Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo

Abstract

Brain development is an extraordinarily complex process achieved through the spatially and temporally regulated release of key patterning factors. In vitro neurodevelopmental models seek to mimic these processes to recapitulate the steps of tissue fate acquisition and morphogenesis. Classic two-dimensional neural cultures present higher homogeneity but lower complexity compared to the brain. Brain organoids instead have more advanced cell composition, maturation and tissue architecture. They can thus be considered at the interface of in vitro and in vivo neurobiology, and further improvements in organoid techniques are continuing to narrow the gap with in vivo brain development. Here we describe these efforts to recapitulate brain development in neural organoids and focus on their applicability for disease modeling, evolutionary studies and neural network research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Signaling molecules acting during in vivo neurodevelopment and the cerebral organoid protocol.
Fig. 2: Cerebral organoid at the interface of in vitro and in vivo.
Fig. 3: Main applications of cerebral organoids.

References

  1. 1.

    Mariani, J. et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Marchetto, M. C. et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry 22, 820–835 (2017).

    CAS  PubMed  Google Scholar 

  3. 3.

    Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    McRae, J. F. et al. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).

    CAS  Google Scholar 

  5. 5.

    Defelipe, J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5, 29 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl. Acad. Sci. USA 103, 12138–12143 (2006).

    CAS  PubMed  Google Scholar 

  7. 7.

    Herculano-Houzel, S., Collins, C. E., Wong, P. & Kaas, J. H. Cellular scaling rules for primate brains. Proc. Natl. Acad. Sci. USA 104, 3562–3567 (2007).

    CAS  PubMed  Google Scholar 

  8. 8.

    Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Malatesta, P., Hartfuss, E. & Götz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  10. 10.

    Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    CAS  PubMed  Google Scholar 

  11. 11.

    Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    CAS  PubMed  Google Scholar 

  12. 12.

    Howard, B. M. et al. Radial glia cells in the developing human brain. Neuroscientist 14, 459–473 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Smart, I. H. M., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    CAS  PubMed  Google Scholar 

  15. 15.

    Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wang, X., Tsai, J. W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555–561 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hill, R. S. & Walsh, C. A. Molecular insights into human brain evolution. Nature 437, 64–67 (2005).

    CAS  PubMed  Google Scholar 

  18. 18.

    Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483–496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bakken, T. E. et al. A comprehensive transcriptional map of primate brain development. Nature 535, 367–375 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. USA 110, 20284–20289 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    CAS  PubMed  Google Scholar 

  25. 25.

    Paşca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Taverna, E., Götz, M. & Huttner, W. B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30, 465–502 (2014).

    CAS  PubMed  Google Scholar 

  28. 28.

    Götz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    PubMed  Google Scholar 

  29. 29.

    Bystron, I., Blakemore, C. & Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nat. Rev. Neurosci. 9, 110–122 (2008).

    CAS  PubMed  Google Scholar 

  30. 30.

    Fietz, S. A. & Huttner, W. B. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr. Opin. Neurobiol. 21, 23–35 (2011).

    CAS  PubMed  Google Scholar 

  31. 31.

    Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev. 20, 327–348 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Angevine, J. B. Jr. & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    PubMed  Google Scholar 

  33. 33.

    Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974).

    CAS  PubMed  Google Scholar 

  34. 34.

    Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    CAS  PubMed  Google Scholar 

  35. 35.

    Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    CAS  PubMed  Google Scholar 

  36. 36.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6, 88–95 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bain, G., Kitchens, D., Yao, M., Huettner, J. E. & Gottlieb, D. I. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357 (1995).

    CAS  PubMed  Google Scholar 

  39. 39.

    Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    CAS  PubMed  Google Scholar 

  40. 40.

    Zhang, S.-C., Wernig, M., Duncan, I. D., Brüstle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

    CAS  PubMed  Google Scholar 

  41. 41.

    Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012). S1.

    CAS  PubMed  Google Scholar 

  42. 42.

    Edri, R. et al. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nat. Commun. 6, 6500 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    CAS  PubMed  Google Scholar 

  44. 44.

    Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    CAS  PubMed  Google Scholar 

  45. 45.

    Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    CAS  PubMed  Google Scholar 

  46. 46.

    Tanaka, Y., Cakir, B., Xiang, Y., Sullivan, G. J. & Park, I. H. Synthetic analyses of single-cell transcriptomes from multiple brain organoids and fetal brain. Cell Rep. 30, 1682–1689.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl. Acad. Sci. USA 112, 15672–15677 (2015).

    CAS  PubMed  Google Scholar 

  48. 48.

    Luo, C. et al. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 17, 3369–3384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Amiri, A. et al. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362, eaat6720 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756.e17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Hemmati-Brivanlou, A. & Melton, D. A. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614 (1992).

    CAS  PubMed  Google Scholar 

  56. 56.

    Hemmati-Brivanlou, A. & Melton, D. A. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281 (1994).

    CAS  PubMed  Google Scholar 

  57. 57.

    Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    CAS  PubMed  Google Scholar 

  58. 58.

    Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    CAS  PubMed  Google Scholar 

  59. 59.

    Verani, R. et al. Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cells differentiating in response to retinoic acid. J. Neurochem. 100, 242–250 (2007).

    CAS  PubMed  Google Scholar 

  60. 60.

    Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).

    CAS  PubMed  Google Scholar 

  62. 62.

    McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    CAS  PubMed  Google Scholar 

  63. 63.

    Dickinson, M. E., Selleck, M. A. J., McMahon, A. P. & Bronner-Fraser, M. Dorsalization of the neural tube by the non-neural ectoderm. Development 121, 2099–2106 (1995).

    CAS  PubMed  Google Scholar 

  64. 64.

    Liem, K. F. Jr., Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    CAS  PubMed  Google Scholar 

  65. 65.

    Saint-Jeannet, J. P., He, X., Varmus, H. E. & Dawid, I. B. Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc. Natl. Acad. Sci. USA 94, 13713–13718 (1997).

    CAS  PubMed  Google Scholar 

  66. 66.

    Sanes, D.H., Reh, T.A. & Harris, W.A. Development of the Nervous System. (Elsevier, 2006).

  67. 67.

    Sakaguchi, H. et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat. Commun. 6, 8896 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Pellegrini, L. et al. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 369, eaaz5626 (2020).

    CAS  PubMed  Google Scholar 

  69. 69.

    Subramanian, L., Remedios, R., Shetty, A. & Tole, S. Signals from the edges: the cortical hem and antihem in telencephalic development. Semin. Cell Dev. Biol. 20, 712–718 (2009).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  71. 71.

    Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Ozair, M. Z. et al. hPSC modeling reveals that fate selection of cortical deep projection neurons occurs in the subplate. Cell Stem Cell 23, 60–73.e6 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Qian, X. et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26, 766–781.e9 (2020).

    CAS  PubMed  Google Scholar 

  74. 74.

    Abu-Khalil, A., Fu, L., Grove, E. A., Zecevic, N. & Geschwind, D. H. Wnt genes define distinct boundaries in the developing human brain: implications for human forebrain patterning. J. Comp. Neurol. 474, 276–288 (2004).

    CAS  PubMed  Google Scholar 

  75. 75.

    Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743–751 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Levenstein, M. E. et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24, 568–574 (2006).

    CAS  PubMed  Google Scholar 

  78. 78.

    Garcion, E., Halilagic, A., Faissner, A. & ffrench-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423–3432 (2004).

    CAS  PubMed  Google Scholar 

  79. 79.

    Siegenthaler, J. A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Long, K. R. & Huttner, W. B. How the extracellular matrix shapes neural development. Open Biol. 9, 180216 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Subramanian, L., Bershteyn, M., Paredes, M. F. & Kriegstein, A. R. Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat. Commun. 8, 14167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Frotscher, M. Cajal-Retzius cells, Reelin, and the formation of layers. Curr. Opin. Neurobiol. 8, 570–575 (1998).

    CAS  PubMed  Google Scholar 

  84. 84.

    Renner, M. et al. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36, 1316–1329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Watanabe, M. et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 21, 517–532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Giandomenico, S. L. et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    CAS  PubMed  Google Scholar 

  88. 88.

    Saito, T. et al. Neocortical layer formation of human developing brains and lissencephalies: consideration of layer-specific marker expression. Cereb. Cortex 21, 588–596 (2011).

    PubMed  Google Scholar 

  89. 89.

    Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Marton, R. M. et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat. Neurosci. 22, 484–491 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Ma, T. et al. Subcortical origins of human and monkey neocortical interneurons. Nat. Neurosci. 16, 1588–1597 (2013).

    CAS  PubMed  Google Scholar 

  95. 95.

    Ormel, P. R. et al. Microglia innately develop within cerebral organoids. Nat. Commun. 9, 4167 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Lancaster, M. A. & Huch, M. Disease modeling in human organoids. Dis. Model. Mech. 12, dmm039347 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Li, Y. et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385–396.e3 (2017).

    PubMed  Google Scholar 

  101. 101.

    Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Dang, J. et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258–265 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016).

    CAS  PubMed  Google Scholar 

  104. 104.

    Zhou, T. et al. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21, 274–283.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Gonzalez, C. et al. Modeling amyloid beta and tau pathology in human cerebral organoids. Mol. Psychiatry 23, 2363–2374 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Fischer, J., Heide, M. & Huttner, W. B. Genetic modification of brain organoids. Front. Cell. Neurosci. 13, 558 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H. & Reiner, O. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Iefremova, V. et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep. 19, 50–59 (2017).

    CAS  PubMed  Google Scholar 

  110. 110.

    Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2010).

    CAS  PubMed  Google Scholar 

  111. 111.

    Rubenstein, J. L. R. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Mora-Bermúdez, F. et al. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. eLife 5, e18683 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Wunderlich, S. et al. Primate iPS cells as tools for evolutionary analyses. Stem Cell Res. 12, 622–629 (2014).

    PubMed  Google Scholar 

  114. 114.

    Dannemann, M. et al. Human stem cell resources are an inroad to neandertal dna functions. Stem Cell Rep. 15, 214–225 (2020).

    CAS  Google Scholar 

  115. 115.

    Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, and development. Cell 170, 226–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D. & Livesey, F. J. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18, 467–480 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    CAS  PubMed  Google Scholar 

  118. 118.

    Kelava, I. & Lancaster, M. A. Stem cell models of human brain development. Cell Stem Cell 18, 736–748 (2016).

    CAS  PubMed  Google Scholar 

  119. 119.

    Cederquist, G. Y. et al. Specification of positional identity in forebrain organoids. Nat. Biotechnol. 37, 436–444 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Kim, J. Y. et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J. Biotechnol. 205, 24–35 (2015).

    CAS  PubMed  Google Scholar 

  121. 121.

    Park, S. E., Georgescu, A. & Huh, D. Organoids-on-a-chip. Science 364, 960–965 (2019).

    CAS  PubMed  Google Scholar 

  122. 122.

    Takebe, T. et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16, 556–565 (2015).

    CAS  PubMed  Google Scholar 

  123. 123.

    van Duinen, V., Trietsch, S. J., Joore, J., Vulto, P. & Hankemeier, T. Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35, 118–126 (2015).

    PubMed  Google Scholar 

  124. 124.

    Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    CAS  PubMed  Google Scholar 

  126. 126.

    Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. M. & Kuehn, M. R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).

    CAS  PubMed  Google Scholar 

  128. 128.

    Schier, A. F. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589–621 (2003).

    CAS  PubMed  Google Scholar 

  129. 129.

    Mukhopadhyay, M. et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell 1, 423–434 (2001).

    CAS  PubMed  Google Scholar 

  130. 130.

    Rubenstein, J. & Rakic, P. Patterning and Cell Type Specification in the Developing CNS and PNS (Elsevier, 2013).

  131. 131.

    Amaya, E., Musci, T. J. & Kirschner, M. W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270 (1991).

    CAS  PubMed  Google Scholar 

  132. 132.

    Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    CAS  PubMed  Google Scholar 

  133. 133.

    Crossley, P. H., Martinez, S. & Martin, G. R. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68 (1996).

    CAS  PubMed  Google Scholar 

  134. 134.

    Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    CAS  PubMed  Google Scholar 

  135. 135.

    Blumberg, B. et al. An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, 373–379 (1997).

    CAS  PubMed  Google Scholar 

  136. 136.

    Conlon, F. L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928 (1994).

    CAS  PubMed  Google Scholar 

  137. 137.

    Lamb, T. M. et al. Neural induction by the secreted polypeptide noggin. Science 262, 713–718 (1993).

    CAS  PubMed  Google Scholar 

  138. 138.

    Sasai, Y. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Hemmati-Brivanlou, A., Kelly, O. G. & Melton, D. A. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295 (1994).

    CAS  PubMed  Google Scholar 

  140. 140.

    Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Zimmerman, L. B., De Jesús-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    CAS  PubMed  Google Scholar 

  142. 142.

    Fainsod, A. et al. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech. Dev. 63, 39–50 (1997).

    CAS  PubMed  Google Scholar 

  143. 143.

    Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. & Stern, C. D. Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74–78 (2000).

    CAS  PubMed  Google Scholar 

  144. 144.

    O’Rahilly, R. & Müller, F. The Embryonic Human Brain: an Atlas of Developmental Stages. (Wiley, 2005).

  145. 145.

    Ohkubo, Y., Chiang, C. & Rubenstein, J. L. R. Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111, 1–17 (2002).

    CAS  PubMed  Google Scholar 

  146. 146.

    Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    CAS  PubMed  Google Scholar 

  147. 147.

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  148. 148.

    Shiri, Z., Simorgh, S., Naderi, S. & Baharvand, H. Optogenetics in the era of cerebral organoids. Trends Biotechnol. 37, 1282–1294 (2019).

    CAS  PubMed  Google Scholar 

  149. 149.

    Yoon, S. J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).

    CAS  PubMed  Google Scholar 

  150. 150.

    Takemura, S. et al. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. eLife 6, e24394 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Lancaster lab for helpful discussions. Work in the Lancaster lab is supported by the Medical Research Council (MC_UP_1201/9) and the European Research Council (ERC STG 757710).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Madeline A. Lancaster.

Ethics declarations

Competing interests

M.A.L. is an inventor on several brain organoid patents, as well as co-founder and scientific advisor of a:head bio AG.

Additional information

Peer review information Nature Neuroscience thanks Ali Brivanlou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiaradia, I., Lancaster, M.A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci 23, 1496–1508 (2020). https://doi.org/10.1038/s41593-020-00730-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing