Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD

Abstract

Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B−/− mouse model of ASD. Male and female Shank3B−/− mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Vibrissa detection and stimulus hyper-reactivity in Shank3B−/− mice.
Fig. 2: Enhanced spontaneous and stimulus-evoked activity in Shank3B−/− excitatory neurons.
Fig. 3: Reduced spontaneous and stimulus-evoked activity in Shank3B−/− inhibitory neurons.
Fig. 4: Reduced spontaneous and stimulus-evoked activity in inhibitory neurons after preferential deletion of Shank3 in interneurons in vS1.
Fig. 5: Preferential deletion of Shank3 in vS1 interneurons also results in enhanced spontaneous and stimulus-evoked activity in excitatory neurons.
Fig. 6: Preferential deletion of Shank3 in interneurons of vS1 leads to behavioral hyper-reactivity of the somatosensory system.

Data Availability

Raw data is available from the corresponding author upon request.

Code Availability

The custom routines for image analysis written in MATLAB are available on GitHub (https://github.com/cdeister/imageAnalysis_gui) and from the corresponding author upon request.

References

  1. 1.

    Amso, D., Haas, S., Tenenbaum, E., Markant, J. & Sheinkopf, S. J. Bottom-up attention orienting in young children with autism. J. Aut. Dev. Disord. 44, 664–673 (2014).

    Google Scholar 

  2. 2.

    Leekam, S. R., Nieto, C., Libby, S. J., Wing, L. & Gould, J. Describing the sensory abnormalities of children and adults with autism. J. Aut. Dev. Disord. 37, 894–910 (2007).

    Google Scholar 

  3. 3.

    Wang, A. T. et al. Neural selectivity for communicative auditory signals in Phelan-McDermid syndrome. J. Neurodev. Disord. 8, 5 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Gogolla, N., Takesian, A. E., Feng, G., Fagiolini, M. & Hensch, T. K. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron 83, 894–905 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Goncalves, J. T., Anstey, J. E., Golshani, P. & Portera-Cailliau, C. Circuit level defects in the developing neocortex of Fragile X mice. Nat. Neurosci. 16, 903–909 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chao, H. T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Zhang, Y. et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat. Neurosci. 17, 1701–1709 (2014).

    CAS  PubMed  Google Scholar 

  8. 8.

    Orefice, L. L. et al. Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell 166, 299–313 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    CAS  PubMed  Google Scholar 

  11. 11.

    Bozdagi, O. et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol. Aut. 1, 15 (2010).

    CAS  Google Scholar 

  12. 12.

    Mei, Y. et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 530, 481–484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Wang, X. et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat. Commun. 7, 11459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wang, X. et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum. Mol. Genet. 20, 3093–3108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Siegle, J. H., Pritchett, D. L. & Moore, C. I. Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli. Nat. Neurosci. 17, 1371–1379 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Luo, T. Z. & Maunsell, J. H. Neuronal modulations in visual cortex are associated with only one of multiple components of attention. Neuron 86, 1182–1188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Goel, A. et al. Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nat. Neurosci. 21, 1404–1411 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007).

    PubMed  Google Scholar 

  19. 19.

    Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. K. & Josic, K. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19, 383–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity during tactile behavior. Neuron 86, 783–799 (2015).

    CAS  PubMed  Google Scholar 

  22. 22.

    Crochet, S., Poulet, J. F., Kremer, Y. & Petersen, C. C. Synaptic mechanisms underlying sparse coding of active touch. Neuron 69, 1160–1175 (2011).

    CAS  PubMed  Google Scholar 

  23. 23.

    Yang, H., Kwon, S. E., Severson, K. S. & O’Connor, D. H. Origins of choice-related activity in mouse somatosensory cortex. Nat. Neurosci. 19, 127–134 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771–781 (2004).

    CAS  PubMed  Google Scholar 

  25. 25.

    Kouser, M. et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J. Neurosci. 33, 18448–18468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Cruikshank, S. J. et al. Thalamic control of layer 1 circuits in prefrontal cortex. J. Neurosci. 32, 17813–17823 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Moore, C. I. & Nelson, S. B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80, 2882–2892 (1998).

    CAS  PubMed  Google Scholar 

  28. 28.

    Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    CAS  PubMed  Google Scholar 

  29. 29.

    Orefice, L. L. et al. Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models. Cell 178, 867–886 e824 (2019).

    CAS  PubMed  Google Scholar 

  30. 30.

    Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sachidhanandam, S., Sermet, B. S. & Petersen, C. C. H. Parvalbumin-expressing GABAergic neurons in mouse barrel cortex contribute to gating a goal-directed sensorimotor transformation. Cell Rep. 15, 700–706 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Goffin, D., Brodkin, E. S., Blendy, J. A., Siegel, S. J. & Zhou, Z. Cellular origins of auditory event-related potential deficits in Rett syndrome. Nat. Neurosci. 17, 804–806 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Selby, L., Zhang, C. & Sun, Q. Q. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci. Lett. 412, 227–232 (2007).

    CAS  PubMed  Google Scholar 

  34. 34.

    O’Neill, M. & Jones, R. S. Sensory-perceptual abnormalities in autism: a case for more research? J. Aut. Dev. Disord. 27, 283–293 (1997).

    Google Scholar 

  35. 35.

    Marco, E. J., Hinkley, L. B., Hill, S. S. & Nagarajan, S. S. Sensory processing in autism: a review of neurophysiologic findings. Pediatr. Res. 69, 48R–54R (2011).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lee, J. et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front. Cell. Neurosci. 9, 94 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Tu, J. C. et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23, 583–592 (1999).

    CAS  PubMed  Google Scholar 

  38. 38.

    Peixoto, R. T., Wang, W., Croney, D. M., Kozorovitskiy, Y. & Sabatini, B. L. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B -/- mice. Nat. Neurosci. 19, 716–724 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bolton, P. F. et al. Epilepsy in autism: features and correlates. J. Ment. Sci. 198, 289–294 (2011).

    Google Scholar 

  41. 41.

    Thompson, K. J. et al. DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharmacol. Transl. Sci. 1, 61–72 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chen, Q. et al. Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76, 297–308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Truszkowski, T. L. A cellular mechanism for inverse effectiveness in multisensory integration. eLife 6, e25392 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008).

    PubMed  Google Scholar 

  45. 45.

    Kerlin, A. M., Andermann, M. L., Berezovskii, V. K. & Reid, R. C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Komiyama, T. et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–1186 (2010).

    CAS  PubMed  Google Scholar 

  47. 47.

    Pachitariu, M., Stringer, C. & Harris, K. D. Robustness of spike deconvolution for neuronal calcium imaging. J. Neurosci. 38, 7976–7985 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Altman, D. G. & Bland, J. M. How to obtain the confidence interval from a P value. Brit. Med. J. 343, d2090 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Wilde, A. Krol, M. G. Chen, M. Hu and members of the Feng Lab for helpful discussions. We thank D. A. Scott, S. Allsop, B. Clear and T. Dalia for technical support. We thank the Varanasi Family and R. Buxton for supporting our autism research. This work was supported by the Hock E. Tan and K. Lisa Yang Center for Autism Research at MIT, the Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard, Nancy Lurie Marks Family Foundation, the Poitras Center for Psychiatric Disorders Research at the McGovern Institute for Brain Research at MIT, Shenzhen Overseas Innovation Team Project No. KQTD20140630180249366 (Z.L.); Guangdong Innovative and Entrepreneurial Research Team Program No. 2014ZT05S020 (Z.L.) and the National Institutes of Health R01MH097104 (G. Feng), NIMH Conte Center grant P50MH094271 (G. Feng), F32MH100749 (C.A.D.) and R01NS045130 (C.I.M.).

Author information

Affiliations

Authors

Contributions

Q.C., C.A.D., C.I.M. and G. Feng designed experiments and wrote the paper. Q.C., C.A.D., X.G., B.G., T.L.J., N.C. and R.L. performed experiments. C.A.D. wrote the MATLAB code and did the data analysis. M.F.W. generated Shank3B conditional knockout mouse. S.F., Z.L., M.J.G., Y.S. and W.L. did part of data analysis and interpretation. J.D. and G. Fishell designed and provided the Dlx5/6 promoter.

Corresponding authors

Correspondence to Christopher I. Moore or Guoping Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks D. Feldman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8

Reporting Summary

Supplementary Video 1

Spontaneous Neuronal Activity of Somatosensory Cortex from Shank3Bfl/fl Mice Injected with AAV-Dlx5/6-ΔCre-mKate2 and AAV-CaMKII-GCaMP6.

Supplementary Video 2

Spontaneous Neuronal Activity of Somatosensory Cortex from Shank3Bfl/fl Mice Injected with AAV-Dlx5/6-Cre-mKate2 and AAV-CaMKII-GCaMP6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Deister, C.A., Gao, X. et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci 23, 520–532 (2020). https://doi.org/10.1038/s41593-020-0598-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing