Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural mechanisms of aggression across species

Abstract

Aggression is a social behavior essential for securing resources and defending oneself and family. Thanks to its indispensable function in competition and thus survival, aggression exists widely across animal species, including humans. Classical works from Tinbergen and Lorenz concluded that instinctive behaviors including aggression are mediated by hardwired brain circuitries that specialize in processing certain sensory inputs to trigger stereotyped motor outputs. They further suggest that instinctive behaviors are influenced by an animal’s internal state and past experiences. Following this conceptual framework, here we review our current understanding regarding the neural substrates underlying aggression generation, highlighting an evolutionarily conserved ‘core aggression circuit’ composed of four subcortical regions. We further discuss the neural mechanisms that support changes in aggression based on the animal’s internal state. We aim to provide an overview of features of aggression and the relevant neural substrates across species, highlighting findings in rodents, primates and songbirds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A common process that generates aggression in mice, songbirds and humans.
Fig. 2: Neuroanatomical pathways of aggression in mice.
Fig. 3: Neuroanatomical pathway of aggression in songbirds.
Fig. 4: Neuroanatomical pathways of aggression in human primates.
Fig. 5: Direct and indirect pathways for aggressive motor outputs.

Similar content being viewed by others

References

  1. Lorenz, K. On Aggression. (Routledge, 2005).

  2. Tinbergen, N. The Study of Instinct (Oxford Univ. Press, 1951).

  3. Allen, J. J., Anderson, C. A. & Bushman, B. J. The general aggression model. Curr. Opin. Psychol. 19, 75–80 (2018).

    PubMed  Google Scholar 

  4. Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4, 551–562 (2003).

    CAS  PubMed  Google Scholar 

  5. Hashikawa, K., Hashikawa, Y., Falkner, A. & Lin, D. The neural circuits of mating and fighting in male mice. Curr. Opin. Neurobiol. 38, 27–37 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Keshavarzi, S., Power, J. M., Albers, E. H., Sullivan, R. K. & Sah, P. Dendritic organization of olfactory inputs to medial amygdala neurons. J. Neurosci. 35, 13020–13028 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Caro, S. P., Balthazart, J. & Bonadonna, F. The perfume of reproduction in birds: chemosignaling in avian social life. Horm. Behav. 68, 25–42 (2015).

    CAS  PubMed  Google Scholar 

  8. Stoddard, P. K., Beecher, M. D., Horning, C. L. & Campbell, S. E. Recognition of individual neighbors by song in the song sparrow, a species with song repertoires. Behav. Ecol. Sociobiol. 29, 211–215 (1991).

    Google Scholar 

  9. Searcy, W. A., Anderson, R. C. & Nowicki, S. Bird song as a signal of aggressive intent. Behav. Ecol. Sociobiol. 60, 234–241 (2006).

    Google Scholar 

  10. Theunissen, F. E. & Shaevitz, S. S. Auditory processing of vocal sounds in birds. Curr. Opin. Neurobiol. 16, 400–407 (2006).

    CAS  PubMed  Google Scholar 

  11. Durand, S. E., Tepper, J. M. & Cheng, M. F. The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J. Comp. Neurol. 323, 495–518 (1992).

    CAS  PubMed  Google Scholar 

  12. Cheng, M., Chaiken, M., Zuo, M. & Miller, H. Nucleus taenia of the amygdala of birds: anatomical and functional studies in ring doves (Streptopelia risoria) and European starlings (Sturnus vulgaris). Brain Behav. Evol. 53, 243–270 (1999).

    CAS  PubMed  Google Scholar 

  13. Wild, J. M. The ventromedial hypothalamic nucleus in the zebra finch (Taeniopygia guttata): afferent and efferent projections in relation to the control of reproductive behavior. J. Comp. Neurol. 525, 2657–2676 (2017).

    CAS  PubMed  Google Scholar 

  14. Newman, S. W. The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann. NY Acad. Sci. 877, 242–257 (1999).

    CAS  PubMed  Google Scholar 

  15. Goodson, J. L. The vertebrate social behavior network: evolutionary themes and variations. Horm. Behav. 48, 11–22 (2005).

    PubMed  PubMed Central  Google Scholar 

  16. Lischinsky, J. E. et al. Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues. eLife 6, e21012 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Hong, W., Kim, D.-W. & Anderson, D. J. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Unger, E. K. et al. Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep. 10, 453–462 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Padilla, S. L. et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat. Neurosci. 19, 734–741 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Goodson, J. L., Evans, A. K. & Soma, K. K. Neural responses to aggressive challenge correlate with behavior in nonbreeding sparrows. Neuroreport 16, 1719–1723 (2005).

    PubMed  PubMed Central  Google Scholar 

  21. Goodson, J. L., Evans, A. K., Lindberg, L. & Allen, C. D. Neuro-evolutionary patterning of sociality. Proc. Biol. Sci. 272, 227–235 (2005).

    PubMed  PubMed Central  Google Scholar 

  22. Meunier, M., Bachevalier, J., Murray, E. A., Málková, L. & Mishkin, M. Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. Eur. J. Neurosci. 11, 4403–4418 (1999).

    CAS  PubMed  Google Scholar 

  23. Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A. & Phan, K. L. Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol. Psychiatry 62, 168–178 (2007).

    PubMed  Google Scholar 

  24. Dong, H.-W., Petrovich, G. D. & Swanson, L. W. Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res. Brain Res. Rev. 38, 192–246 (2001).

    CAS  PubMed  Google Scholar 

  25. Bayless, D. W. et al. Limbic neurons shape sex recognition and social behavior in sexually naive males. Cell 176, 1190–1205.e20 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashikawa, Y., Hashikawa, K., Falkner, A. L. & Lin, D. Ventromedial hypothalamus and the generation of aggression. Front. Syst. Neurosci. 11, 94 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Pardo-Bellver, C., Cádiz-Moretti, B., Novejarque, A., Martínez-García, F. & Lanuza, E. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front. Neuroanat. 6, 33 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Dong, H. W. & Swanson, L. W. Projections from bed nuclei of the stria terminalis, posterior division: implications for cerebral hemisphere regulation of defensive and reproductive behaviors. J. Comp. Neurol. 471, 396–433 (2004).

    PubMed  Google Scholar 

  29. Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, H. et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509, 627–632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Falkner, A. L., Grosenick, L., Davidson, T. J., Deisseroth, K. & Lin, D. Hypothalamic control of male aggression-seeking behavior. Nat. Neurosci. 19, 596–604 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hashikawa, K. et al. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci. 20, 1580–1590 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, T. et al. Social control of hypothalamus-mediated male aggression. Neuron 95, 955–970.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Remedios, R. et al. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature 550, 388–392 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Falkner, A. L., Dollar, P., Perona, P., Anderson, D. J. & Lin, D. Decoding ventromedial hypothalamic neural activity during male mouse aggression. J. Neurosci. 34, 5971–5984 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, L. et al. Hypothalamic control of conspecific self-defense. Cell Rep. 26, 1747–1758.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, D.-W. et al. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 179, 713–728.e17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Putkonen, P. T. Attack elicited by forebrain and hypothalamic stimulation in the chicken. Experientia 22, 405–407 (1966).

    CAS  PubMed  Google Scholar 

  40. Lipp, H. P. & Hunsperger, R. Threat, attack and flight elicited by electrical stimulation of the ventromedial hypothalamus of the marmoset monkey Callithrix jacchus. Brain Behav. Evol. 15, 276–293 (1978).

    Google Scholar 

  41. Siegel, A. & Pott, C. B. Neural substrates of aggression and flight in the cat. Prog. Neurobiol. 31, 261–283 (1988).

    CAS  PubMed  Google Scholar 

  42. Roberts, W. W., Steinberg, M. L. & Means, L. W. Hypothalamic mechanisms for sexual, aggressive, and other motivational behaviors in the opossium, Didelphis virginiana. J. Comp. Physiol. Psychol. 64, 1–15 (1967).

    CAS  PubMed  Google Scholar 

  43. Barbosa, D. A. N. et al. The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg. Focus 43, E15 (2017).

    PubMed  Google Scholar 

  44. Motta, S. C. et al. Ventral premammillary nucleus as a critical sensory relay to the maternal aggression network. Proc. Natl Acad. Sci. USA 110, 14438–14443 (2013).

    CAS  PubMed  Google Scholar 

  45. Soden, M. E. et al. Genetic isolation of hypothalamic neurons that regulate context-specific male social behavior. Cell Rep. 16, 304–313 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stagkourakis, S. et al. A neural network for intermale aggression to establish social hierarchy. Nat. Neurosci. 21, 834–842 (2018).

    CAS  PubMed  Google Scholar 

  47. Kang, S. W., Thayananuphat, A., Bakken, T. & El Halawani, M. E. Dopamine-melatonin neurons in the avian hypothalamus controlling seasonal reproduction. Neuroscience 150, 223–233 (2007).

    CAS  PubMed  Google Scholar 

  48. Lo, L. et al. Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Proc. Natl Acad. Sci. USA 116, 7503–7512 (2019).

    CAS  PubMed  Google Scholar 

  49. Hashikawa, K., Hashikawa, Y., Lischinsky, J. & Lin, D. The neural mechanisms of sexually dimorphic aggressive behaviors. Trends Genet. 34, 755–776 (2018).

    CAS  PubMed  Google Scholar 

  50. Cameron, A. A., Khan, I. A., Westlund, K. N. & Willis, W. D. The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. II. Descending projections. J. Comp. Neurol. 351, 585–601 (1995).

    CAS  PubMed  Google Scholar 

  51. Falkner, A. L. et al. Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron 106, 637–648.e6 (2020).

    CAS  PubMed  Google Scholar 

  52. Tschida, K. et al. A specialized neural circuit gates social vocalizations in the mouse. Neuron 103, 459–472.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jürgens, U. & Ploog, D. Cerebral representation of vocalization in the squirrel monkey. Exp. Brain Res. 10, 532–554 (1970).

    PubMed  Google Scholar 

  54. Golden, S. A., Jin, M. & Shaham, Y. Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. J. Neurosci. 39, 3996–4008 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Couppis, M. H. & Kennedy, C. H. The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice. Psychopharmacol. (Berl.) 197, 449–456 (2008).

    CAS  Google Scholar 

  56. Golden, S. A. et al. Nucleus accumbens Drd1-expressing neurons control aggression self-administration and aggression seeking in mice. J. Neurosci. 39, 2482–2496 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fang, Y.-Y., Yamaguchi, T., Song, S. C., Tritsch, N. X. & Lin, D. A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron 98, 192–207.e10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nieder, A. & Mooney, R. The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philos. Trans. R. Soc. Lond. B 375, 20190054 (2020).

    Google Scholar 

  59. Berk, M. L. & Butler, A. B. Efferent projections of the medial preoptic nucleus and medial hypothalamus in the pigeon. J. Comp. Neurol. 203, 379–399 (1981).

    CAS  PubMed  Google Scholar 

  60. Riters, L. V. & Alger, S. J. Neuroanatomical evidence for indirect connections between the medial preoptic nucleus and the song control system: possible neural substrates for sexually motivated song. Cell Tissue Res. 316, 35–44 (2004).

    PubMed  Google Scholar 

  61. Lewis, J. W., Ryan, S. M., Arnold, A. P. & Butcher, L. L. Evidence for a catecholaminergic projection to Area X in the zebra finch. J. Comp. Neurol. 196, 347–354 (1981).

    CAS  PubMed  Google Scholar 

  62. Appeltants, D., Absil, P., Balthazart, J. & Ball, G. F. Identification of the origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing combined with tyrosine hydroxylase immunocytochemistry. J. Chem. Neuroanat. 18, 117–133 (2000).

    CAS  PubMed  Google Scholar 

  63. Appeltants, D., Ball, G. F. & Balthazart, J. The origin of catecholaminergic inputs to the song control nucleus RA in canaries. Neuroreport 13, 649–653 (2002).

    CAS  PubMed  Google Scholar 

  64. Maney, D. L. & Ball, G. F. Fos-like immunoreactivity in catecholaminergic brain nuclei after territorial behavior in free-living song sparrows. J. Neurobiol. 56, 163–170 (2003).

    PubMed  Google Scholar 

  65. Sasaki, A., Sotnikova, T. D., Gainetdinov, R. R. & Jarvis, E. D. Social context-dependent singing-regulated dopamine. J. Neurosci. 26, 9010–9014 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yanagihara, S. & Hessler, N. A. Modulation of singing-related activity in the songbird ventral tegmental area by social context. Eur. J. Neurosci. 24, 3619–3627 (2006).

    PubMed  Google Scholar 

  67. Hara, E., Kubikova, L., Hessler, N. A. & Jarvis, E. D. Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context. Eur. J. Neurosci. 25, 3406–3416 (2007).

    PubMed  PubMed Central  Google Scholar 

  68. Tanaka, M., Sun, F., Li, Y. & Mooney, R. A mesocortical dopamine circuit enables the cultural transmission of vocal behaviour. Nature 563, 117–120 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Glimcher, P. W. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc. Natl Acad. Sci. USA 108, 15647–15654 (2011).

    CAS  PubMed  Google Scholar 

  70. Yamaguchi, T. & Lin, D. Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression. Curr. Opin. Behav. Sci. 24, 104–112 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. van Erp, A. M. & Miczek, K. A. Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J. Neurosci. 20, 9320–9325 (2000).

    PubMed  PubMed Central  Google Scholar 

  72. Aleyasin, H. et al. Cell-type-specific role of ΔFosB in nucleus accumbens in modulating intermale aggression. J. Neurosci. 38, 5913–5924 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Golden, S. A. et al. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature 534, 688–692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Christoph, G. R., Leonzio, R. J. & Wilcox, K. S. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J. Neurosci. 6, 613–619 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Russo, S. J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Becker, E. A. & Marler, C. A. Postcontest blockade of dopamine receptors inhibits development of the winner effect in the California mouse (Peromyscus californicus). Behav. Neurosci. 129, 205–213 (2015).

    CAS  PubMed  Google Scholar 

  78. Sokolov, B. P. & Cadet, J. L. Methamphetamine causes alterations in the MAP kinase-related pathways in the brains of mice that display increased aggressiveness. Neuropsychopharmacology 31, 956–966 (2006).

    CAS  PubMed  Google Scholar 

  79. Moore, I. T., Hernandez, J. & Goymann, W. Who rises to the challenge? Testing the challenge hypothesis in fish, amphibians, reptiles, and mammals. Horm. Behav. 123, 104537 (2020).

    PubMed  Google Scholar 

  80. Fokidis, H. B., Prior, N. H. & Soma, K. K. Fasting increases aggression and differentially modulates local and systemic steroid levels in male zebra finches. Endocrinology 154, 4328–4339 (2013).

    CAS  PubMed  Google Scholar 

  81. Janson, C. & Vogel, E. Hunger and aggression in capuchin monkeys. in Feeding Ecology in Apes and Other Primates (eds. Hohmann, G., Robbins, M. M. & Boesch, C.) 285–312 (Cambridge Univ. Press, 2006).

  82. Rohles, F. H. Jr. & Wilson, L. M. Hunger as a catalyst in aggression. Behaviour 48, 123–130 (1974).

    PubMed  Google Scholar 

  83. Berthoud, H.-R. Multiple neural systems controlling food intake and body weight. Neurosci. Biobehav. Rev. 26, 393–428 (2002).

    PubMed  Google Scholar 

  84. Donato, J. Jr. & Elias, C. F. The ventral premammillary nucleus links metabolic cues and reproduction. Front. Endocrinol. (Lausanne) 2, 57 (2011).

    Google Scholar 

  85. Yanagida, H. et al. Effects of ghrelin on neuronal activity in the ventromedial nucleus of the hypothalamus in infantile rats: an in vitro study. Peptides 29, 912–918 (2008).

    CAS  PubMed  Google Scholar 

  86. Oomura, Y. & Kita, H. Insulin acting as a modulator of feeding through the hypothalamus. Diabetologia 20 Suppl., 290–298 (1981).

  87. Vestlund, J. et al. Ghrelin and aggressive behaviours-evidence from preclinical and human genetic studies. Psychoneuroendocrinology 104, 80–88 (2019).

    CAS  PubMed  Google Scholar 

  88. He, Y. et al. Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance. Nat. Commun. 11, 2165 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Todd, W. D. et al. A hypothalamic circuit for the circadian control of aggression. Nat. Neurosci. 21, 717–724 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bliwise, D. L. What is sundowning? J. Am. Geriatr. Soc. 42, 1009–1011 (1994).

    CAS  PubMed  Google Scholar 

  91. Goodson, J. L. Vasotocin and vasoactive intestinal polypeptide modulate aggression in a territorial songbird, the violet-eared waxbill (Estrildidae: Uraeginthus granatina). Gen. Comp. Endocrinol. 111, 233–244 (1998).

    CAS  PubMed  Google Scholar 

  92. Goodson, J. L., Kelly, A. M., Kingsbury, M. A. & Thompson, R. R. An aggression-specific cell type in the anterior hypothalamus of finches. Proc. Natl Acad. Sci. USA 109, 13847–13852 (2012).

    CAS  PubMed  Google Scholar 

  93. Wingfield, J. C., Hegner, R. E., Dufty, A. M. Jr. & Ball, G. F. The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am. Nat. 136, 829–846 (1990).

    Google Scholar 

  94. Xu, X. et al. Modular genetic control of sexually dimorphic behaviors. Cell 148, 596–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tramontin, A. D., Wingfield, J. C. & Brenowitz, E. A. Androgens and estrogens induce seasonal-like growth of song nuclei in the adult songbird brain. J. Neurobiol. 57, 130–140 (2003).

    CAS  PubMed  Google Scholar 

  96. Soma, K. K., Tramontin, A. D., Featherstone, J. & Brenowitz, E. A. Estrogen contributes to seasonal plasticity of the adult avian song control system. J. Neurobiol. 58, 413–422 (2004).

    CAS  PubMed  Google Scholar 

  97. Bard, P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am. J. Physiol. 84, 490–515 (1928).

    Google Scholar 

  98. Paxinos, G. & Franklin, K.B. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2019).

  99. Anderson, S. W., Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat. Neurosci. 2, 1032–1037 (1999).

    CAS  PubMed  Google Scholar 

  100. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M. & Damasio, A. R. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264, 1102–1105 (1994).

    CAS  PubMed  Google Scholar 

  101. Best, M., Williams, J. M. & Coccaro, E. F. Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc. Natl Acad. Sci. USA 99, 8448–8453 (2002).

    CAS  PubMed  Google Scholar 

  102. Soloff, P. H. et al. Impulsivity and prefrontal hypometabolism in borderline personality disorder. Psychiatry Res. 123, 153–163 (2003).

    CAS  PubMed  Google Scholar 

  103. Molero-Chamizo, A., Martín Riquel, R., Moriana, J. A., Nitsche, M. A. & Rivera-Urbina, G. N. Bilateral prefrontal cortex anodal tDCS effects on self-reported aggressiveness in imprisoned violent offenders. Neuroscience 397, 31–40 (2019).

    CAS  PubMed  Google Scholar 

  104. Pietrini, P., Guazzelli, M., Basso, G., Jaffe, K. & Grafman, J. Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am. J. Psychiatry 157, 1772–1781 (2000).

    CAS  PubMed  Google Scholar 

  105. Ochsner, K. N., Bunge, S. A., Gross, J. J. & Gabrieli, J. D. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14, 1215–1229 (2002).

    PubMed  Google Scholar 

  106. Mann, J. J. Neurobiology of suicidal behaviour. Nat. Rev. Neurosci. 4, 819–828 (2003).

    CAS  PubMed  Google Scholar 

  107. Soloff, P. H., Meltzer, C. C., Greer, P. J., Constantine, D. & Kelly, T. M. A fenfluramine-activated FDG-PET study of borderline personality disorder. Biol. Psychiatry 47, 540–547 (2000).

    CAS  PubMed  Google Scholar 

  108. Takahashi, A., Nagayasu, K., Nishitani, N., Kaneko, S. & Koide, T. Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS One 9, e94657 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Biro, L. et al. Task division within the prefrontal cortex: distinct neuron populations selectively control different aspects of aggressive behavior via the hypothalamus. J. Neurosci. 38, 4065–4075 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Caramaschi, D., de Boer, S. F., de Vries, H. & Koolhaas, J. M. Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry. Behav. Brain Res. 189, 263–272 (2008).

    CAS  PubMed  Google Scholar 

  111. Centenaro, L. A. et al. Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacol. (Berl.) 201, 237–248 (2008).

    CAS  Google Scholar 

  112. Veiga, C. P., Miczek, K. A., Lucion, A. B. & Almeida, R. M. Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Braz. J. Med. Biol. Res. 40, 825–830 (2007).

    CAS  PubMed  Google Scholar 

  113. Alexander, W. H. & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci. 14, 1338–1344 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Harenski, C. L., Harenski, K. A., Shane, M. S. & Kiehl, K. A. Aberrant neural processing of moral violations in criminal psychopaths. J. Abnorm. Psychol. 119, 863–874 (2010).

    PubMed  PubMed Central  Google Scholar 

  115. Kingsbury, L. et al. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178, 429–446.e16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. So, N., Franks, B., Lim, S. & Curley, J. P. A social network approach reveals associations between mouse social dominance and brain gene expression. PLoS One 10, e0134509 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Zhou, T. et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science 357, 162–168 (2017).

    CAS  PubMed  Google Scholar 

  118. Wang, F. et al. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).

    CAS  PubMed  Google Scholar 

  119. Vertes, R. P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51, 32–58 (2004).

    CAS  PubMed  Google Scholar 

  120. Ongür, D., An, X. & Price, J. L. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401, 480–505 (1998).

    PubMed  Google Scholar 

  121. Freedman, L. J., Insel, T. R. & Smith, Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J. Comp. Neurol. 421, 172–188 (2000).

    CAS  PubMed  Google Scholar 

  122. Hardy, S. G. & Leichnetz, G. R. Frontal cortical projections to the periaqueductal gray in the rat: a retrograde and orthograde horseradish peroxidase study. Neurosci. Lett. 23, 13–17 (1981).

    CAS  PubMed  Google Scholar 

  123. An, X., Bandler, R., Ongür, D. & Price, J. L. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J. Comp. Neurol. 401, 455–479 (1998).

    CAS  PubMed  Google Scholar 

  124. Franklin, T. B. et al. Prefrontal cortical control of a brainstem social behavior circuit. Nat. Neurosci. 20, 260–270 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wong, L. C. et al. Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Curr. Biol. 26, 593–604 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Albert, D. J. & Chew, G. L. The septal forebrain and the inhibitory modulation of attack and defense in the rat. A review. Behav. Neural Biol. 30, 357–388 (1980).

    CAS  PubMed  Google Scholar 

  127. Goodson, J., Eibach, R., Sakata, J. & Adkins-Regan, E. Effect of septal lesions on male song and aggression in the colonial zebra finch (Taeniopygia guttata) and the territorial field sparrow (Spizella pusilla). Behav. Brain Res. 98, 167–180 (1998).

    Google Scholar 

  128. Risold, P. Y. & Swanson, L. W. Connections of the rat lateral septal complex. Brain Res. Brain Res. Rev. 24, 115–195 (1997).

    CAS  PubMed  Google Scholar 

  129. Leroy, F. et al. A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 564, 213–218 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hitti, F. L. & Siegelbaum, S. A. The hippocampal CA2 region is essential for social memory. Nature 508, 88–92 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sheehan, T. P., Chambers, R. A. & Russell, D. S. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res. Brain Res. Rev. 46, 71–117 (2004).

    PubMed  Google Scholar 

  132. Scott, J. P. Agonistic behavior of mice and rats: a review. Am. Zool. 6, 683–701 (1966).

    CAS  PubMed  Google Scholar 

  133. Maney, D. L. & Goodson, J. L. Neurogenomic mechanisms of aggression in songbirds. Adv. Genet. 75, 83–119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Conner, K. R., Duberstein, P. R., Conwell, Y. & Caine, E. D. Reactive aggression and suicide: theory and evidence. Aggress. Violent Behav. 8, 413–432 (2003).

    Google Scholar 

  135. Wrangham, R. W. Two types of aggression in human evolution. Proc. Natl Acad. Sci. USA 115, 245–253 (2018).

    CAS  PubMed  Google Scholar 

  136. Insel, T.R., Winslow, J.T., Wang, Z. & Young, L.J. in Vasopressin and Oxytocin (eds Zingg, H. H., Bourque, C. W. & Bichet, D.G.) 215–224 (Springer, 1998).

  137. Goodson, J. L. Territorial aggression and dawn song are modulated by septal vasotocin and vasoactive intestinal polypeptide in male field sparrows (Spizella pusilla). Horm. Behav. 34, 67–77 (1998).

    CAS  PubMed  Google Scholar 

  138. O’Connell, L. A. & Hofmann, H. A. Evolution of a vertebrate social decision-making network. Science 336, 1154–1157 (2012).

    PubMed  Google Scholar 

  139. Benarroch, E. E. Periaqueductal gray: an interface for behavioral control. Neurology 78, 210–217 (2012).

    PubMed  Google Scholar 

  140. Ferris, C. F. et al. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J. Neurosci. 17, 4331–4340 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ferris, C. F. & Potegal, M. Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol. Behav. 44, 235–239 (1988).

    CAS  PubMed  Google Scholar 

  142. Gross, C. T. & Canteras, N. S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012).

    CAS  PubMed  Google Scholar 

  143. Wang, L., Chen, I. Z. & Lin, D. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85, 1344–1358 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lindenfors, P. & Tullberg, B. S. Evolutionary aspects of aggression the importance of sexual selection. Adv. Genet. 75, 7–22 (2011).

    PubMed  Google Scholar 

  145. Eisen, E. J. & Legates, J. E. Genotype-sex interaction and the genetic correlation between the sexes for body weight in Mus musculus. Genetics 54, 611–623 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Eisenberg, J. F. Studies on the behavior of Peromyscus maniculatus gambelii and Peromyscus californicus parasiticus. Behaviour 19, 177–207 (1962).

    Google Scholar 

  147. Archer, J. Does sexual selection explain human sex differences in aggression? Behav. Brain Sci. 32, 249–266 (2009). discussion 266–311.

    PubMed  Google Scholar 

  148. Harrendorf, S., Heiskanen, M. & Malby, S., eds. International Statistics on Crime and Justice. HEUNI Publication Series No. 64 (United Nations Office on Drugs and Crime, 2010).

  149. Österman, K. et al. Cross‐cultural evidence of female indirect aggression. Aggressive Behav. 24, 1–8 (1998).

    Google Scholar 

  150. Fedy, B. C. & Stutchbury, B. J. Territory defence in tropical birds: are females as aggressive as males? Behav. Ecol. Sociobiol. 58, 414–422 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors thank V. Diaz for editing the manuscript. The authors also thank M. Long and E. Jarvis for their helpful comments regarding songbird brain anatomy. The authors apologize to all authors whose primary research papers could not be cited due to the limit on reference number. This work was supported by a Leon Levy Fellowship (J.E.L); the Irma T. Hirschl Trust (D.L.); and NIMH R01MH101377, R21MH105774 and 1U19NS107616-01 (to D.L.).

Author information

Authors and Affiliations

Authors

Contributions

D.L. wrote the manuscript and edited figures. J.E.L. co-wrote the manuscript and made the figures.

Corresponding author

Correspondence to Dayu Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Aubrey Kelly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lischinsky, J.E., Lin, D. Neural mechanisms of aggression across species. Nat Neurosci 23, 1317–1328 (2020). https://doi.org/10.1038/s41593-020-00715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-00715-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing