Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A resource for the detailed 3D mapping of white matter pathways in the marmoset brain


While the fundamental importance of the white matter in supporting neuronal communication is well known, existing publications of primate brains do not feature a detailed description of its complex anatomy. The main barrier to achieving this is that existing primate neuroimaging data have insufficient spatial resolution to resolve white matter pathways fully. Here we present a resource that allows detailed descriptions of white matter structures and trajectories of fiber pathways in the marmoset brain. The resource includes: (1) the highest-resolution diffusion-weighted MRI data available to date, which reveal white matter features not previously described; (2) a comprehensive three-dimensional white matter atlas depicting fiber pathways that were either omitted or misidentified in previous atlases; and (3) comprehensive fiber pathway maps of cortical connections combining diffusion-weighted MRI tractography and neuronal tracing data. The resource, which can be downloaded from, will facilitate studies of brain connectivity and the development of tractography algorithms in the primate brain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Comparison of isotropic data resolution, brain volume and fiber volumes between marmosets, macaques and humans.
Fig. 2: The corona radiata imaged at different spatial resolutions.
Fig. 3: The FOF and the Muratoff bundle.
Fig. 4: White matter fiber pathways in the marmoset occipital lobe.
Fig. 5: The VHC of primates.
Fig. 6: Atlas V2 and its applications in preclinical research.
Fig. 7: Atlas-guided dMRI tractography.
Fig. 8: Fiber pathway profiles of cortical connections and regions.

Data availability

The resource presented here includes (1) dMRI data with the highest resolution available to date revealing white matter features not previously described, (2) a comprehensive 3D white matter atlas depicting fiber pathways that were either omitted or misidentified in previous atlases and (3) comprehensive fiber pathway maps of cortical connections combining dMRI tractography and neuronal tracing data. The raw data and all other features of the resource can be downloaded in NIFTI format from our website (

Code availability

The resource presented here includes code and analysis routines for each dataset that are available for downloading under the corresponding “Detailed info” section in our website at More information is available in the Supplementary Software.


  1. 1.

    Van Essen, D. C. & Glasser, M. F. Parcellating cerebral cortex: how invasive animal studies inform noninvasive mapmaking in humans. Neuron 99, 640–663 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Fields, R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Schmahmann, J. & Pandya, D. Fiber Pathways of the Brain (Oxford Univ. Press, 2009).

  4. 4.

    Lehman, J. F., Greenberg, B. D., McIntyre, C. C., Rasmussen, S. A. & Haber, S. N. Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J. Neurosci. 31, 10392–10402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Safadi, Z. et al. Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J. Neurosci. 38, 2106–2117 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Calabrese, E. et al. A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. NeuroImage 117, 408–416 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Zakszewski, E., Adluru, N., Tromp, D. P., Kalin, N. & Alexander, A. L. A diffusion-tensor-based white matter atlas for rhesus macaques. PLoS One 9, e107398 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mori, S., Wakana, S., Van Zijl, P. C. & Nagae-Poetscher, L. MRI Atlas of Human White Matter (Elsevier, 2005).

  9. 9.

    Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329 (2007).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. In vivo fiber tractography using DT‐MRI data. Magn. Reson. Med. 44, 625–632 (2000).

    CAS  PubMed  Google Scholar 

  11. 11.

    Belcher, A. M. et al. Large-scale brain networks in the awake, truly resting marmoset monkey. J. Neurosci. 33, 16796–16804 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Liu, C. et al. Anatomical and functional investigation of the marmoset default mode network. Nat. Commun. 10, 1975 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ghahremani, M., Hutchison, R. M., Menon, R. S. & Everling, S. Frontoparietal functional connectivity in the common marmoset. Cereb. Cortex 27, 3890–3905 (2016).

    Google Scholar 

  14. 14.

    Buckner, R. L. & Margulies, D. S. Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey. Nat. Commun. 10, 1976 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Silva, A. C. Anatomical and functional neuroimaging in awake, behaving marmosets. Dev. Neurobiol. 77, 373–389 (2017).

    PubMed  Google Scholar 

  16. 16.

    Liu, C. et al. A digital 3D atlas of the marmoset brain based on multi-modal MRI. NeuroImage 169, 106–116 (2018).

    PubMed  Google Scholar 

  17. 17.

    Majka, P. et al. Towards a comprehensive atlas of cortical connections in a primate brain: mapping tracer injection studies of the common marmoset into a reference digital template. J. Comp. Neurol. 524, 2161–2181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35, 512–523 (2006).

    CAS  PubMed  Google Scholar 

  19. 19.

    Thomas, C. et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl Acad. Sci. USA 111, 16574–16579 (2014).

    CAS  PubMed  Google Scholar 

  20. 20.

    Reveley, C. et al. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc. Natl Acad. Sci. USA 112, E2820–E2828 (2015).

    CAS  PubMed  Google Scholar 

  21. 21.

    Vu, A. T. et al. High resolution whole brain diffusion imaging at 7T for the human connectome project. NeuroImage 122, 318–331 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pajevic, S. & Pierpaoli, C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn. Reson. Med. 42, 526–540 (1999).

    CAS  PubMed  Google Scholar 

  23. 23.

    Forkel, S. J., Mahmood, S., Vergani, F. & Catani, M. The white matter of the human cerebrum: part I the occipital lobe by Heinrich Sachs. Cortex 62, 182–202 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Dejerine, J. & Dejerine-Klumpke, A. Anatomie des Centres Nerveux (Rueff, 1895).

  25. 25.

    Takemura, H. et al. Occipital white matter tracts in human and macaque. Cereb. Cortex 27, 3346–3359 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Yeatman, J. D. et al. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc. Natl Acad. Sci. USA 111, E5214–E5223 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Yu, H. H., Chaplin, T. A. & Rosa, M. G. Representation of central and peripheral vision in the primate cerebral cortex: insights from studies of the marmoset brain. Neurosci. Res. 93, 47–61 (2015).

    PubMed  Google Scholar 

  28. 28.

    Jeffs, J., Ichida, J. M., Federer, F. & Angelucci, A. Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2. Cereb. Cortex 19, 963–981 (2009).

    PubMed  Google Scholar 

  29. 29.

    Lee, N. J. et al. Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain 141, 1637–1649 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    de Schotten, M. T., Croxson, P. L. & Mars, R. B. Large-scale comparative neuroimaging: where are we and what do we need? Cortex 118, 188–202 (2018).

    Google Scholar 

  31. 31.

    Lin, M. K. et al. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. eLife 8, e40042 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Maier-Hein, K. H. et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C. & Behrens, T. E. Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18, 1546–1555 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Petrides, M. & Pandya, D. N. Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J. Neurosci. 27, 11573–11586 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Chaplin, T. A., Yu, H. H., Soares, J. G., Gattass, R. & Rosa, M. G. A conserved pattern of differential expansion of cortical areas in simian primates. J. Neurosci. 33, 15120–15125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Sneve, M. H. et al. High-expanding regions in primate cortical brain evolution support supramodal cognitive flexibility. Cereb. Cortex 29, 3891–3901 (2018).

    Google Scholar 

  37. 37.

    Setsompop, K. et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage 63, 569–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang, N. et al. Whole mouse brain structural connectomics using magnetic resonance histology. Brain Struct. Funct. 223, 4323–4335 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Seidlitz, J. et al. A population MRI brain template and analysis tools for the macaque. NeuroImage 170, 121–131 (2018).

    PubMed  Google Scholar 

  40. 40.

    Fonov, V. et al. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54, 313–327 (2011).

    PubMed  Google Scholar 

  41. 41.

    Paxinos, G., Watson, C., Petrides, M., Rosa, M. & Tokuno, H. The Marmoset Brain in Stereotaxic Coordinates (Elsevier Academic Press, 2012).

  42. 42.

    Hardman, C. D. & Ashwell, K. W. Stereotaxic and Chemoarchitectural Atlas of the Brain of the Common Marmoset (Callithrix jacchus) (CRC Press, 2012).

  43. 43.

    Cheng, J., Shen, D., Yap, P.-T. & Basser, P. J. Single-and multiple-shell uniform sampling schemes for diffusion MRI using spherical codes. IEEE Trans. Med. Imaging 37, 185–199 (2018).

    PubMed  Google Scholar 

  44. 44.

    Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. NeuroImage 142, 394–406 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

    PubMed  Google Scholar 

  46. 46.

    Pierpaoli, C. et al. TORTOISE: an integrated software package for processing of diffusion MRI data. In Proc. 18th Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM) (2010).

  47. 47.

    Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219 (1996).

    CAS  PubMed  Google Scholar 

  48. 48.

    Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Tournier, J. D., Calamante, F. & Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. 22, 53–66 (2012).

    Google Scholar 

  50. 50.

    Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A. & Sijbers, J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014).

    PubMed  Google Scholar 

  51. 51.

    Dhollander, T., Smith, R. E., Tournier, J.-D., Jeurissen, B. & Connelly, A. Time to move on: an FOD-based DEC map to replace DTI’s trademark DEC FA. NeuroImage 59, 3976–3994 (2012).

    Google Scholar 

  52. 52.

    Avants, B. B., Tustison, N. & Song, G. Advanced normalization tools (ANTS). Insight J. 2, 1–35 (2009).

    Google Scholar 

  53. 53.

    Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    CAS  Google Scholar 

Download references


We thank the Scientific and Statistical Computing Core of the NIMH Intramural Research Program for their support of the software AFNI and thank the NIH Fellows Editorial Board and the NIH library for language-editing services. We also thank J. Guy for providing the optimized T2* sequence. This work utilized the computational resources of the NIH High Performing Computation Biowulf cluster ( This research was supported by the Intramural Research Program of the NIH, NINDS (ZIA NS003041), including the Neurophysiology Imaging Facility Core (NIMH, NINDS, NEI, ZIC MH002899). The neuronal tracing data are from the Australian Research Council (DP110101200, DP140101968 and CE140100007) and an International Neuroinformatics Coordinating Facility Seed Funding Grant.

Author information




C.L., A.C.S., F.Q.Y. and J.D.N. designed the research. C.L., F.Q.Y. and C.C.-C.Y. collected the MRI data. C.L., J.D.N. and D.S. annotated the white matter structures. C.L. analyzed all the data, drew the white matter ROIs and constructed the atlas. C.L. and X.T. constructed the resource website. D.G. and C.L. implemented the atlas into AFNI. M.G.P.R. and P.M. provided the neuronal tracing data. C.L., D.A.L. and A.C.S. wrote the original draft. C.L., A.C.S., D.A.L., F.Q.Y., J.D.N., M.G.P.R., C.C.-C.Y. and D.S. revised the draft. A.C.S., D.A.L., M.G.P.R. and P.M. secured funding for the study.

Corresponding authors

Correspondence to Cirong Liu or Afonso C. Silva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Reporting Summary

Supplementary Tables 1 and 2

Supplementary Tables 1 and 2.

Supplementary Software

Supplementary Software.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ye, F.Q., Newman, J.D. et al. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat Neurosci 23, 271–280 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing