 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Krabbe, S. et al. Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat. Neurosci. 22, 1834–1843 (2019).

    CAS  PubMed  Google Scholar 

  91. 91.

    Cummings, K. A. & Clem, R. L. Prefrontal somatostatin interneurons encode fear memory. Nat. Neurosci. 23, 61–74 (2020).

    CAS  PubMed  Google Scholar 

  92. 92.

    Tschida, K. et al. A specialized neural circuit gates social vocalizations in the mouse. Neuron 103, 459–472.e4 (2019).

    CAS  PubMed  Google Scholar 

  93. 93.

    Clancy, K. B., Orsolic, I. & Mrsic-Flogel, T. D. Locomotion-dependent remapping of distributed cortical networks. Nat. Neurosci. 22, 778–786 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Coleman, M. J., Meyrand, P. & Nusbaum, M. P. A switch between two modes of synaptic transmission mediated by presynaptic inhibition. Nature 378, 502–505 (1995).

    CAS  PubMed  Google Scholar 

  95. 95.

    Popov, T. et al. Time course of brain network reconfiguration supporting inhibitory control. J. Neurosci. 38, 4348–4356 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Borg-Graham, L. J., Monier, C. & Frégnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    CAS  PubMed  Google Scholar 

  97. 97.

    Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  PubMed  Google Scholar 

  98. 98.

    Haider, B. & McCormick, D. A. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62, 171–189 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Eldar, E., Cohen, J. D. & Niv, Y. The effects of neural gain on attention and learning. Nat. Neurosci. 16, 1146–1153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Becker, C. O., Bassett, D. S. & Preciado, V. M. Large-scale dynamic modeling of task-fMRI signals via subspace system identification. J. Neural Eng. 15, 066016 (2018).

    PubMed  Google Scholar 

  101. 101.

    Braun, U. et al. Brain state stability during working memory is explained by network control theory, modulated by dopamine D1/D2 receptor function, and diminished in schizophrenia. Preprint at arXiv (2019).

  102. 102.

    Nozari, E. & Cortés, J. Hierarchical selective recruitment in linear-threshold brain networks. Part II: multi-layer dynamics and top-down recruitment. Preprint at arXiv (2019).

  103. 103.

    Henzinger, T.A. The theory of hybrid automata. in Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS 96), 278–292 (1996).

  104. 104.

    Greene, C. et al. Finding maximally disconnected subnetworks with shortest path tractography. Neuroimage Clin. 23, 101903 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Fox, M. D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379, 2237–2245 (2018).

    CAS  PubMed  Google Scholar 

  106. 106.

    Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    CAS  PubMed  Google Scholar 

  107. 107.

    Roberts, J. A. et al. Metastable brain waves. Nat. Commun. 10, 1056 (2019).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338, 1202–1205 (2012).

    CAS  PubMed  Google Scholar 

  109. 109.

    Marr, D. & Nishihara, H. K. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. B Biol. Sci. 200, 269–294 (1978).

    CAS  PubMed  Google Scholar 

  110. 110.

    DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003).

    CAS  PubMed  Google Scholar 

  112. 112.

    Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007). This article demonstrates common neural bases for imagination, navigation and episodic memory.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Richmond, L. L. & Zacks, J. M. Constructing experience: event models from perception to action. Trends Cogn. Sci. 21, 962–980 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Brunec, I. K., Moscovitch, M. & Barense, M. D. Boundaries shape cognitive representations of spaces and events. Trends Cogn. Sci. 22, 637–650 (2018).

    PubMed  Google Scholar 

  115. 115.

    Chun, M. M., Golomb, J. D. & Turk-Browne, N. B. A taxonomy of external and internal attention. Annu. Rev. Psychol. 62, 73–101 (2011).

    PubMed  Google Scholar 

  116. 116.

    Kumaran, D., Hassabis, D. & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20, 512–534 (2016).

    PubMed  Google Scholar 

  117. 117.

    Spelke, E. S. & Kinzler, K. D. Core knowledge. Dev. Sci. 10, 89–96 (2007).

    PubMed  Google Scholar 

  118. 118.

    Battaglia, P. et al. Computation models of intuitive physics. Proceedings of the Annual Meeting of the Cognitive Science Society (2012).

  119. 119.

    Téglás, E. et al. Pure reasoning in 12-month-old infants as probabilistic inference. Science 332, 1054–1059 (2011).

    PubMed  Google Scholar 

  120. 120.

    Von Neumann, J. et al. First Draft of a Report on the EDVAC. (ed. Godfrey, M.) (1945). This historical paper outlines the architecture of the modern computer in which subsystem states interact to perform computations.

  121. 121.

    Neftci, E. O. & Averbeck, B. B. Reinforcement leaning in artificial and biological systems. Nat. Mach. Intell. 1, 133–143 (2019).

    Google Scholar 

  122. 122.

    Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    CAS  PubMed  Google Scholar 

  123. 123.

    Open, A.I. Dota 2 with large scale deep reinforcement learning. Preprint at arXiv (2019).

  124. 124.

    Dworkin et al. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. (2020).

  125. 125.

    Maliniak, D., Powers, R. & Walter, B. F. The gender citation gap in international relations. Int. Organ. 67, 889–892 (2013).

    Google Scholar 

  126. 126.

    Caplar, N., Tacchella, S. & Birrer, S. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat. Astron. 1, 0141 (2017).

    Google Scholar 

  127. 127.

    Chakravartty, P., Kuo, R., Grubbs, V. & McIlwain, C. #CommunicationSoWhite. J. Commun. 68, 254–266 (2018).

    Google Scholar 

  128. 128.

    Thiem, Y., Sealey, K.F., Ferrer, A.E., Trott, A.M. & Kennison, R. Just ideas? The status and future of publication ethics in philosophy: a white paper. (Publication Ethics, 2018).

  129. 129.

    Dion, M. L., Sumner, J. L. & Mitchell, S. M. Gendered citation patterns across political science and social science methodology fields. Polit. Anal. 26, 312–327 (2018).

    Google Scholar 

  130. 130.

    Vidaurre, D., Smith, S. M. & Woolrich, M. W. Brain network dynamics are hierarchically organized in time. Proc. Natl. Acad. Sci. USA 114, 12827–12832 (2017).

    CAS  PubMed  Google Scholar 

  131. 131.

    Marshall, L. & Born, J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn. Sci. 11, 442–450 (2007).

    PubMed  Google Scholar 

  132. 132.

    Schuck, N. W. & Niv, Y. Sequential replay of nonspatial task states in the human hippocampus. Science 364, eaaw5181 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Muller, L., Chavane, F., Reynolds, J. & Sejnowski, T. J. Cortical travelling waves: mechanisms and computational principles. Nat. Rev. Neurosci. 19, 255–268 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Buzsáki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995).

    PubMed  Google Scholar 

  135. 135.

    Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000).

    CAS  PubMed  Google Scholar 

  136. 136.

    Shohamy, D. & Adcock, R. A. Dopamine and adaptive memory. Trends Cogn. Sci. 14, 464–472 (2010).

    CAS  PubMed  Google Scholar 

  137. 137.

    Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


H.J. and D.S.B. acknowledge support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the ISI Foundation, the Paul Allen Foundation, the Army Research Laboratory (W911NF-10-2-0022), the Army Research Office (Bassett-W911NF-14-1-0679, Grafton-W911NF-16-1-0474, DCIST-W911NF-17-2-0181), the Office of Naval Research, the National Institute of Mental Health (2-R01-DC-00920911, R01-MH112847, R01-MH107235, R21-M MH-106799), the National Institute of Child Health and Human Development (1R01-HD086888-01), National Institute of Neurological Disorders and Stroke (R01-NS099348) and the National Science Foundation (BCS-1441502, BCS-1430087, NSF PHY-1554488 and BCS-1631550). We thank E.J. Cornblath, L. Papadopoulos, C.W. Lynn, D. Zhou and A. Sizemore Blevins for helpful feedback. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.

Author information




H.J. and D.S.B. contributed to the writing.

Corresponding author

Correspondence to Danielle S. Bassett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Johan Carlin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ju, H., Bassett, D.S. Dynamic representations in networked neural systems. Nat Neurosci 23, 908–917 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing