Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesophasic organization of GABAA receptors in hippocampal inhibitory synapses

Abstract

Information processing in the brain depends on specialized organization of neurotransmitter receptors and scaffolding proteins within the postsynaptic density. However, how these molecules are organized in situ remains largely unknown. In this study, template-free classification of oversampled sub-tomograms was used to analyze cryo-electron tomograms of hippocampal synapses. We identified type-A GABA receptors (GABAARs) in inhibitory synapses and determined their in situ structure at 19-Å resolution. These receptors are organized hierarchically: from GABAAR super-complexes with a preferred inter-receptor distance of 11 nm but variable relative angles, through semi-ordered, two-dimensional receptor networks with reduced Voronoi entropy, to mesophasic assembly with a sharp phase boundary. These assemblies likely form via interactions among postsynaptic scaffolding proteins and receptors and align with putative presynaptic vesicle release sites. Such mesophasic self-organization might allow synapses to achieve a ‘Goldilocks’ state, striking a balance between stability and flexibility and enabling plasticity in information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and in situ structure of GABAAR in inhibitory synapses.
Fig. 2: GABAAR super-complexes.
Fig. 3: 2D networks of GABAARs.
Fig. 4: Mesophasic assembly of inhibitory PSD.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. The density map of GABAAR and receptor pair have been deposited in the Electron Microscopy Databank (EMDB) under accession numbers EMD-22365 and EMD-22366, respectively. Source data are provided with this paper.

Code availability

The code for random sampling and analysis of sub-tomograms is deposited at https://github.com/procyontao/cryoET-membrane-sampling. The code for simulation of receptor and gephyrin is deposited at https://github.com/alienPQ/Receptors-clustering. Source data are provided with this paper.

References

  1. Eccles, J. C. Developing concepts of the synapses. J. Neurosci. 10, 3769–3781 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sudhof, T. C. & Malenka, R. C. Understanding synapses: past, present, and future. Neuron 60, 469–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mayford, M., Siegelbaum, S. A. & Kandel, E. R. Synapses and memory storage. Cold Spring Harbor Perspect. Biol. 4, a005751 (2012).

  4. Sheng, M., Sabatini, B. L. & Sudhof, T. C. Synapses and Alzheimer’s disease. Cold Spring Harbor Perspect. Biol. 4, a005777 (2012).

  5. Dosemeci, A., Weinberg, R. J., Reese, T. S. & Tao-Cheng, J. H. The postsynaptic density: there is more than meets the eye. Front. Synaptic Neurosci. 8, 23 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Liu, Y. T., Tao, C. L., Lau, P. M., Zhou, Z. H. & Bi, G. Q. Postsynaptic protein organization revealed by electron microscopy. Curr. Opin. Struct. Biol. 54, 152–160 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tao, C. L. et al. Differentiation and characterization of excitatory and inhibitory synapses by cryo-electron tomography and correlative microscopy. J. Neurosci. 38, 1493–1510 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Valtschanoff, J. G. & Weinberg, R. J. Laminar organization of the NMDA receptor complex within the postsynaptic density. J. Neurosci. 21, 1211–1217 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang, A. H. et al. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536, 210–214 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pennacchietti, F. et al. Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of GABAergic synaptic potentiation. J. Neurosci. 37, 1747–1756 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mele, M., Leal, G. & Duarte, C. B. Role of GABAA R trafficking in the plasticity of inhibitory synapses. J. Neurochem. 139, 997–1018 (2016).

    CAS  PubMed  Google Scholar 

  12. Penn, A. C. et al. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 549, 384–388 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, X. et al. Organization of the core structure of the postsynaptic density. Proc. Natl Acad. Sci. USA 105, 4453–4458 (2008).

    CAS  PubMed  Google Scholar 

  14. DeGiorgis, J. A., Galbraith, J. A., Dosemeci, A., Chen, X. & Reese, T. S. Distribution of the scaffolding proteins PSD-95, PSD-93, and SAP97 in isolated PSDs. Brain Cell Biol. 35, 239–250 (2006).

    CAS  PubMed  Google Scholar 

  15. Sheng, M. & Kim, E. The postsynaptic organization of synapses. Cold Spring Harbor Perspect. Biol. 3, a005678 (2011).

  16. Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. MacGillavry, H. D., Song, Y., Raghavachari, S. & Blanpied, T. A. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78, 615–622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Crosby, K. C. et al. Nanoscale subsynaptic domains underlie the organization of the inhibitory synapse. Cell Rep. 26, 3284 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187 (2018).

    CAS  PubMed  Google Scholar 

  20. Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Specht, C. G. et al. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79, 308–321 (2013).

    CAS  PubMed  Google Scholar 

  22. Miller, P. S. & Aricescu, A. R. Crystal structure of a human GABAA receptor. Nature 512, 270–275 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177 (1998).

    CAS  PubMed  Google Scholar 

  25. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, S. et al. Structure of a human synaptic GABAA receptor. Nature 559, 67–72 (2018).

  27. Han, W. et al. Shisa7 is a GABAA receptor auxiliary subunit controlling benzodiazepine actions. Science 366, 246–250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamasaki, T., Hoyos-Ramirez, E., Martenson, J. S., Morimoto-Tomita, M. & Tomita, S. GARLH family proteins stabilize GABAA receptors at synapses. Neuron 93, 1138–1152 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, S. et al. Cryo-EM structure of the human ɑ5β3 GABAA receptor. Cell Res. 28, 958–961 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Phulera, S. et al. Cryo-EM structure of the benzodiazepine-sensitive ɑ1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. eLife 7, e39383 (2018).

  31. Laverty, D. et al. Cryo-EM structure of the human ɑ1β3γ2 GABAA receptor in a lipid bilayer. Nature 565, 516–520 (2019).

    CAS  PubMed  Google Scholar 

  32. Blanpied, T. A., Kerr, J. M. & Ehlers, M. D. Structural plasticity with preserved topology in the postsynaptic protein network. Proc. Natl Acad. Sci. USA 105, 12587–12592 (2008).

    CAS  PubMed  Google Scholar 

  33. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of the 1/fnoise. Phys. Rev. Lett. 59, 381–384 (1987).

    CAS  PubMed  Google Scholar 

  34. Bormashenko, E. et al. Characterization of self-assembled 2D patterns with Voronoi entropy. Entropy 20, 956 (2018).

  35. Limaye, A. V., Narhe, R. D., Dhote, A. M. & Ogale, S. B. Evidence for convective effects in breath figure formation on volatile fluid surfaces. Phys. Rev. Lett. 76, 3762–3765 (1996).

    CAS  PubMed  Google Scholar 

  36. Zuber, B. & Unwin, N. Structure and superorganization of acetylcholine receptor-rapsyn complexes. Proc. Natl Acad. Sci. USA 110, 10622–10627 (2013).

    CAS  PubMed  Google Scholar 

  37. Heuser, J. E. & Salpeter, S. R. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J. Cell Biol. 82, 150–173 (1979).

    CAS  PubMed  Google Scholar 

  38. Sola, M. et al. Structural basis of dynamic glycine receptor clustering by gephyrin. EMBO J. 23, 2510–2519 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Saiyed, T. et al. Molecular basis of gephyrin clustering at inhibitory synapses - role of G- and E-domain interactions. J. Biol. Chem. 282, 5625–5632 (2007).

    CAS  PubMed  Google Scholar 

  40. Maric, H. M. et al. Molecular basis of the alternative recruitment of GABAA versus glycine receptors through gephyrin. Nat. Commun. 5, 5767 (2014).

    CAS  PubMed  Google Scholar 

  41. Fernandez-Busnadiego, R. et al. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 188, 145–156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zuber, B. & Lucic, V. Molecular architecture of the presynaptic terminal. Curr. Opin. Struct. Biol. 54, 129–138 (2019).

    CAS  PubMed  Google Scholar 

  43. Levi, S., Logan, S. M., Tovar, K. R. & Craig, A. M. Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J. Neurosci. 24, 207–217 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tretter, V. et al. Gephyrin, the enigmatic organizer at GABAergic synapses. Front. Cell. Neurosci. 6, 23 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tao, C. L., Liu, Y. T., Zhou, Z. H., Lau, P. M. & Bi, G. Q. Accumulation of dense core vesicles in hippocampal synapses following chronic inactivity. Front. Neuroanat. 12, 48 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Sutton, M. A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    CAS  PubMed  Google Scholar 

  47. Sun, R. et al. An efficient protocol of cryo-correlative light and electron microscopy for the study of neuronal synapses. Biophysics Rep. 5, 111–122 (2019).

    Google Scholar 

  48. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  49. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  50. Li, X. M. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Turonova, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å. J. Struct. Biol. 199, 187–195 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  54. Hrabe, T. et al. PyTom: a Python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178, 177–188 (2012).

    CAS  PubMed  Google Scholar 

  55. Mattei, S., Glass, B., Hagen, W. J. H., Krausslich, H. G. & Briggs, J. A. G. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354, 1434–1437 (2016).

    CAS  PubMed  Google Scholar 

  56. Navarro, P. P., Stahlberg, H. & Castano-Diez, D. Protocols for subtomogram averaging of membrane proteins in the dynamo software package. Front. Mol. Biosci. 5, 82 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

  58. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Ge and C. Xu for technical advice on cryoEM imaging and A. Tang and V. Lucic for valuable suggestions on the manuscript. This work was supported, in part, by grants from the National Natural Science Foundation of China (31630030, 31621002 and 31761163006 to G.-Q.B. and 31600606 to X.Z.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32030200 to G.-Q.B.), the National Key R&D Program of China (2017YFA0505300 to G.-Q.B. and 2016YFA0501100 to X.Z.), the China Postdoctoral Science Foundation (2018M640590 to C.-L.T.), the Natural Science Foundation of Anhui Province (1908085QC95 to C.-L.T.) and the Natural Science Foundation of Jiangsu Province (BK20160488 to W.X.). Research in the Zhou group is supported, in part, by the National Institutes of Health (NIH) (GM071940 to Z.H.Z.). We acknowledge the use of instruments at the Center for Integrative Imaging of Hefei National Laboratory for Physical Sciences at the Microscale and those at the Electron Imaging Center for Nanomachines of the University of California, Los Angeles that are supported by the NIH (S10RR23057 and S10OD018111 to Z.H.Z.) and the National Science Foundation (DMR-1548924 and DBI-133813 to Z.H.Z.). We thank the Bioinformatics Center of the University of Science and Technology of China for providing supercomputing resources for this project.

Author information

Authors and Affiliations

Authors

Contributions

Y.-T.L., C.-L.T., P.-M.L., Z.H.Z. and G.-Q.B. designed the research. C.-L.T. and L.Q. prepared cell culture. C.-L.T. and R.S. performed cryoET and cryoCLEM imaging. D.-Q.S. and X.-W.L. performed electrophysiological experiments. C.X. performed immunofluorescence experiments. W.X. and Y.-T.L. performed simulation. Y.-T.L., C.-L.T., X. Z. and G.-Q.B. analyzed data. Y.-T.L., C.-L.T., W.X., D.-Q.S., C.X., P.-M.L., Z.H.Z. and G.-Q.B. wrote the paper. All authors edited and approved the manuscript.

Corresponding authors

Correspondence to Pak-Ming Lau, Z. Hong Zhou or Guo-Qiang Bi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Ryan Hibbs and Shigeki Watanabe for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Expression of GABAARs in cultured hippocampal inhibitory synapses.

a1, Current traces of synaptic IPSCs recorded from a neuron under voltage clamp. A nearby neuron was voltage clamped and stimulated to evoke the responses. a2, Current traces of autaptic IPSCs from a stimulated neuron. b, Representative recordings of spontaneous IPSCs (sIPSCs). c, Application of 1 µM strychnine (STR) did not affect evoked IPSC (eIPSC) amplitudes (N.S, p = 0.43, two-tailed paired t-test), while 20 µM bicuculline methiodide (BMI) could significantly block evoked IPSCs (**, p = 0.003, two-tailed paired t-test). Data are presented as mean values ± SEM. Each line represents an eIPSC (n = 6 neurons). d, 1 µM strychnine did not affect the frequency of sIPSCs (N.S, p = 0.90, two-tailed paired t-test), while 20 µM BMI almost totally abolished sIPSCs (*, p = 0.026, two-tailed paired t-test). Each line represents a recorded neuron (n = 8 neurons). e, 1 µM strychnine did not affect the amplitude of sIPSCs (N.S, p = 0.71, two-tailed paired t-test, n = 8 neurons). During BMI treatment, sIPSCs were so rare thus not included for comparison. Data are presented as mean values ± SEM. f, g, Example confocal fluorescent micrographs of cultured neurons with immunostaining of GABAAR γ2 subunits (red, f) and GlyR α1 subunits (green, g). h, The merged image from f and g. f1-h1, Magnified views of the boxed area in respective images showing putative receptor puncta along with dendrite segments. The experiments in f-h were repeated 3 times independently, and 10 neurons were imaged with similar results.

Extended Data Fig. 2 Flowchart illustrates identification and sub-tomogram averaging of GABAAR.

a, Steps for identifying GABAARs from sampling points. a1, Electron tomographic slice of an inhibitory synapse. a2, Electron tomographic slice superposed with sampling points on postsynaptic membrane. a3, Sampling points after each step. Red points are sampling points that will be discarded in the next step. For a1-a3, n = 72 synapses in 70 tomograms. b, Classification and refinement of GABAARs on postsynaptic membrane. Example 2D slices of sub-tomograms are from 171,374 (left, imaged with VPP) and 135,717 (right, imaged without VPP) sampled sub-tomograms. b1, Example 2D slices of aligned sub-tomograms of GABAARs (n = 5,811 sub-tomograms imaged with VPP, n = 3,807 sub-tomograms imaged without VPP). c, Structure of GABAAR emerged during iterative classification.

Extended Data Fig. 3 Performance estimation of template-free classification and refinement.

a, Number of classified GABAAR sub-tomograms plotted against the number of classes. b, Euler (psi and tilt) angles of all sub-tomograms used for the final sub-tomogram averaging. c, Distribution of Euler angles for sub-tomograms in two example synapses after first round of refinement. d, Percentage of outliers with opposite angles versus percentage of outliers with angles 3σ away from Gaussian core in each synapse. e, Percentage of all orientation outliers versus percentage of low score outliers in each synapse. f, Frequency distribution of sub-tomogram scores fitted with Gaussian curve (red curve). g, Number of sub-tomograms before and after removing both orientation and low score outliers. h, Normalized CC score distribution of sub-tomograms comparing with original sub-tomogram average and 36° rotated sub-tomogram average. i, Distribution of CC score differences for sub-tomograms comparing with original sub-tomogram average and 36° rotated sub-tomogram average.

Extended Data Fig. 4 Identification of GABAARs using sub-tomograms mixed with sub-tomograms on presynaptic membrane.

a, Steps for identifying GABAARs from dataset mixed with sub-tomograms on presynaptic membrane. a1, Electron tomographic slice of an inhibitory synapse. a2, Electron tomographic slices superposed with sampling points on postsynaptic membrane (top) or presynaptic membrane (bottom). b, Sub-tomogram sampling points on postsynaptic membrane (top) or presynaptic (bottom) after each step. Red points are sampling points that will be discarded in the next step. For a and b, n = 72 postsynaptic membranes, and n = 4 presynaptic membranes. c, 3D classification and refinement of sub-tomograms on 72 postsynaptic membranes and 4 presynaptic membranes. d, Receptor concentration from Analysis II (analysis of sub-tomograms mixed with presynaptic sub-tomograms) versus receptor concentration from Analysis I (analysis of sub-tomograms without presynaptic sub-tomograms). e, Concentration of identified receptors on postsynaptic membranes in Analysis I, Analysis II, and falsely identified receptors on presynaptic membranes in Analysis II for the 4 selected synapses.

Extended Data Fig. 5 Structure features of the sub-tomogram average of GABAAR.

a, Density of the sub-tomogram average fitted with atomic models of different subunit compositions or conformations26,29,30,31. b, Orthogonal slice views of sub-tomogram average of GABAAR. c, Left: Sub-tomogram average of GABAAR. Orange density is GABAAR density. Gray density is membrane bilayer. Right: Rotated view of sub-tomogram average of GABAAR displayed at low threshold. d, Classification of oversampled sub-tomograms without symmetry. Structures obtained from the 3D classification of VPP data. e, Orthogonal slice views of the structure boxed in d.

Extended Data Fig. 6 Two-dimensional networks of GABAARs.

a, Scatter plot of mean network size (number of receptors divided by number of networks) and number of receptors for each synapse. Colored dots (magenta, gray, cyan and red) correspond to the four synapses in Fig. 3b respectively. b, Distribution of network size. Y-axis is the plot in logarithm scale. c, Examples of Voronoi tessellation of receptors on postsynaptic membranes. Black dots represent the localizations of GABAARs. d, Cumulative frequency of Voronoi entropy for each synapse. The green line shows the Voronoi entropy of ‘networked’ receptors.

Extended Data Fig. 7 Mesophasic assembly of PSD.

a, Example of convex hull and smooth convex hull of linked receptors (n = 58 synapses). b, Examples of receptor distribution on the postsynaptic membranes and the corresponding 2D density profiles of scaffolding layer (n = 58 synapses). c, Scatter plot of area inside mesophase boundary and area of postsynaptic membrane, fitted with a dashed line.

Extended Data Fig. 8 Three types of interactions among gephyrin E and G domains in the simulation of gephyrin and GABAAR organization.

a, Direct trimerization of the gephyrin G domains. b, Gephyrin G domain trimerization through a dimer intermediate. c, Dimerization of gephyrin E domains.

Extended Data Fig. 9 Vesicle contacting sites on the presynaptic membrane correlate with mesophasic assembly of GABAARs.

Comparison between the number of tethered or contacting vesicles inside or outside of mesophase boundary with the corresponding number based on randomized vesicle distribution within the whole synapse (n = 58 synapses). For both inside and outside mesophase boundary, N.S, p = 0.20; **, p = 0.005, two-tailed paired t-test.

Extended Data Fig. 10 Synapses with two discretely separated receptor assemblies.

Synapses had narrow synaptic clefts (n = 2 synapses) (a, b) or deformed synaptic membranes (n = 1 synapse) (c). a1-c1, En face views of GABAARs (colored dots) on the postsynaptic membrane (transparent gray). a2-c2, Tomographic slices of the respective synapses. a3-c3, Side views superposed with the tomographic slices. Color indicates network size (n, the number of receptors in a network). Paired red dashed lines indicate the gap between two receptor assemblies and the corresponding synaptic cleft area.

Supplementary information

Reporting Summary

Supplementary Table 1

Proteomes on inhibitory postsynaptic membrane.

Supplementary Table 2

Synapse information. Sheet 1: the size of postsynaptic area and the number of receptors in each synapse. Sheet 2: receptor coordinates. Sheet 3: contacting vesicle coordinates. Sheet 4: tethered vesicle coordinates.

Supplementary Table 3

Parameters used for simulating GABAAR and gephyrin organization.

Supplementary Video 1

Tilt series of an inhibitory synapse. This video shows the tilt series of an inhibitory synapse (same data as in Fig. 1b) obtained using VPP, electron filter and counting technologies. Black dots of 15-nm diameter are gold beads used as fiducial markers for image alignment.

Supplementary Video 2

Structures of an inhibitory synapse. This video shows the tomogram of the same synapse as in Fig. 2b, displayed as z-stack and 3D surface rendering of the segmented structures. The structures were colored the same as Fig. 1c and Fig. 1d.

Supplementary Video 3

Example of Monte Carlo simulation of receptor and gephyrin organization. Magenta, blue and orange dots represent locations of GABAARs, gephyrin E domains and gephyrin G domains, respectively. Short black lines are linkers between the two domains. Dashed lines are boundaries of simulation (500 nm × 500 nm). The simulation parameters Kr = 0.001 and Kd = Kt = 0.00001. Numbers of steps are shown on the top left corner of each image.

Source data

Source Data Fig. 2

Statistical Source Data of Fig. 2a–c

Source Data Fig. 4

Statistical Source Data of Fig. 4b,e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YT., Tao, CL., Zhang, X. et al. Mesophasic organization of GABAA receptors in hippocampal inhibitory synapses. Nat Neurosci 23, 1589–1596 (2020). https://doi.org/10.1038/s41593-020-00729-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-00729-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing