Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain capillary pericytes exert a substantial but slow influence on blood flow

Abstract

The majority of the brain’s vasculature is composed of intricate capillary networks lined by capillary pericytes. However, it remains unclear whether capillary pericytes influence blood flow. Using two-photon microscopy to observe and manipulate brain capillary pericytes in vivo, we find that their optogenetic stimulation decreases lumen diameter and blood flow, but with slower kinetics than similar stimulation of mural cells on upstream pial and precapillary arterioles. This slow vasoconstriction was inhibited by the clinically used vasodilator fasudil, a Rho-kinase inhibitor that blocks contractile machinery. Capillary pericytes were also slower to constrict back to baseline following hypercapnia-induced dilation, and slower to dilate towards baseline following optogenetically induced vasoconstriction. Optical ablation of single capillary pericytes led to sustained local dilation and a doubling of blood cell flux selectively in capillaries lacking pericyte contact. These data indicate that capillary pericytes contribute to basal blood flow resistance and slow modulation of blood flow throughout the brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Capillary pericytes contact the vast majority of mouse cerebrovasculature.
Fig. 2: Optogenetic activation of capillary pericytes constricts capillaries and reduces blood flow.
Fig. 3: Topical administration of fasudil prevents hemodynamic changes induced by optogenetic stimulation of capillary pericytes.
Fig. 4: Distinct contractile dynamics of mural cells in different microvascular zones.
Fig. 5: Dilation after optogenetic vasoconstriction is faster in precapillary arterioles than capillaries.
Fig. 6: Ablation of individual capillary pericytes produces local capillary dilation and increased RBC flux.
Fig. 7: Pericytes control heterogeneity of basal capillary vasodynamics.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Any additional data are available from the corresponding author upon request.

Code availability

Vasometrics54, an ImageJ/Fiji-based macro for unbiased vessel diameter measurement, can be downloaded at: https://github.com/mcdowellkonnor/ResearchMacros. All other code is available from the corresponding author upon request.

References

  1. Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blinder, P. et al. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16, 889–897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gould, I. G., Tsai, P. S., Kleinfeld, D. & Linninger, A. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J. Cereb. Blood Flow. Metab. 37, 52–68 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grant, R. I. et al. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J. Cereb. Blood Flow. Metab. 39, 411–425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 642–643 (2006).

    Article  CAS  Google Scholar 

  8. Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cai, C. et al. Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proc. Natl Acad. Sci. USA 15, E5796–E5804 (2018).

    Article  CAS  Google Scholar 

  11. Fernández-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J. & Lindauer, U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc. Natl Acad. Sci. USA 107, 22290–22295 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wei, H. S. et al. Erythrocytes are oxygen-sensing regulators of the cerebral microcirculation. Neuron 91, 851–862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Montagne, A. et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24, 326–337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sagare, A. P. et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4, 2932 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Nortley, R. et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 365, eaav9518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arango-Lievano, M. et al. Topographic reorganization of cerebrovascular mural cells under seizure conditions. Cell Rep. 23, 1045–1059 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y. et al. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat. Med. 23, 733–741 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikolakopoulou, A. M. et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 22, 1089–1098 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Longden, T. A. et al. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat. Neurosci. 20, 717–726 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neuhaus, A. A., Couch, Y., Sutherland, B. A. & Buchan, A. M. Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. J. Cereb. Blood Flow. Metab. 37, 2013–2024 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saponara, S. et al. Effects of commonly used protein kinase inhibitors on vascular contraction and L-type Ca2+ current. Biochem. Pharmacol. 84, 1055–1061 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Rorsman, N. J. G., Ta, C. M., Garnett, H., Swietach, P. & Tammaro, P. Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2. Br. J. Pharmacol. 175, 2028–2045 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Narayanan, D., Xi, Q., Pfeffer, L. M. & Jaggar, J. H. Mitochondria control functional CaV1.2 expression in smooth muscle cells of cerebral arteries. Circ. Res. 107, 631–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin, L., Ying, Z. & Webb, R. C. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am. J. Physiol. Heart Circ. Physiol. 287, H1495–H1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Yoon, J., Choi, M., Ku, T., Choi, W. J. & Choi, C. Optical induction of muscle contraction at the tissue scale through intrinsic cellular amplifiers. J. Biophotonics 7, 597–606 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Gutiérrez-Jiménez, E. et al. The effects of hypercapnia on cortical capillary transit time heterogeneity (CTH) in anesthetized mice. J. Cereb. Blood Flow. Metab. 38, 290–303 (2018).

    Article  PubMed  Google Scholar 

  30. Watson, A.N. et al. Mild pericyte deficiency is associated with aberrant brain microvascular flow in aged PDGFRβ+/- mice. J. Cereb. Blood Flow Metab. 40, 2387–2400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rungta, R. L., Chaigneau, E., Osmanski, B. F. & Charpak, S. Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99, 362–375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berthiaume, A. A. et al. Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep. 22, 8–16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmid, F., Reichold, J., Weber, B. & Jenny, P. The impact of capillary dilation on the distribution of red blood cells in artificial networks. Am. J. Physiol. Heart Circ. Physiol. 308, H733–H742 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Lyons, D. G., Parpaleix, A., Roche, M. & Charpak, S. Mapping oxygen concentration in the awake mouse brain. eLife 5, e12024 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gutiérrez-Jiménez, E. et al. Effect of electrical forepaw stimulation on capillary transit-time heterogeneity (CTH). J. Cereb. Blood Flow. Metab. 36, 2072–2086 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alarcon-Martinez, L. et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 585, 91–95 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Li, Y., Wei, W. & Wang, R. K. Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry. Sci. Rep. 8, 4107 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li, B., Lee, J., Boas, D. A. & Lesage, F. Contribution of low- and high-flux capillaries to slow hemodynamic fluctuations in the cerebral cortex of mice. J. Cereb. Blood Flow. Metab. 36, 1351–1356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stefanovic, B. et al. Functional reactivity of cerebral capillaries. J. Cereb. Blood Flow. Metab. 28, 961–972 (2007).

    Article  PubMed  Google Scholar 

  40. Desjardins, M., Berti, R., Lefebvre, J., Dubeau, S. & Lesage, F. Aging-related differences in cerebral capillary blood flow in anesthetized rats. Neurobiol. Aging 35, 1947–1955 (2014).

    Article  PubMed  Google Scholar 

  41. Grubb, S. et al. Precapillary sphincters maintain perfusion in the cerebral cortex. Nat. Commun. 11, 395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonzales, A. L. et al. Contractile pericytes determine the direction of blood flow at capillary junctions. Proc. Natl Acad. Sci. USA 117, 27022–27033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nelson, A. R. et al. Channelrhodopsin excitation contracts brain pericytes and reduces blood flow in the aging mouse brain in vivo. Front. Aging Neurosci. 12, 108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kureli, G. et al. F-actin polymerization contributes to pericyte contractility in retinal capillaries. Exp. Neurol. 332, 113392 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Alarcon-Martinez, L. et al. Retinal ischemia induces α-SMA-mediated capillary pericyte contraction coincident with perivascular glycogen depletion. Acta Neuropathol. Commun. 7, 134 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Alarcon-Martinez, L. et al. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. eLife 7, e34861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cipolla, M. J., Gokina, N. I. & Osol, G. Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior. FASEB J. 16, 72–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Shibuya, M., Hirai, S., Seto, M., Satoh, S. & Ohtomo, E. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J. Neurol. Sci. 238, 31–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Vesterinen, H. M. et al. Systematic review and stratified meta-analysis of the efficacy of RhoA and Rho kinase inhibitors in animal models of ischaemic stroke. Syst. Rev. 2, 33 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jespersen, S. N. & Østergaard, L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J. Cereb. Blood Flow. Metab. 32, 264–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Schmid, F., Tsai, P. S., Kleinfeld, D., Jenny, P. & Weber, B. Depth-dependent flow and pressure characteristics in cortical microvascular networks. PloS Comput. Biol. 13, e1005392 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sengillo, J. D. et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer’s disease. Brain Pathol. 23, 303–310 (2013).

    Article  PubMed  Google Scholar 

  53. Dziewulska, D. & Lewandowska, E. Pericytes as a new target for pathological processes in CADASIL. Neuropathology 32, 515–521 (2012).

    Article  PubMed  Google Scholar 

  54. McDowell, K. P., Berthiaume, A. A., Tieu, T., Hartmann, D. A. & Shih, A. Y. VasoMetrics: unbiased spatiotemporal analysis of microvascular diameter in multi-photon imaging applications. Quant. Imaging Med. Surg. 11, 969–982 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cuttler, A. S. et al. Characterization of Pdgfrb-Cre transgenic mice reveals reduction of ROSA26 reporter activity in remodeling arteries. Genesis 49, 673–680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Hartmann, D.A. et al. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2, 041402 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shih, A. Y. et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J. Cereb. Blood Flow. Metab. 32, 1277–1309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, M. et al. Simply combining fasudil and lipoic acid in a novel multitargeted chemical entity potentially useful in central nervous system disorders. RSC Adv. 5, 37266–37269 (2014).

    Article  CAS  Google Scholar 

  62. Shin, H. K. et al. Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J. Cereb. Blood Flow. Metab. 27, 998–1009 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Asano, T. et al. Mechanism of action of a novel antivasospasm drug, HA1077. J. Pharmacol. Exp. Ther. 241, 1033–1040 (1987).

    CAS  PubMed  Google Scholar 

  64. Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Bedussi, B. et al. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS 12, 23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rodrigues, A. J., Evora, P. R. & Schaff, H. V. Protective effect of N-acetylcysteine against oxygen radical-mediated coronary artery injury. Braz. J. Med. Biol. Res. 37, 1215–1224 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Drew, P. J. et al. Chronic optical access through a polished and reinforced thinned skull. Nat. Methods 7, 981–984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S. & Kleinfeld, D. A polished and reinforced thinned skull window for long-term imaging and optical manipulation of the mouse cortex. J. Vis. Exp. 7, 3742 (2012).

    Google Scholar 

  69. Driscoll, J. D., Shih, A. Y., Drew, P. J., Cauwenberghs, G. & Kleinfeld, D. Two-photon imaging of blood flow in cortex. Cold Spring Harb. Protoc. 8, 759–767 (2013).

    Google Scholar 

  70. Podgorski, K. & Ranganathan, G. Brain heating induced by near-infrared lasers during multiphoton microscopy. J. Neurophysiol. 116, 1012–1023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roche, M. et al. In vivo imaging with a water immersion objective affects brain temperature, blood flow and oxygenation. eLife 8, e47324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu, Q., Huff, L. P., Fujii, M. & Griendling, K. K. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic. Biol. Med. 109, 84–107 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Drew, P. J., Blinder, P., Cauwenberghs, G., Shih, A. Y. & Kleinfeld, D. Rapid determination of particle velocity from space-time images using the Radon transform. J. Comput. Neurosci. 29, 5–11 (2010).

    Article  PubMed  Google Scholar 

  74. Ke, M. T., Fujimoto, S. & Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16, 1154–1161 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Emmenlauer, M. et al. XuvTools: free, fast and reliable stitching of large 3D datasets. J. Microsc. 233, 42–60 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is supported by grants to A.Y.S. from the NIH/NINDS (grant nos. NS106138, NS097775) and the NIH/NIA (AG063031, AG062738), by the American Heart Association (grant no. 14GRNT20480366), by the Alzheimer’s Association NIRG award (grant no. 2016-NIRG-397149) and by an Institutional Development Award (IDeA) from the NIGMS under grant no. P20GM109040. D.A.H. is supported by awards from the NIH/NCATS (grant nos. UL1 TR001450 and TL1 TR001451) and by NIH/NINDS grant no. F30NS096868. We thank J. Costello for contributions to image analysis. We appreciate the helpful comments and discussion of M. Levy, D. Kleinfeld, A. Riegel, P. Kara and N. Bhat.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by A.Y.S., D.A.H. and A.-A.B. Experiments were conducted by D.A.H., A.-A.B., R.I.G., S.A.H., T.K. and A.Y.S. Data analysis was performed by D.A.H., A.-A.B., S.A.H., T.K., T.T., K.P.M. and A.Y.S. Statistics were performed by A.L.K., A.V.F. and D.A.H. The manuscript was written by A.Y.S. and D.A.H. with contributions from all authors.

Corresponding author

Correspondence to Andy Y. Shih.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks David Bennett, Turgay Dalkara and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24.

Reporting Summary

Supplementary Video 1

Line-scan data from ChR2-YFP mouse.

Supplementary Video 2

Line-scan data from YFP control mouse.

Supplementary Video 3

Hypercapnia-induced dilation of pre-capillary arterioles and capillaries.

Supplementary Video 4

Optogenetically induced constriction of pre-capillary arteriole followed by relaxation.

Supplementary Video 5

Optogenetically induced constriction of pre-capillary arteriole followed by relaxation (second example).

Supplementary Video 6

Optogenetically induced constriction of capillary followed by relaxation.

Supplementary Video 7

Optogenetically induced constriction of capillary followed by relaxation (second example).

Supplementary Video 8

Absence of precapillary arteriole constriction in YFP control mouse.

Supplementary Video 9

Absence of capillary constriction in YFP control mouse.

Supplementary Data 1

All data used to generate plots in the supplementary files and associated statistical analyses.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data and statistical details for Fig. 2.

Source Data Fig. 3

Source data and statistical details for Fig. 3.

Source Data Fig. 4

Source data and statistical details for Fig. 4.

Source Data Fig. 5

Source data and statistical details for Fig. 5.

Source Data Fig. 6

Source data and statistical details for Fig. 6.

Source Data Fig. 7

Source data and statistical details for Fig. 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, D.A., Berthiaume, AA., Grant, R.I. et al. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat Neurosci 24, 633–645 (2021). https://doi.org/10.1038/s41593-020-00793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-00793-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing