Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute social isolation evokes midbrain craving responses similar to hunger

An Author Correction to this article was published on 06 January 2022

This article has been updated

Abstract

When people are forced to be isolated from each other, do they crave social interactions? To address this question, we used functional magnetic resonance imaging to measure neural responses evoked by food and social cues after participants (n = 40) experienced 10 h of mandated fasting or total social isolation. After isolation, people felt lonely and craved social interaction. Midbrain regions showed selective activation to food cues after fasting and to social cues after isolation; these responses were correlated with self-reported craving. By contrast, striatal and cortical regions differentiated between craving food and craving social interaction. Across deprivation sessions, we found that deprivation narrows and focuses the brain’s motivational responses to the deprived target. Our results support the intuitive idea that acute isolation causes social craving, similar to the way fasting causes hunger.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the experimental procedures.
Fig. 2: Behavioral results.
Fig. 3: Univariate activity in response to food fasting and social isolation.
Fig. 4: Multivoxel pattern analysis.
Fig. 5: Univariate activity in response to food fasting and social isolation within the striatum.

Similar content being viewed by others

Data availability

All de-identified neuroimaging data are publicly available on OpenNeuro.org at https://doi.org/10.18112/openneuro.ds003242.v1.0.0. Summary fMRI and behavioral data are publicly available on the OSF at https://doi.org/10.17605/OSF.IO/F9CRU. Stimuli for the tasks were taken from the open image-sharing website https://www.pexels.com.

Code availability

Analysis code, code to generate the figures, is publicly available on the OSF at https://doi.org/10.17605/OSF.IO/F9CRU. Code to run the tasks with example stimuli is also publicly available on the OSF at https://doi.org/10.17605/OSF.IO/CF2RT.

Change history

References

  1. Hawkley, L. C. & Cacioppo, J. T. Loneliness and pathways to disease. Brain Behav. Immun. 17, S98–S105 (2003).

    Article  PubMed  Google Scholar 

  2. Leigh-Hunt, N. et al. An overview of systematic reviews on the public health consequences of social isolation and loneliness. Public Health 152, 157–171 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Cacioppo, J. T., Hawkley, L. C. & Thisted, R. A. Perceived social isolation makes me sad: 5-year cross-lagged analyses of loneliness and depressive symptomatology in the Chicago Health, Aging, and Social Relations Study. Psychol. Aging 25, 453–463 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang, J. et al. Social isolation in mental health. Soc. Psychiatry Psychiatr. Epidemiol. 52, 1451–1461 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cacioppo, J. T., Cacioppo, S. & Boomsma, D. I. Evolutionary mechanisms for loneliness. Cogn. Emot. 28, 3–21 (2014).

    Article  PubMed  Google Scholar 

  6. Baumeister, R. F. & Leary, M. R. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117, 497–529 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Bhanji, J. P. & Delgado, M. R. The social brain and reward: social information processing in the human striatum. Wiley Interdiscip. Rev. Cogn. Sci. 5, 61–73 (2014).

    Article  PubMed  Google Scholar 

  8. Tomova, L., Tye, K. & Saxe, R. The neuroscience of unmet social needs. Soc. Neurosci. https://doi.org/10.1080/17470919.2019.1694580 (2019).

  9. Evans, M. J. et al. Social reinforcement of operant behavior in rats: a methodological note. J. Exp. Anal. Behav. 62, 149–156 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hiura, L. C., Tan, L. & Hackenberg, T. D. To free, or not to free: social reinforcement effects in the social release paradigm with rats. Behav. Process. 152, 37–46 (2018).

    Article  Google Scholar 

  11. Angermeir, W. R. Some basic aspects of social reinforcement in albino rats. J. Comp. Physiol. Psychol. 53, 364–367 (1960).

    Article  Google Scholar 

  12. Novick, A. M. et al. The effects of early life stress on reward processing. J. Psychiatr. Res. 101, 80–103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hall, F. S. Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit. Rev. Neurobiol. 12, 129–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Orben, A., Tomova, L. & Blakemore, S.-J. The effects of social deprivation on adolescent development and mental health. Lancet Child Adolesc. Health https://doi.org/10.1016/S2352-4642(20)30186-3 (2020).

  15. Panksepp, J. & Beatty, W. W. Social deprivation and play in rats. Behav. Neural Biol. 30, 197–206 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Matthews, G. A. et al. Dorsal raphe dopamine neurons represent the experience of social isolation. Cell 164, 617–631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Volkow, NoraD. & Morales, M. The brain on drugs: from reward to addiction. Cell 162, 712–725 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Cacioppo, J. T., Norris, C. J., Decety, J., Monteleone, G. & Nusbaum, H. In the eye of the beholder: individual differences in perceived social isolation predict regional brain activation to social stimuli. J. Cogn. Neurosci. 21, 83–92 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. D’Agostino, A. E., Kattan, D. & Canli, T. An fMRI study of loneliness in younger and older adults. Soc. Neurosci. 14, 136–148 (2019).

    Article  PubMed  Google Scholar 

  20. Inagaki, T. K. et al. Yearning for connection? Loneliness is associated with increased ventral striatum activity to close others. Soc. Cogn. Affect. Neurosci. 11, 1096–1101 (2016).

    Article  PubMed  Google Scholar 

  21. Russell, D. W. UCLA Loneliness Scale (Version 3): reliability, validity, and factor structure. J. Personal. Assess. 66, 20–40 (1996).

    Article  CAS  Google Scholar 

  22. Cacioppo, J. T. et al. Lonely traits and concomitant physiological processes: the MacArthur social neuroscience studies. Int. J. Psychophysiol. 35, 143–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Dickinson, A. & Dearing, M. F. Appetitive-aversive interactions and inhibitory processes. In Mechanisms of Learning and Motivation: A memorial volume to Jerzy Konorski (eds Dickinson, A. & Boakes, R. A.) 203–231 (Erlbaum, 1979).

  24. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malik, S., McGlone, F., Bedrossian, D. & Dagher, A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7, 400–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Pursey, K. M. et al. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies. Front. Nutr. 1, 7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang, J. T. et al. Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder. Neuroimage Clin. 12, 591–599 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Duzel, E. et al. Midbrain fMRI: applications, limitations and challenges. in fMRI: From Nuclear Spins to Brain Functions (eds Uludağ, K., Uğurbil, K. & Berliner, L.) 581–609 (Springer, 2015).

  29. Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Schott, B. H. et al. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J. Neurosci. 28, 14311–14319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen, T.-vT., Ryan, R. M. & Deci, E. L. Solitude as an approach to affective self-regulation. Personal. Soc. Psychol. Bull. 44, 92–106 (2018).

    Article  Google Scholar 

  32. Thuy-vy, T. N., Werner, K. M. & Soenens, B. Embracing me-time: motivation for solitude during transition to college. Motiv. Emot. 43, 571–591 (2019).

    Article  Google Scholar 

  33. Hull, C. L. Principles of Behavior: An Introduction to Behavior Theory (Appleton-Century, 1943).

  34. Cacioppo, S. et al. A quantitative meta-analysis of functional imaging studies of social rejection. Sci. Rep. 3, 2027 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haase, L., Cerf-Ducastel, B. & Murphy, C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage 44, 1008–1021 (2009).

    Article  PubMed  Google Scholar 

  36. Mohanty, A., Gitelman, D. R., Small, D. M. & Mesulam, M. M. The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cereb. Cortex 18, 2604–2613 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goldstone, A. P. et al. Fasting biases brain reward systems towards high-calorie foods. Eur. J. Neurosci. 30, 1625–1635 (2009).

    Article  PubMed  Google Scholar 

  38. Santel, S., Baving, L., Krauel, K., Münte, T. F. & Rotte, M. Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures. Brain Res. 1114, 138–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Uher, R., Treasure, J., Heining, M., Brammer, M. J. & Campbell, I. C. Cerebral processing of food-related stimuli: Effects of fasting and gender. Behav. Brain Res. 169, 111–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fraser, S. & Nettle, D. Hunger affects social decisions in a multi-round Public Goods Game but not a single-shot Ultimatum Game. Adapt. Human Behav. Physiol. 6, 334–355 (2020).

    Article  Google Scholar 

  41. Häusser, J. A. et al. Acute hunger does not always undermine prosociality. Nat. Commun. 10, 4733 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schipper, L., Harvey, L., van der Beek, E. M. & van Dijk, G. Home alone: a systematic review and meta-analysis on the effects of individual housing on body weight, food intake and visceral fat mass in rodents. Obes. Rev. 19, 614–637 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Matthews, G. A. & Tye, K. M. Neural mechanisms of social homeostasis. Ann. N.Y. Acad. Sci. https://doi.org/10.1111/nyas.14016 (2019).

  44. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sayette, M. A. et al. The measurement of drug craving. Addiction 95, S189–S210 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hawkley, L. C. & Cacioppo, J. T. Loneliness matters: a theoretical and empirical review of consequences and mechanisms. Ann. Behav. Med. 40, 218–227 (2010).

    Article  PubMed  Google Scholar 

  47. Dubois, J. & Adolphs, R. Building a science of individual differences from fMRI. Trends Cogn. Sci. 20, 425–443 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kohls, G., Chevallier, C., Troiani, V. & Schultz, R. T. Social ‘wanting’ dysfunction in autism: neurobiological underpinnings and treatment implications. J. Neurodev. Disord. 4, 1–20 (2012).

    Article  Google Scholar 

  49. Nowland, R., Necka, E. A. & Cacioppo, J. T. Loneliness and social internet use: pathways to reconnection in a digital world? Perspect. Psychol. Sci. 13, 70–87 (2018).

    Article  PubMed  Google Scholar 

  50. Orben, A., Dienlin, T. & Przybylski, A. K. Social media’s enduring effect on adolescent life satisfaction. Proc. Natl Acad. Sci. USA 116, 10226–10228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article  PubMed  Google Scholar 

  52. Carter, B. L. & Tiffany, S. T. Meta-analysis of cue-reactivity in addiction research. Addiction 94, 327–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Stice, E., Burger, K. & Yokum, S. Caloric deprivation increases responsivity of attention and reward brain regions to intake, anticipated intake, and images of palatable foods. Neuroimage 67, 322–330 (2013).

    Article  PubMed  Google Scholar 

  54. Stevenson, R. J., Francis, H. M., Attuquayefio, T. & Ockert, C. Explicit wanting and liking for palatable snacks are differentially affected by change in physiological state, and differentially related to salivation and hunger. Physiol. Behav. 182, 101–106 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Hill, R. A. & Dunbar, R. I. M. Social network size in humans. Hum. Nat. 14, 53–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Lewis, P. A., Rezaie, R., Brown, R., Roberts, N. & Dunbar, R. I. M. Ventromedial prefrontal volume predicts understanding of others and social network size. Neuroimage 57, 1624–1629 (2011).

    Article  PubMed  Google Scholar 

  57. Norbeck, J. S., Lindsey, A. M. & Carrieri, V. L. The development of an instrument to measure social support. Nurs. Res. 30, 264–269 (1981).

    CAS  PubMed  Google Scholar 

  58. Von Der Heide, R., Vyas, G. & Olson, I. R. The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions. Soc. Cogn. Affect. Neurosci. 9, 1962–1972 (2014).

    Article  Google Scholar 

  59. Duzel, E. et al. Functional imaging of the human dopaminergic midbrain. Trends Neurosci. 32, 321–328 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Triantafyllou, C. et al. Comparison of physiological noise at 1.5T, 3T and 7T and optimization of fMRI acquisition parameters. Neuroimage 26, 243–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Krebs, R. M., Heipertz, D., Schuetze, H. & Duzel, E. Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: evidence from high-resolution fMRI. Neuroimage 58, 647–655 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Bunzeck, N. & Duzel, E. Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 51, 369–379 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Schultz, W. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Curr. Opin. Neurobiol. 14, 139–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Day, J. J., Roitman, M. F., Wightman, R. M. & Carelli, R. M. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci. 10, 1020–1028 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Overton, P. & Clark, D. Burst firing in midbrain dopaminergic neurons. Brain Res. Rev. 25, 312–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform. 5, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Esteban, O., Markiewicz, C.J. & Blair, R.W. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Tustison, N. J. et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99, 166–179 (2014).

    Article  PubMed  Google Scholar 

  71. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Jezzard, P. & Balaban, R. S. Correction for geometric distortion in echo planar images from B0 field variations. Magn. Reson. Med. 34, 65–73 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article  PubMed  Google Scholar 

  76. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007).

    Article  PubMed  Google Scholar 

  77. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).

    Article  PubMed  Google Scholar 

  78. Smith, S. M. & Brady, J. M. SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. 23, 45–78 (1997).

    Article  Google Scholar 

  79. Esteban, O. et al. MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE 12, e0184661 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Vedhara, K., Hyde, J., Gilchrist, I. D., Tytherleigh, M. & Plummer, S. Acute stress, memory, attention and cortisol. Psychoneuroendocrinology 25, 535–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl Neuroimage 62, 782–790 (2012).

    Article  PubMed  Google Scholar 

  82. Chowdhury, R., Lambert, C., Dolan, R. J. & Düzel, E. Parcellation of the human substantia nigra based on anatomical connectivity to the striatum. Neuroimage 81, 191–198 (2013).

    Article  PubMed  Google Scholar 

  83. Haber, S. N., Fudge, J. L. & McFarland, N. R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Noori, H. R., Cosa Linan, A. & Spanagel, R. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: a comprehensive meta-analysis. Eur. Neuropsychopharmacol. 26, 1419–1430 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Tang, D. W., Fellows, L. K., Small, D. M. & Dagher, A. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol. Behav. 106, 317–324 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Kuhn, S. & Gallinat, J. Common biology of craving across legal and illegal drugs—a quantitative meta-analysis of cue-reactivity brain response. Eur. J. Neurosci. 33, 1318–1326 (2011).

    Article  PubMed  Google Scholar 

  87. Barr, D. J., Levy, R., Scheepers, C. & Tily, H J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Memory Lang. 68, 255–278 (2013).

    Article  Google Scholar 

  88. Hausman, J. A. & Wise, D. A. Social experimentation, truncated distributions, and efficient estimation. Econometrica 45, 919–938 (1977).

  89. Im, J., Ahn, E., Beck, N., Kim, J. K. & Park, T. Correlation estimation with singly truncated bivariate data. Stat. Med. 36, 1977–1988 (2017).

    PubMed  Google Scholar 

  90. Hanke, M. et al. PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7, 37–53 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hendriks, M. H. A., Daniels, N., Pegado, F. & Op de Beeck, H. P. The effect of spatial smoothing on representational similarity in a simple motor paradigm. Front. Neurol. 8, 222 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kamitani, Y. & Sawahata, Y. Spatial smoothing hurts localization but not information: pitfalls for brain mappers. Neuroimage 49, 1949–1952 (2010).

    Article  PubMed  Google Scholar 

  93. Op de Beeck, H. P. Against hyperacuity in brain reading: spatial smoothing does not hurt multivariate fMRI analyses? Neuroimage 49, 1943–1948 (2010).

    Article  PubMed  Google Scholar 

  94. Stelzer, J., Chen, Y. & Turner, R. Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage 65, 69–82 (2013).

    Article  PubMed  Google Scholar 

  95. Allefeld, C., Görgen, K. & Haynes, J.-D. Valid population inference for information-based imaging: from the second-level t-test to prevalence inference. Neuroimage 141, 378–392 (2016).

    Article  PubMed  Google Scholar 

  96. Friston, K. J., Holmes, A., Poline, J. B., Price, C. J. & Frith, C. D. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4, 223–235 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Eklund, A., Knutsson, H. & Nichols, T. E. Cluster failure revisited: impact of first level design and physiological noise on cluster false positive rates. Hum. Brain Mapp. 40, 2017–2032 (2019).

    Article  PubMed  Google Scholar 

  98. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl Acad. Sci. USA 113, 7900–7905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was carried out at the Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research at MIT. We thank K. Sottilare, M. Humphreys, J. Huettig, R. Ezzo, J. Weddington, J. Kennedy, M. Hung and I. Nichoson for help with data collection and thank D. Tamir, J. Mildner, H. Richardson, S. Liu, E. Duzel, N. Kanwisher and D. Nettle for advice and discussion. We also thank A. Gupta for his help making the fMRI dataset publicly available. Support for this project came from an SFARI Explorer Grant from the Simons Foundation (grant no. 597310 to R.S.), a MINT grant from the McGovern Institute (grant no. 1496911to R.S.), an NIH Pioneer Award (no. DP1-AT009925 to K.M.T.), a Max Kade Foundation fellowship (to L.T.), an Erwin Schroedinger Fellowship by the Austrian Science Fund (no. J4326 to L.T.) and an NIH shared instrumentation grant (no. 1S10OD021569-01). R.S. participated in the Center for Brains, Minds and Machines, funded by an NSF STC award (CCF-1231216).

Author information

Authors and Affiliations

Authors

Contributions

L.T. and R.S. designed the study with input from K.M.T. and G.A.M. A.T. provided support in optimizing the scanning parameters and during fMRI data collection. L.T. collected the data with support from K.L.W. L.T. analyzed the data with support from T.T. and R.S. L.T. and R.S. wrote the manuscript, and all the authors provided feedback on the final version.

Corresponding author

Correspondence to Livia Tomova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Anna Konova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Supplementary Tables 1–23.

Reporting summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomova, L., Wang, K.L., Thompson, T. et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nat Neurosci 23, 1597–1605 (2020). https://doi.org/10.1038/s41593-020-00742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-00742-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing