Recent advances in neurotechnologies with broad potential for neuroscience research

Abstract

Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Advanced neuroengineering and neurotechnology platforms that support diverse methods in neuroscience.
Fig. 2: Neural interfaces and materials for electrical recording and stimulation.
Fig. 3: Uses of advanced platforms for electrical recording and stimulation in neuroscience research with small and large animal models.
Fig. 4: Neural interfaces for optical stimulation, recording and imaging.
Fig. 5: Uses of advanced platforms for optical recording and stimulation in neuroscience research with small animal models.
Fig. 6: Neural interfaces for programmed pharmacology and other advanced functions in neuromodulation.
Fig. 7: Uses of advanced platforms for programmed drug delivery in neuroscience research with animal models.
Fig. 8: Emerging strategies for sensing of chemical biomarkers in vivo, and associated opportunities for advanced neurotechnology platforms.

References

  1. 1.

    Brenner, S. & Sejnowski, T. J. Understanding the human brain. Science 334, 567 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Bouthour, W. et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat. Rev. Neurol. 15, 343–352 (2019).

    PubMed  Google Scholar 

  3. 3.

    Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hong, G. et al. A method for single-neuron chronic recording from the retina in awake mice. Science 360, 1447–1451 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Muskovich, M. & Bettinger, C. J. Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv. Healthc. Mater. 1, 248–266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Rochford, A. E., Carnicer-Lombarte, A., Curto, V. F., Malliaras, G. G. & Barone, D. G. When bio meets technology: biohybrid neural interfaces. Adv. Mater. 32, e1903182 (2020).

    PubMed  Google Scholar 

  7. 7.

    Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat. Commun. 8, 1802 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Wu, X. et al. Sono-optogenetics facilitated by a circulationdelivered rechargeable light source for minimally invasive optogenetics. Proc. Natl. Acad. Sci. USA 116, 26332–26342 (2019).

    CAS  Google Scholar 

  9. 9.

    Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Zhang, M. et al. Bright quantum dots emitting at 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).

    CAS  PubMed  Google Scholar 

  11. 11.

    Liu, J. et al. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nat. Nanotechnol. 15, 321–330 (2020).

    CAS  PubMed  Google Scholar 

  12. 12.

    Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020).

    CAS  PubMed  Google Scholar 

  13. 13.

    Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    CAS  Google Scholar 

  16. 16.

    Jastrzebska‐Perfect, P. et al. Translational neuroelectronics. Adv. Funct. Mater. 30, 1909165 (2020).

    Google Scholar 

  17. 17.

    Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Viswam, V., Obien, M. E. J., Franke, F., Frey, U. & Hierlemann, A. Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies. Front. Neurosci. 13, 385 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30, e1706520 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS  PubMed  Google Scholar 

  22. 22.

    Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Qi, D. et al. Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. Adv. Mater. 29, 1–10 (2017).

    Google Scholar 

  24. 24.

    Guo, L., Ma, M., Zhang, N., Langer, R. & Anderson, D. G. Stretchable polymeric multielectrode array for conformal neural interfacing. Adv. Mater. 26, 1427–1433 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Aqrawe, Z., Montgomery, J., Travas-Sejdic, J. & Svirskis, D. Conducting polymers for neuronal microelectrode array recording and stimulation. Sens. Actuators B Chem. 257, 753–765 (2018).

    CAS  Google Scholar 

  26. 26.

    Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    CAS  PubMed  Google Scholar 

  27. 27.

    Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    CAS  PubMed  Google Scholar 

  28. 28.

    Escabí, M. A. et al. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. J. Neurophysiol. 112, 1566–1583 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Chiang, C.-H. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 12, eaay4682 (2020).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38, 758–768 (1991).

    CAS  PubMed  Google Scholar 

  32. 32.

    Drake, K. L., Wise, K. D., Farraye, J., Anderson, D. J. & BeMent, S. L. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35, 719–732 (1988).

    CAS  PubMed  Google Scholar 

  33. 33.

    Mora Lopez, C. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 µm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 11, 510–522 (2017).

    PubMed  Google Scholar 

  34. 34.

    Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Scholvin, J. et al. Close-packed silicon microelectrodes for scalable spatially oversampled neural recording. IEEE Trans. Biomed. Eng. 63, 120–130 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kwon, K. Y., Sirowatka, B., Weber, A. & Li, W. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. IEEE Trans. Biomed. Circuits Syst. 7, 593–600 (2013).

    PubMed  Google Scholar 

  37. 37.

    Park, D. W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lee, J., Ozden, I., Song, Y. K. & Nurmikko, A. V. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording. Nat. Methods 12, 1157–1162 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Qiang, Y. et al. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci. Adv. 4, t0626 (2018).

    Google Scholar 

  40. 40.

    Lee, W. et al. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl. Acad. Sci. USA 114, 10554–10559 (2017).

    CAS  PubMed  Google Scholar 

  41. 41.

    Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    PubMed  Google Scholar 

  43. 43.

    Lewis, C. M., Bosman, C. A. & Fries, P. Recording of brain activity across spatial scales. Curr. Opin. Neurobiol. 32, 68–77 (2015).

    CAS  PubMed  Google Scholar 

  44. 44.

    Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  47. 47.

    Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    CAS  PubMed  Google Scholar 

  49. 49.

    Miyamoto, D. & Murayama, M. The fiber-optic imaging and manipulation of neural activity during animal behavior. Neurosci. Res. 103, 1–9 (2016).

    PubMed  Google Scholar 

  50. 50.

    Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019).

    CAS  PubMed  Google Scholar 

  51. 51.

    Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci. 20, 1180–1188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Pisanello, F. et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron 82, 1245–1254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Segev, E. et al. Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics. Neurophotonics 4, 011002 (2017).

    PubMed  Google Scholar 

  54. 54.

    Zorzos, A. N., Boyden, E. S. & Fonstad, C. G. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35, 4133–4135 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Buzsáki, G. et al. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86, 92–105 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Seymour, J. P., Wu, F., Wise, K. D. & Yoon, E. State-of-the-art MEMS and microsystem tools for brain research. Microsyst. Nanoeng. 3, 16066 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Won, S. M. et al. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 30, e1800534 (2018).

    PubMed  Google Scholar 

  59. 59.

    Qazi, R., Kim, C. Y., Byun, S. H. & Jeong, J. W. Microscale inorganic LED based wireless neural systems for chronic in vivo optogenetics. Front. Neurosci. 12, 764 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Samineni, V. K. et al. Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain. Sci. Rep. 7, 15865 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 10, 5742 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108–2116 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl. Acad. Sci. USA 115, E1374–E1383 (2018).

    CAS  PubMed  Google Scholar 

  68. 68.

    Hibberd, T. J. et al. Optogenetic Induction of Colonic Motility in Mice. Gastroenterology 155, 514–528.e6 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Gutruf, P. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 1, 652–660 (2018).

    Google Scholar 

  71. 71.

    Burton, A. et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl. Acad. Sci. USA 117, 2835–2845 (2020).

    CAS  PubMed  Google Scholar 

  72. 72.

    Zhang, H. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, w0873 (2019).

    Google Scholar 

  73. 73.

    Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    CAS  PubMed  Google Scholar 

  74. 74.

    Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods 15, 429–432 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017).

    CAS  PubMed  Google Scholar 

  77. 77.

    Benninger, R. K. P. & Piston, D. W. Two-photon excitation microscopy for the study of living cells and tissues. Curr. Protoc. Cell Biol. Chapter 4, 1–24 (2013).

    Google Scholar 

  78. 78.

    Wang, T. et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nat. Methods 15, 789–792 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179, 1590–1608.e23 (2019).

    CAS  PubMed  Google Scholar 

  80. 80.

    Yang, W., Carrillo-Reid, L., Bando, Y., Peterka, D. S. & Yuste, R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife 7, 1–21 (2018).

    Google Scholar 

  81. 81.

    Packer, A. M., Russell, L. E., Dalgleish, H. W. P. & Häusser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).

    CAS  PubMed  Google Scholar 

  82. 82.

    Acker, L. C., Pino, E. N., Boyden, E. S. & Desimone, R. Large volume, behaviorally-relevant illumination for optogenetics in nonhuman primates. J. Vis. Exp. 2017, 56330 (2017).

    Google Scholar 

  83. 83.

    Acker, L., Pino, E. N., Boyden, E. S. & Desimone, R. FEF inactivation with improved optogenetic methods. Proc. Natl. Acad. Sci. USA 113, E7297–E7306 (2016).

    CAS  PubMed  Google Scholar 

  84. 84.

    English, D. F. et al. Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal networks. Neuron 96, 505–520.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Scott, B. B. et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope. Neuron 100, 1045–1058.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Kondo, T. et al. Calcium transient dynamics of neural ensembles in the primary motor cortex of naturally behaving monkeys. Cell Rep. 24, 2191–2195.e4 (2018).

    CAS  PubMed  Google Scholar 

  87. 87.

    Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods 14, 1107–1114 (2017).

    CAS  PubMed  Google Scholar 

  88. 88.

    Lee, H. J. et al. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery. Lab Chip 15, 1590–1597 (2015).

    CAS  PubMed  Google Scholar 

  89. 89.

    Shin, H. et al. Neural probes with multi-drug delivery capability. Lab Chip 15, 3730–3737 (2015).

    CAS  PubMed  Google Scholar 

  90. 90.

    Lee, W. H., Slaney, T. R., Hower, R. W. & Kennedy, R. T. Microfabricated sampling probes for in vivo monitoring of neurotransmitters. Anal. Chem. 85, 3828–3831 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Shin, H. et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat. Commun. 10, 3777 (2019).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Jeong, J. W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Zhang, Y. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. USA 116, 21427–21437 (2019).

    CAS  PubMed  Google Scholar 

  95. 95.

    Noh, K. N. et al. Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small 14, 1–8 (2018).

    Google Scholar 

  96. 96.

    Qazi, R. et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat. Biomed. Eng. 3, 655–669 (2019).

    PubMed  Google Scholar 

  97. 97.

    Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5, w5296 (2019).

    Google Scholar 

  98. 98.

    McCall, J. G. et al. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat. Protoc. 12, 219–237 (2017).

    CAS  PubMed  Google Scholar 

  99. 99.

    Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M. B. & Moser, E. I. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 1295–1298 (2004).

    CAS  PubMed  Google Scholar 

  100. 100.

    Pereira, A. et al. Processing of tactile information by the hippocampus. Proc. Natl. Acad. Sci. USA 104, 18286–18291 (2007).

    CAS  PubMed  Google Scholar 

  101. 101.

    Felix-Ortiz, A. C. et al. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79, 658–664 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Devine, D. P. & Wise, R. A. Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J. Neurosci. 14, 1978–1984 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L. & Stuber, G. D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517–1521 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    O’Banion, C. P. & Yasuda, R. Fluorescent sensors for neuronal signaling. Curr. Opin. Neurobiol. 63, 31–41 (2020).

    PubMed  Google Scholar 

  105. 105.

    Shen, Y., Nasu, Y., Shkolnikov, I., Kim, A. & Campbell, R. E. Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: progress and prospects. Neurosci. Res. 152, 3–14 (2020).

    PubMed  Google Scholar 

  106. 106.

    Ganesana, M., Lee, S. T., Wang, Y. & Venton, B. J. Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods. Anal. Chem. 89, 314–341 (2017).

    CAS  PubMed  Google Scholar 

  107. 107.

    Tavakolian-Ardakani, Z., Hosu, O., Cristea, C., Mazloum-Ardakani, M. & Marrazza, G. Latest trends in electrochemical sensors for neurotransmitters: a review. Sensors (Basel) 19, 2037 (2019).

    CAS  Google Scholar 

  108. 108.

    Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Ward, W. W. & Bokman, S. H. Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 21, 4535–4540 (1982).

    CAS  PubMed  Google Scholar 

  110. 110.

    Kostyuk, A. I., Demidovich, A. D., Kotova, D. A., Belousov, V. V. & Bilan, D. S. Circularly permuted fluorescent protein-based indicators: history, principles, and classification. Int. J. Mol. Sci. 20, 4200 (2019).

    PubMed Central  Google Scholar 

  111. 111.

    Truong, K. et al. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat. Struct. Biol. 8, 1069–1073 (2001).

    CAS  PubMed  Google Scholar 

  112. 112.

    Lee, Y.-T., He, L. & Zhou, Y. Expanding the chemogenetic toolbox by circular permutation. J. Mol. Biol. 432, 3127–3136 (2020).

    CAS  PubMed  Google Scholar 

  113. 113.

    Bajar, B. T., Wang, E. S., Zhang, S., Lin, M. Z. & Chu, J. A guide to fluorescent protein FRET pairs. Sensors (Basel) 16, 1488 (2016).

    Google Scholar 

  114. 114.

    Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2019).

    CAS  PubMed  Google Scholar 

  117. 117.

    Helassa, N. et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl. Acad. Sci. USA 115, 5594–5599 (2018).

    CAS  PubMed  Google Scholar 

  118. 118.

    Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Lobas, M. A. et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10, 711 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Zhang, W. H. et al. Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat. Chem. Biol. 14, 861–869 (2018).

    CAS  PubMed  Google Scholar 

  122. 122.

    Stoeber, M. et al. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98, 963–976.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Chernov, K. G., Redchuk, T. A., Omelina, E. S. & Verkhusha, V. V. Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem. Rev. 117, 6423–6446 (2017).

    CAS  PubMed  Google Scholar 

  124. 124.

    Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Gong, X. et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 107, 38–51.e8 (2020).

    CAS  PubMed  Google Scholar 

  126. 126.

    Ribeiro, J. A., Fernandes, P. M. V., Pereira, C. M. & Silva, F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 160, 653–679 (2016).

    CAS  PubMed  Google Scholar 

  127. 127.

    Bucher, E. S. & Wightman, R. M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 8, 239–261 (2015).

    CAS  Google Scholar 

  128. 128.

    Liu, C. et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst. Nanoeng. 6, 64 (2020).

    CAS  Google Scholar 

  129. 129.

    Xiao, Y., Piorek, B. D., Plaxco, K. W. & Heeger, A. J. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J. Am. Chem. Soc. 127, 17990–17991 (2005).

    CAS  PubMed  Google Scholar 

  130. 130.

    Schoukroun-Barnes, L. R. et al. Reagentless, structure-switching, electrochemical aptamer-based sensors. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 9, 163–181 (2016).

    CAS  Google Scholar 

  131. 131.

    Taylor, I. M. et al. Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo. J. Mater. Chem. B Mater. Biol. Med. 5, 2445–2458 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Musk, E. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Leopold, A. V., Shcherbakova, D. M. & Verkhusha, V. V. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications. Front. Cell. Neurosci. 13, 474 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Arroyo-Currás, N. et al. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl. Acad. Sci. USA 114, 645–650 (2017).

    PubMed  Google Scholar 

  136. 136.

    Strumwasser, F. Long-term recording’ from single neurons in brain of unrestrained mammals. Science 127, 469–470 (1958).

    CAS  PubMed  Google Scholar 

  137. 137.

    McNaughton, B. L., O’Keefe, J. & Barnes, C. A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8, 391–397 (1983).

    CAS  PubMed  Google Scholar 

  138. 138.

    Hodgkin, A. L. & Huxley, A. F. Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939).

    Google Scholar 

  139. 139.

    Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    CAS  PubMed  Google Scholar 

  141. 141.

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed  Google Scholar 

  142. 142.

    Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Banghart, M. R. & Sabatini, B. L. Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 73, 249–259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Hüll, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018).

    PubMed  Google Scholar 

  145. 145.

    Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Magnus, C. J. et al. Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333, 1292–1296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, 1–24 (2016).

    Google Scholar 

  149. 149.

    Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Zou, P. et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun. 5, 4625 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Querrey Simpson Institute for Bioelectronics at Northwestern University.

Author information

Affiliations

Authors

Contributions

A.V.-G., Y.Y., A.J.B., and J.A.R. cowrote and co-edited the manuscript.

Corresponding author

Correspondence to John A. Rogers.

Ethics declarations

Competing interests

J.A.R. is cofounder in a company, Neurolux Inc., that offers related technology products to the neuroscience community.

Additional information

Peer review information Nature Neuroscience thanks Sebastian Haesler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Guardado, A., Yang, Y., Bandodkar, A.J. et al. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 23, 1522–1536 (2020). https://doi.org/10.1038/s41593-020-00739-8

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing