Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior

Abstract

Decades of research support the idea that associations between a conditioned stimulus (CS) and an unconditioned stimulus (US) are encoded in the lateral amygdala (LA) during fear learning. However, direct proof for the sources of CS and US information is lacking. Definitive evidence of the LA as the primary site for cue association is also missing. Here, we show that calretinin (Calr)-expressing neurons of the lateral thalamus (Calr+LT neurons) convey the association of fast CS (tone) and US (foot shock) signals upstream from the LA in mice. Calr+LT input shapes a short-latency sensory-evoked activation pattern of the amygdala via both feedforward excitation and inhibition. Optogenetic silencing of Calr+LT input to the LA prevents auditory fear conditioning. Notably, fear conditioning drives plasticity in Calr+LT neurons, which is required for appropriate cue and contextual fear memory retrieval. Collectively, our results demonstrate that Calr+LT neurons provide integrated CS–US representations to the LA that support the formation of aversive memories.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Calr+LT cells project to the LA and are activated by CS, US and US-associated CS stimuli.
Fig. 2: Selective and fast aversive cue-associated sensory signaling by Calr+LT cells.
Fig. 3: Monosynaptic brainstem inputs to Calr+LT neurons.
Fig. 4: Calr+LT neurons target the fear-conditioning-activated LA neurons and SIC.
Fig. 5: Calr+LT neurons control the multisensory activation of amygdala cells in a complex manner.
Fig. 6: Calr+LT→AMG inputs shape fear learning.
Fig. 7: Fear learning induces changes in the activity pattern of Calr+LT neurons.
Fig. 8: Calr+LT→AMG neurons control fear memory retrieval.

Data availability

Data from this study as well as material from custom products are available from the corresponding author upon request.

Code availability

Custom-written codes used to analyze data from this study are available from the corresponding author upon request.

References

  1. 1.

    LeDoux, J. E. Emotion, memory and the brain. Sci. Am. 270, 50–57 (1994).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. & LeDoux, J. E. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242 (2001).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Pape, H.-C. & Pare, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 90, 419–463 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Weinberger, N. M. The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hear. Res. 274, 61–74 (2011).

    PubMed  Article  Google Scholar 

  6. 6.

    Headley, D. B., Kanta, V., Kyriazi, P. & Paré, D. Embracing complexity in defensive networks. Neuron 103, 189–201 (2019).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Quirk, G. J., Repa, C. & LeDoux, J. E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    LeDoux, J. E., Farb, C. & Ruggiero, D. A. Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J. Neurosci. 10, 1043–1054 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    LeDoux, J. E., Sakaguchi, A. & Reis, D. J. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J. Neurosci. 4, 683–698 (1984).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Campeau, S. & Davis, M. Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J. Neurosci. 15, 2312–2327 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Lanuza, E., Nader, K. & LeDoux, J. E. Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning. Neuroscience 125, 305–315 (2004).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Elucidating an affective pain circuit that creates a threat memory. Cell 162, 363–374 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Johansen, J. P., Tarpley, J. W., LeDoux, J. E. & Blair, H. T. Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nat. Neurosci. 13, 979–986 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Kim, E. J. et al. Dorsal periaqueductal gray–amygdala pathway conveys both innate and learned fear responses in rats. Proc. Natl Acad. Sci. USA 110, 14795–14800 (2013).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Penzo, M. A. et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature 519, 455–459 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Do-Monte, F. H., Quiñones-Laracuente, K. & Quirk, G. J. A temporal shift in the circuits mediating retrieval of fear memory. Nature 519, 460–463 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Mátyás, F. et al. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat. Neurosci. 21, 1551–1562 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Zhu, Y. et al. Dynamic salience processing in paraventricular thalamus gates associative learning. Science 362, 423–429 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Bordi, F. & LeDoux, J. E. Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp. Brain Res. 98, 275–286 (1994).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Lanuza, E., Moncho-Bogani, J. & LeDoux, J. E. Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala. Neuroscience 155, 959–968 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Han, J.-H. et al. Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn. Mem. 15, 443–453 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    LeDoux, J. E., Ruggiero, D. A., Forest, R., Stornetta, R. & Reis, D. J. Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J. Comp. Neurol. 264, 123–146 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Linke, R., De Lima, A. D., Schwegler, H. & Pape, H. C. Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: possible substrates of a subcortical visual pathway to the amygdala. J. Comp. Neurol. 403, 158–170 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Coleman, J. R. & Clerici, W. J. Sources of projections to subdivisions of the inferior colliculus in the rat. J. Comp. Neurol. 262, 215–226 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    King, A. J. The superior colliculus. Curr. Biol. 14, R335–R338 (2004).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Hayashi, H., Sumino, R. & Sessle, B. J. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. J. Neurophysiol. 51, 890–905 (1984).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Bartlett, E. L., Stark, J. M., Guillery, R. W. & Smith, P. H. Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neuroscience 100, 811–828 (2000).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Busti, D. et al. Different fear states engage distinct networks within the intercalated cell clusters of the amygdala. J. Neurosci. 31, 5131–5144 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Grewe, B. F. et al. Neural ensemble dynamics underlying a long-term associative memory. Nature 543, 670–675 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Asede, D., Bosch, D., Lüthi, A., Ferraguti, F. & Ehrlich, I. Sensory inputs to intercalated cells provide fear-learning modulated inhibition to the basolateral amygdala. Neuron 86, 541–554 (2015).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Wolff, S. B. E. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509, 453–458 (2014).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Woodson, W., Farb, C. R. & LeDoux, J. E. Afferents from the auditory thalamus synapse on inhibitory interneurons in the lateral nucleus of the amygdala. Synapse 38, 124–137 (2000).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Krabbe, S. et al. Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat. Neurosci. 22, 1834–1843 (2019).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Almeida, T. F., Roizenblatt, S. & Tufik, S. Afferent pain pathways: a neuroanatomical review. Brain Res. 1000, 40–56 (2004).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Cho, J.-H., Rendall, S. D. & Gray, J. M. Brain-wide maps of Fos expression during fear learning and recall. Learn. Mem. 24, 169–181 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Sacco, T. & Sacchetti, B. Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science 329, 649–656 (2010).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Zelikowsky, M., Bissiere, S. & Fanselow, M. S. Contextual fear memories formed in the absence of the dorsal hippocampus decay across time. J. Neurosci. 32, 3393–3397 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Morris, J. S., Ohman, A. & Dolan, R. J. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc. Natl Acad. Sci. USA. 96, 1680–1685 (1999).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Rafal, R. D. et al. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography. J. Neurophysiol. 114, 1947–1962 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Zhou, N., Maire, P. S., Masterson, S. P. & Bickford, M. E. The mouse pulvinar nucleus: organization of the tectorecipient zones. Vis. Neurosci. 34, E011 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Letzkus, J. J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Courtin, J., Karalis, N., Gonzalez-Campo, C., Wurtz, H. & Herry, C. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol. Learn. Mem. 113, 82–89 (2014).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Amir, A., Headley, D. B., Lee, S.-C., Haufler, D. & Paré, D. Vigilance-associated gamma oscillations coordinate the ensemble activity of basolateral amygdala neurons. Neuron 97, 656–669.e7 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Li, X. F., Stutzmann, G. E. & LeDoux, J. E. Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways. Learn. Mem. 3, 229–242 (1996).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Johnson, L. R. Hebbian reverberations in emotional memory micro circuits. Front. Neurosci. 3, 198–205 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Weisskopf, M. G. & LeDoux, J. E. Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. J. Neurophysiol. 81, 930–934 (1999).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Tye, K. M., Stuber, G. D., de Ridder, B., Bonci, A. & Janak, P. H. Rapid strengthening of thalamo-amygdala synapses mediates cue–reward learning. Nature 453, 1253–1257 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Rich, M. T., Huang, Y. H. & Torregrossa, M. M. Plasticity at thalamo-amygdala synapses regulates cocaine-cue memory formation and extinction. Cell Rep. 26, 1010–1020.e5 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Likhtik, E. & Johansen, J. P. Neuromodulation in circuits of aversive emotional learning. Nat. Neurosci. 22, 1586–1597 (2019).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kim, S., Matyas, F., Lee, S., Acsady, L. & Shin, H.-S. Lateralization of observational fear learning at the cortical but not thalamic level in mice. Proc. Natl Acad. Sci. USA 109, 15497–15501 (2012).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Mátyás, F., Lee, J., Shin, H.-S. & Acsády, L. The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala. Eur. J. Neurosci. 39, 1810–1823 (2014).

    PubMed  Article  Google Scholar 

  53. 53.

    Cai, D. et al. Distinct anatomical connectivity patterns differentiate subdivisions of the nonlemniscal auditory thalamus in mice. Cereb. Cortex 29, 2437–2454 (2018).

    Article  Google Scholar 

  54. 54.

    Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2003).

  55. 55.

    Quirk, G. J., Armony, J. L. & LeDoux, J. E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Gauriau, C. & Bernard, J.-F. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J. Comp. Neurol. 468, 24–56 (2004).

    PubMed  Article  Google Scholar 

  57. 57.

    Lipshetz, B. et al. Responses of thalamic neurons to itch- and pain-producing stimuli in rats. J. Neurophysiol. 120, 1119–1134 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Swanson, L. W. Brain Maps: Structure of the Rat Brain (Elsevier Academic Press, 2004).

  59. 59.

    Szőnyi, A. et al. Brainstem nucleus incertus controls contextual memory formation. Science 364, eaaw0445 (2019).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Mahn, M., Prigge, M., Ron, S., Levy, R. & Yizhar, O. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat. Neurosci. 19, 554–556 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Meredith, M. A. & Stein, B. E. Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J. Neurophysiol. 56, 640–662 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Barthó, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Mikics, É., Barsy, B., Barsvári, B. & Haller, J. Behavioral specificity of non-genomic glucocorticoid effects in rats: effects on risk assessment in the elevated plus-maze and the open-field. Horm. Behav. 48, 152–162 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Walf, A. A. & Frye, C. A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2, 322–328 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Rodgers, R. J., Cao, B.-J., Dalvi, A. & Holmes, A. Animal models of anxiety: an ethological perspective. Braz. J. Med. Biol. Res. 30, 289–304 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. J. Huang, L. Acsády and S. Arthaud for providing us with transgenic mice, C. Porrero and F. Clascá for their instructions for BDA injections, N. Holderith for sharing primary antibodies, Cs. Dávid for advising us on axonal analysis and A. Szőnyi for rabies injections. The technical assistance of K. Varga, V. Kanti, J. Berczik, A. Fehér, L. Truka, R. Pop and E. Szabó-Együd in histology is acknowledged. We wish to thank the Institute of Enzymology at RCNS, Nikon Microscopy Center at IEM, Nikon Austria and the Auro-Science Consulting for kindly providing microscopy, as well as the Institute of Materials and Environmental Chemistry at RCNS for technical support. We thank L. Acsády, N. Bunford, T. L. Horváth, M. Penzo and I. Soltész for comments and discussions about the manuscript. This work was supported by the National Office for Research and Technology (FK124434 and KKP126998 to F.M., PD124034 to B.B., and FK129120 to D.H.), by the Hungarian Brain Research Program (grant numbers KTIA-NAP-13-2-2015-0010 to F.M., and 2017-1.2.1-NKP-2017-00002 to F.M. and I.U.), by the New National Excellence Program of the Ministry for Innovation and Technology (ÚNKP-19-3-III-PPKE-68 to K.K., and ÚNKP-19-4-ÁTE-8 to F.M.), by the Széchenyi 2020 Program, the Human Resource Development Operational Program, the Program of Integrated Territorial Investments in Central-Hungary (EFOP-3.6.2-16-2017-00013 and 3.6.3-VEKOP-16-2017-00002 to K.K. and I.U.; EFOP-3.6.2-16-2017-00012 to F.M.), by the Adelis Foundation (O.Y.), and by the European Research Council (ERC CoG 819496 to O.Y.). F.M. is a János Bolyai Research Fellow.

Author information

Affiliations

Authors

Contributions

B.B., K.K., I.U. and F.M. designed the experiments. B.B., K.K., Á.B., A.M., J.M.V. and F.M. performed animal surgeries, immunocytochemistry and confocal analyses. B.B. and M.S. conducted behavioral experiments and analyses. K.K. and A.M. performed in vivo electrophysiological recordings and data analyses. O.Y. developed the AAV-DFO plasmid, and D.H. produced the AAV-DFO viral vector. B.B., K.K. and F.M. wrote the manuscript, which was edited by all authors.

Corresponding author

Correspondence to Ferenc Mátyás.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Fabricio H. do Monte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Supplementary Tables 1–7.

Reporting Summary

Supplementary Video 1

Green-light illumination of Calr+LT→AMG axons during fear conditioning (for the entire period of the 30 s of CS+) diminishes freezing behavior in a representative NpHR animal (right; n = 7 mice in total) compared with a representative control (YFP, left; n = 6 mice in total). The video shows behavioral responses to the seventh CS+US presentation. Related to Fig. 6d.

Supplementary Video 2

Behavioral responses evoked by the second CS+ presentation during cued fear retrieval observed in the same two animals shown in Supplementary Video 1. Related to Fig. 6e.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barsy, B., Kocsis, K., Magyar, A. et al. Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior. Nat Neurosci 23, 625–637 (2020). https://doi.org/10.1038/s41593-020-0620-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing