Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The influence of environment and origin on brain resident macrophages and implications for therapy

Abstract

Microglia are the tissue-resident macrophages of the brain and spinal cord. They are critical players in the development, normal function, and decline of the CNS. Unlike traditional monocyte-derived macrophages, microglia originate from primitive hematopoiesis in the embryonic yolk sac and self-renew throughout life. Microglia also have a unique genetic signature among tissue resident macrophages. Recent studies identify the contributions of both brain environment and developmental history to the transcriptomic identity of microglia. Here we review this emerging literature and discuss the potential implications of origin on microglial function, with particular focus on existing and future therapies using bone-marrow- or stem-cell-derived cells for the treatment of neurological diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Origin of microglia and microglia-like cells.
Fig. 2: The promise of microglia-based therapies.

Similar content being viewed by others

References

  1. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    CAS  PubMed  Google Scholar 

  2. Hickman, S., Izzy, S., Sen, P., Morsett, L. & El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci. 21, 1359–1369 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hammond, T. R., Robinton, D. & Stevens, B. Microglia and the brain: complementary partners in development and disease. Annu. Rev. Cell Dev. Biol. 34, 523–544 (2018).

    CAS  PubMed  Google Scholar 

  4. Dzierzak, E. & Bigas, A. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639–651 (2018).

    CAS  PubMed  Google Scholar 

  5. Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145–152 (1999).

    CAS  PubMed  Google Scholar 

  6. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). This study focused new attention on the origin of microglia and tissue-resident macrophages and set the stage for subsequent studies using fate-mapping to identity the nuances of macrophage origin.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Stremmel, C. et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun. 9, 75 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  9. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    CAS  PubMed  Google Scholar 

  10. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    PubMed  Google Scholar 

  11. Hoeffel, G. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheng, J., Ruedl, C. & Karjalainen, K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43, 382–393 (2015).

    CAS  PubMed  Google Scholar 

  13. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, S.-K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. De, S. et al. Two distinct ontogenies confer heterogeneity to mouse brain microglia. Development 145, dev152306 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    CAS  PubMed  Google Scholar 

  18. Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–937 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferrero, G. et al. Embryonic microglia derive from primitive macrophages and are replaced by cmyb-dependent definitive microglia in zebrafish. Cell Rep. 24, 130–141 (2018).

    CAS  PubMed  Google Scholar 

  20. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. V. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    CAS  PubMed  Google Scholar 

  21. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lawson, L. J., Perry, V. H. & Gordon, S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48, 405–415 (1992).

    CAS  PubMed  Google Scholar 

  23. Füger, P. et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat. Neurosci. 20, 1371–1376 (2017).

    PubMed  Google Scholar 

  24. Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793–803 (2017).

    CAS  PubMed  Google Scholar 

  25. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Google Scholar 

  26. Askew, K. et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18, 391–405 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Réu, P. et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Dai, X.-M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    CAS  PubMed  Google Scholar 

  29. Varvel, N. H. et al. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc. Natl Acad. Sci. USA 109, 18150–18155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Elmore, M. R. P. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruttger, J. et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43, 92–106 (2015).

    CAS  PubMed  Google Scholar 

  32. Zhang, Y. et al. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1. Regul. Sci. Adv. 4, p8492 (2018).

    Google Scholar 

  33. Huang, Y. et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat. Neurosci. 21, 530–540 (2018).

    CAS  PubMed  Google Scholar 

  34. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS  PubMed  Google Scholar 

  36. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014). This study and the following study by Lavin et al. crystallized the powerful programming effects of environment on tissue macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014). This study and the previous study by Gosselin et al. crystallized the powerful programming effects of environment on tissue macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).

    CAS  PubMed  Google Scholar 

  39. Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA 113, E1738–E1746 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    PubMed  Google Scholar 

  41. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    CAS  PubMed  Google Scholar 

  42. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. O’Koren, E. G. et al. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50, 723–737.e7 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    PubMed  Google Scholar 

  45. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

    CAS  PubMed  Google Scholar 

  46. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223.e10 (2019).

    CAS  PubMed  Google Scholar 

  47. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    PubMed  Google Scholar 

  48. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Datta, M. et al. Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity 48, 514–529.e6 (2018).

    CAS  PubMed  Google Scholar 

  50. Ayata, P. et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21, 1049–1060 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773.e8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Friedman, B. A. et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep. 22, 832–847 (2018).

    CAS  PubMed  Google Scholar 

  53. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    CAS  PubMed  Google Scholar 

  54. De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356.e6 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Shemer, A. et al. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat. Commun. 9, 5206 (2018). This study and the following three studies by Bennett et al., Cronk et al. and Lund et al. showed in short order that microglial transcriptomic identity is garnered by both origin and environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bennett, F. C. et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98, 1170–1183.e8 (2018). This study and the three studies by Shemer et al., Cronk et al. and Lund et al. showed in short order that microglial transcriptomic identity is garnered by both origin and environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cronk, J. C. et al. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215, 1627–1647 (2018). This study and the three studies by Shemer et al., Bennett et al. and Lund et al. showed in short order that microglial transcriptomic identity is garnered by both origin and environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lund, H. et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat. Commun. 9, 4845 (2018). This study and the previous three studies by Shemer et al., Bennett et al. and Cronk et al. showed in short order that microglial transcriptomic identity is garnered by both origin and environment.

    PubMed  PubMed Central  Google Scholar 

  59. van de Laar, L. et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44, 755–768 (2016).

    PubMed  Google Scholar 

  60. Gibson, E. M. et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176, 43–55.e13 (2019).

    CAS  PubMed  Google Scholar 

  61. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    CAS  PubMed  Google Scholar 

  62. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. V. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    CAS  PubMed  Google Scholar 

  63. Arnold, T. D. et al. Impaired αVβ8 and TGFβ signaling lead to microglial dysmaturation and neuromotor dysfunction. J. Exp. Med. 216, 900–915 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lund, H. et al. Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-β signaling. Nat. Immunol. 19, 1–7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wong, K. et al. Mice deficient in NRROS show abnormal microglial development and neurological disorders. Nat. Immunol. 18, 633–641 (2017).

    CAS  PubMed  Google Scholar 

  66. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525.e19 (2019).

    CAS  PubMed  Google Scholar 

  67. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 43, 429–435 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sagar, D. et al. Antibody blockade of CLEC12A delays EAE onset and attenuates disease severity by impairing myeloid cell CNS infiltration and restoring positive immunity. Sci. Rep. 7, 2707 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    CAS  PubMed  Google Scholar 

  70. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    CAS  PubMed  Google Scholar 

  71. Saitoh, B.-Y. et al. A case of hereditary diffuse leukoencephalopathy with axonal spheroids caused by a de novo mutation in CSF1R masquerading as primary progressive multiple sclerosis. Mult. Scler. 19, 1367–1370 (2013).

    PubMed  Google Scholar 

  72. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Oosterhof, N. et al. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am. J. Hum. Genet. 104, 936–947 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo, L. et al. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-Pyle disease spectrum and degenerative encephalopathy with brain malformation. Am. J. Hum. Genet. 104, 925–935 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mass, E. et al. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549, 389–393 (2017). This paper showed a stunning example of how cell of origin can influence disease expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shapiro, E. et al. Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet 356, 713–718 (2000).

    CAS  PubMed  Google Scholar 

  79. Peters, C. et al. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104, 881–888 (2004).

    CAS  PubMed  Google Scholar 

  80. Mahmood, A., Raymond, G. V., Dubey, P., Peters, C. & Moser, H. W. Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: a comparison study. Lancet Neurol. 6, 687–692 (2007).

    PubMed  Google Scholar 

  81. Biffi, A. et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J. Clin. Invest. 116, 3070–3082 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    CAS  PubMed  Google Scholar 

  83. Allewelt, H. et al. Long-term functional outcomes after hematopoietic stem cell transplant for early infantile Krabbe disease. Biol. Blood Marrow Transplant. 24, 2233–2238 (2018).

    PubMed  Google Scholar 

  84. Boelens, J. J. et al. Outcomes of transplantation using various hematopoietic cell sources in children with Hurler syndrome after myeloablative conditioning. Blood 121, 3981–3987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Derecki, N. C. et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484, 105–109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schafer, D. P. et al. Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. eLife 5, e15224 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Kwon, H.-S. et al. Anti-human CD117 antibody-mediated bone marrow niche clearance in non-human primates and humanized NSG mice. Blood 133, 2104–2108 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Capotondo, A. et al. Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc. Natl. Acad. Sci. USA 109, 15018–15023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20, 753–759 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ormel, P. R. et al. Microglia innately develop within cerebral organoids. Nat. Commun. 9, 4167 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Takata, K. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47, 183–198.e6 (2017).

    CAS  PubMed  Google Scholar 

  94. Sellgren, C. M. et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 22, 374–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hasselmann, J. et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103, 1016–1033.e10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pocock, J. M. & Piers, T. M. Modelling microglial function with induced pluripotent stem cells: an update. Nat. Rev. Neurosci. 19, 445–452 (2018).

    CAS  PubMed  Google Scholar 

  97. Mizutani, M. et al. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J. Immunol. 188, 29–36 (2012).

    CAS  PubMed  Google Scholar 

  98. Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924 (2006).

    CAS  PubMed  Google Scholar 

  99. Fonseca, M. I. et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J. Neuroinflammation 14, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Haimon, Z. et al. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nat. Immunol. 19, 636–644 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Samokhvalov, I. M., Samokhvalova, N. I. & Nishikawa, S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056–1061 (2007).

    CAS  PubMed  Google Scholar 

  103. Luo, J. et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J. Exp. Med. 210, 157–172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Plein, A., Fantin, A., Denti, L., Pollard, J. W. & Ruhrberg, C. Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature 562, 223–228 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tang, Y., Harrington, A., Yang, X., Friesel, R. E. & Liaw, L. The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis 48, 563–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Maeda, K. et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 18, 405–412 (2012).

    CAS  PubMed  Google Scholar 

  107. Boyer, S. W., Schroeder, A. V., Smith-Berdan, S. & Forsberg, E. C. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell 9, 64–73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Witschi, R. et al. Hoxb8-Cre mice: A tool for brain-sparing conditional gene deletion. Genesis 48, 596–602 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Georgiades, P. et al. vavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages. Genesis 34, 251–256 (2002).

    CAS  PubMed  Google Scholar 

  110. Orthgiess, J. et al. Neurons exhibit Lyz2 promoter activity in vivo: implications for using LysM-Cre mice in myeloid cell research. Eur. J. Immunol. 46, 1529–1532 (2016).

    CAS  PubMed  Google Scholar 

  111. Saederup, N. et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5, e13693 (2010).

    PubMed  PubMed Central  Google Scholar 

  112. Croxford, A. L. et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43, 502–514 (2015).

    CAS  PubMed  Google Scholar 

  113. Kaiser, T. & Feng, G. Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eNeuro 6, ENEURO.0448-18.2019 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    CAS  PubMed  Google Scholar 

  115. Rojo, R. et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10, 3215 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Villa, A. et al. Sex-specific features of microglia from adult mice. Cell Rep. 23, 3501–3511 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pastores, G.M. & Hughes, D.A. Gaucher disease. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1269/ (University of Washington, Seattle, 2000).

  118. Aflaki, E., Westbroek, W. & Sidransky, E. The complicated relationship between Gaucher disease and Parkinsonism: insights from a rare disease. Neuron 93, 737–746 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Clarke, L.A. Mucopolysaccharidosis type I. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1162/ (University of Washington, Seattle, 2002).

  120. Scarpa, M. Mucopolysaccharidosis type II. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1274/ (University of Washington, Seattle, 2007).

  121. Orsini, J.J., Escolar, M.L., Wasserstein, M.P. & Caggana, M. Krabbe disease. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1238/ (University of Washington, Seattle, 2000).

  122. Patterson, M. Niemann-Pick disease type C. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1296/ (University of Washington, Seattle, 2000).

  123. Raymond, G.V., Moser, A.B. & Fatemi, A. X–linked adrenoleukodystrophy. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1315/ (University of Washington, Seattle, 1999).

  124. Gomez-Ospina, N. Arylsulfatase A deficiency. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1130/ (University of Washington, Seattle, 2006).

  125. Konno, T. et al. Diagnostic criteria for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia due to CSF1R mutation. Eur. J. Neurol. 25, 142–147 (2018).

    CAS  PubMed  Google Scholar 

  126. Christodoulou, J. & Ho, G. MECP2 disorders. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1497 (University of Washington, Seattle, 2001).

  127. Paloneva, J., Autti, T., Hakola, P. & Haltia, M.J. Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL). in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1197/ (University of Washington, Seattle, 2002).

  128. Crow, Y.J. Aicardi-Goutières syndrome. in GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1475/ (University of Washington, Seattle, 2005).

  129. Kelly, N., Makarem, D. C. & Wasserstein, M. P. Screening of newborns for disorders with high benefit-risk ratios should be mandatory. J. Law Med. Ethics 44, 231–240 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Beckmann, N. et al. Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol. Commun. 6, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the authors of the incredible works we’ve been lucky to read and attempt to honor in this manuscript; members of the Barres, Bennett, and Song-Ming labs, especially H. Song and G. Ming; members of our new clinical and research communities; and our discerning proofreaders K. Guttenplan, K. Nemec, D. Marzan, D. Barber, and A. Eisch.

Author information

Authors and Affiliations

Authors

Contributions

M.L.B. and F.C.B. were equal contributors to the conception and writing of this review.

Corresponding author

Correspondence to Mariko L. Bennett.

Ethics declarations

Competing interests

M.L.B and F.C.B are co-inventors on a pending patent filed by The Board of Trustees of The Leland Stanford Junior University (application 16/566,675) related to methods of microglia replacement.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, M.L., Bennett, F.C. The influence of environment and origin on brain resident macrophages and implications for therapy. Nat Neurosci 23, 157–166 (2020). https://doi.org/10.1038/s41593-019-0545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0545-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing