Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex

An Author Correction to this article was published on 27 November 2019

This article has been updated

Abstract

Microglia are the brain’s resident innate immune cells and also have a role in synaptic plasticity. Microglial processes continuously survey the brain parenchyma, interact with synaptic elements and maintain tissue homeostasis. However, the mechanisms that control surveillance and its role in synaptic plasticity are poorly understood. Microglial dynamics in vivo have been primarily studied in anesthetized animals. Here we report that microglial surveillance and injury response are reduced in awake mice as compared to anesthetized mice, suggesting that arousal state modulates microglial function. Pharmacologic stimulation of β2-adrenergic receptors recapitulated these observations and disrupted experience-dependent plasticity, and these effects required the presence of β2-adrenergic receptors in microglia. These results indicate that microglial roles in surveillance and synaptic plasticity in the mouse brain are modulated by noradrenergic tone fluctuations between arousal states and emphasize the need to understand the effect of disruptions of adrenergic signaling in neurodevelopment and neuropathology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anesthesia enhances microglial surveillance of the parenchyma.
Fig. 2: Microglial surveillance is enhanced by DEX.
Fig. 3: β2-AR signaling reduces microglial dynamics in adolescent mice.
Fig. 4: Inhibition of β2-ARs in awake mice recapitulates the effects of anesthesia by enhancing microglial arborization and surveillance.
Fig. 5: β2-AR activation inhibits microglial process response to focal tissue injury.
Fig. 6: Chronic microglial β2-AR activation impairs adolescent ODP.
Fig. 7: Microglial β2-ARs mediate the effects of clenbuterol on ODP.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

MATLAB code for motility and laser ablation analysis is freely available at https://github.com/majewska-lab. More information can be found in the Life Sciences Reporting Summary.

Change history

  • 27 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Schafer, D. P., Lehrman, E. K. & Stevens, B. The ‘quad-partite’ synapse: microglia–synapse interactions in the developing and mature CNS. Glia 61, 24–36 (2013).

    Article  PubMed  Google Scholar 

  2. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Miyamoto, A. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7, 12540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stowell, R. D. et al. Cerebellar microglia are dynamically unique and survey Purkinje neurons in vivo. Dev. Neurobiol. 78, 627–644 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sipe, G. O. et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 7, 10905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N. & Audinat, E. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J. Neurosci. 32, 15106–15111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhan, Y. et al. Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Dissing-Olesen, L. et al. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 34, 10511–10527 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ding, F. et al.α1-adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54, 387–394 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, G. et al. Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173–1178 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aton, S. J. et al. Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61, 454–466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Donnell, J., Zeppenfeld, D., McConnell, E., Pena, S. & Nedergaard, M. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res. 37, 2496–2512 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nelson, L. E. et al. The α2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98, 428–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Bernier, L. P. et al. Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep. 27, 2895–2908 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Bellesi, M., Tononi, G., Cirelli, C. & Serra, P. A. Region-specific dissociation between cortical noradrenaline levels and the sleep/wake cycle. Sleep 39, 143–154 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gyoneva, S. & Traynelis, S. F. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J. Biol. Chem. 288, 15291–15302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frenkel, M. Y. & Bear, M. F. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917–923 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Gordon, J. A. & Stryker, M. P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kasamatsu, T. & Pettigrew, J. D. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 194, 206–209 (1976).

    Article  CAS  PubMed  Google Scholar 

  28. Pettigrew, J. D. & Kasamatsu, T. Local perfusion of noradrenaline maintains visual cortical plasticity. Nature 271, 761–763 (1978).

    Article  CAS  PubMed  Google Scholar 

  29. Hinoi, E. et al. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J. Cell Biol. 183, 1235–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toth, L. A. & Bhargava, P. Animal models of sleep disorders. Comp. Med. 63, 91–104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wulff, K., Gatti, S., Wettstein, J. G. & Foster, R. G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 11, 589–599 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Polack, P. O., Friedman, J. & Golshani, P. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat. Neurosci. 16, 1331–1339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frank, M. G., Issa, N. P. & Stryker, M. P. Sleep enhances plasticity in the developing visual cortex. Neuron 30, 275–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Smith, A. J., Yao, X., Dix, J. A., Jin, B. J. & Verkman, A. S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 6, e27679 (2017).

  35. Sipe, G. O. et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 7, 10905 (2016).

  36. Schneble, N. et al. Phosphoinositide 3-kinase γ ties chemoattractant- and adrenergic control of microglial motility. Mol. Cell Neurosci. 78, 1–8 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Madry, C. et al. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron 97, 299–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Madry, C. et al. Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. Proc. Natl Acad. Sci. USA 115, E1608–E1617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo, F. & Zhou, H. Clenbuterol reduces GABAergic transmission in prefrontal cortex layer 5/6 pyramidal neurons of juvenile rat via reducing action potentials firing frequency of GABAergic interneurons. J. Neurochem. 144, 152–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Guneykaya, D. et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 24, 2773–2783 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, J. S. & Rajagopal, S. The β-Arrestins: multifunctional regulators of G protein-coupled receptors. J. Biol. Chem. 291, 8969–8977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Y., Du, X., Pei, G., Du, J. & Zhao, J. β-arrestin1 regulates the morphology and dynamics of microglia in zebrafish in vivo. Eur. J. Neurosci. 43, 131–138 (2016).

    Article  PubMed  Google Scholar 

  43. Qian, L. et al. β2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J. Immunol. 186, 4443–4454 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Labrousse, V. F. et al. Impaired interleukin-1β and c-Fos expression in the hippocampus is associated with a spatial memory deficit in P2X7 receptor-deficient mice. PLoS One 4, e6006 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kaneko, M., Stellwagen, D., Malenka, R. C. & Stryker, M. P. Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58, 673–680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krueger, J. M., Obal, F. J., Fang, J., Kubota, T. & Taishi, P. The role of cytokines in physiological sleep regulation. Ann. N. Y. Acad. Sci. 933, 211–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Kolmus, K., Tavernier, J. & Gerlo, S. β2-adrenergic receptors in immunity and inflammation: stressing NF-κB. Brain Behav. Immun. 45, 297–310 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Lowery, R. L., Tremblay, M. E., Hopkins, B. E. & Majewska, A. K. The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system. Glia 65, 1744–1761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Madrigal, J. L., Caso, J. R., Garcia-Bueno, B., Gutierrez, I. L. & Leza, J. C. Noradrenaline induces CX3CL1 production and release by neurons. Neuropharmacology 114, 146–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Musiek, E. S. & Holtzman, D. M. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354, 1004–1008 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Wong, E. L. et al. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex. Brain Behav. Immun. 67, 257–278 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Ryan, K. M. et al. Clenbuterol activates the central IL-1 system via the β2-adrenoceptor without provoking inflammatory response related behaviours in rats. Brain Behav. Immun. 56, 114–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Frishman, W. Clinical pharmacology of the new β-adrenergic blocking drugs. Part 9. Nadolol: a new long-acting β-adrenoceptor blocking drug. Am. Heart J. 99, 124–128 (1980).

    Article  CAS  PubMed  Google Scholar 

  57. Bilski, A. J., Halliday, S. E., Fitzgerald, J. D. & Wale, J. L. The pharmacology of a β2-selective adrenoceptor antagonist (ICI 118,551). J. Cardiovasc Pharm. 5, 430–437 (1983).

    Article  CAS  Google Scholar 

  58. Jonsson, G., Hallman, H., Ponzio, F. & Ross, S. DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)—a useful denervation tool for central and peripheral noradrenaline neurons. Eur. J. Pharm. 72, 173–188 (1981).

    Article  CAS  Google Scholar 

  59. Farneback, G. Two-frame motion estimation based on polynomial expansion. Proceedings of the 13th Scandinavian Conference on Image Analysis 363–370 (2003).

  60. Root, D. H. et al. Norepinephrine activates dopamine D4 receptors in the rat lateral habenula. J. Neurosci. 35, 3460–3469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the University of Rochester Medical Center Flow Core for their expert training and services. We thank C. Lamantia for assistance with animal management; J. Olschowka and K. O’Banion for shared PCR resources; F. Rivera-Escalera for providing training on tissue preparation for microglial FACS; A. Ghosh for the Sholl analysis ImageJ plugin; and J. Cang for sharing MATLAB code for OD analysis. This work was supported by National Institutes of Health grants R01 EY019277 (A.K.M.), R21 NS099973 (A.K.M.), R01 AA027111 (A.K.M.), R01 EY028219 (M.S.), F31 NS105249 (R.D.S.), T32 NS007489 (R.D.S., G.O.S.), F31 NS086241 (G.O.S.) and F32 EY028028 (G.O.S.); National Science Foundation grant NSF 1557971 (A.K.M.); a Schmitt Program on Integrative Brain Research grant (G.O.S. and R.P.D.); the University of Rochester Bilski-Mayer Fellowship (H.N.B.); and the University of Rochester Medical Center Summer Scholars Fellowship (K.A.L.).

Author information

Authors and Affiliations

Authors

Contributions

R.D.S., G.O.S. and A.K.M. conceived the project. R.D.S., G.O.S., R.P.D., H.N.B., K.A.L., B.S.W. and M.B.S. carried out experiments and data analysis. R.D.S. carried out iOS imaging experiments and analysis in CX3CR1-CreERT2-AR-flox, CX3CR1-CreERT and C57BL/6J mice, all in vivo two-photon experiments characterizing awake versus anesthetized mice and adrenergic pharmacologic agents, and imaging experiments using CX3CR1-CreERT2-AR-flox/Ai9 and CX3CR1-CreERT/Ai9 mice. R.D.S. also performed all FACS preparation on microglial specimens. G.O.S. carried out iOS imaging experiments in C57BL/6J mice and imaging experiments characterizing stress and circadian rhythms. G.O.S. also performed experiments using terbutaline. G.O.S. performed all resonance imaging and optogenetic experiments. R.P.D. carried out stress experiments. H.N.B. assisted in confirmation of CX3CR1-Cre/β2-AR-flox excision and DSP4 depletion histology experiments. K.A.L. carried out circadian morphology experiments. B.S.W. performed all slice experiments. M.B.S. assisted with DSP4 histology experiments and CX3CR1-Cre/β2-AR-flox expression histology. J.M.B. contributed to the design of experiments with pharmacologic agents. E.B. advised on the design and analysis of stress experiments. M.S. advised on the design and analysis of optogenetic and resonance imaging experiments. R.D.S., G.O.S. and A.K.M. wrote the first draft of the manuscript. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Ania K. Majewska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figs. 1–15.

Reporting Summary

Supplementary Video 1

Time-lapse movie taken through a chronic cranial window showing the motility of V1 microglia in awake mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time point, representative of observations made in n = 16 mice). Scale bar, 20 μm.

Supplementary Video 2

Time-lapse movie showing the motility of V1 microglia in fentanyl cocktail anesthetized mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time poin,; representative of observations made in n = 16 mice). Scale bar, 20 μm.

Supplementary Video 3

Time-lapse movie taken through a chronic cranial window of V1 microglia in awake mice taken over 1 h at 5-min intervals after focal laser injury (10-μm z stacks were compressed at each time point, representative of observations made in n = 8 mice). Scale bar, 20 μm.

Supplementary Video 4

Time-lapse movie taken through a chronic cranial window of V1 microglia in fentanyl cocktail anesthetized mice taken over 1 h at 5-min intervals after focal laser injury (10-μm z stacks were compressed at each time point, representative of observations made in n = 8 mice). Scale bar, 20 μm.

Supplementary Video 5

Time-lapse movie taken through a chronic cranial window showing the motility of V1 microglia in dexmedetomidine anesthetized mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time point, representative of observations made in n = 7 mice). Scale bar, 20 μm.

Supplementary Video 6

Time-lapse movie taken through a chronic cranial window showing the rapid extension of microglial pseudopodia after dexmedetomidine administration taken with resonance imaging over 45 min at 1.2-s intervals (representative of observations made in n = 7 mice). Scale bar, 10 μm.

Supplementary Video 7

Time-lapse movie taken through an acute craniotomy over V1 showing 30-min baseline microglial motility at 2-min intervals, followed by the retraction of microglial pseudopodia with application of 1-mM terbutaline for 60 min after administration (representative of observations made in n= 4 mice). Scale bar, 20 μm.

Supplementary Video 8

Time-lapse movie taken through a thin-skull preparation showing the motility of V1 microglia in saline dosed mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time point, representative of observations made in n = 16 mice). Scale bar, 20 μm.

Supplementary Video 9

Time-lapse movie taken through a thin-skull preparation showing the motility of V1 microglia in nadolol dosed mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time point, representative of observations made in n = 8 mice). Scale bar, 20 μm.

Supplementary Video 10

Time-lapse movie taken through a thin-skull preparation showing the motility of V1 microglia in nadolol/clenbuterol dosed mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time point, representative of observations made in n = 12 mice). Scale bar, 20 μm.

Supplementary Video 11

Time-lapse movie taken through a thin-skull preparation showing the motility of V1 microglia in DSP4-treated mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time point, representative of observations made in n = 12 mice). Scale bar, 20 μm.

Supplementary Video 12

Time-lapse movie taken through a thin-skull preparation showing the motility of V1 microglia in ICI–118,551-treated mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time point, representative of observations made in n = 11 mice). Scale bar, 20 μm.

Supplementary Video 13

Time-lapse movie taken through a chronic cranial window showing the motility of V1 microglia in awake ICI–118,551-treated mice taken over 1 h at 5-min intervals (30-μm z stacks were compressed in each time point, representative of observations made in n = 7 mice). Scale bar, 20 μm.

Supplementary Video 14

Time-lapse movie taken through a thin-skull preparation of V1 microglia in nadolol-treated mice taken over 1 h at 5 min intervals after focal laser injury (10-μm z stacks were compressed at each time point, representative of observations made in n = 7 mice). Scale bar, 20 μm.

Supplementary Video 15

Time-lapse movie taken through a thin-skull preparation of V1 microglia in nadolol/clenbuterol-treated mice taken over 1 h at 5-min intervals after focal laser injury (10-μm z stacks were compressed at each time point, representative of observations made in n = 5 mice). Scale bar, 20 μm.

Source data

Full length gels

Supporting data for Supplementary Fig. 14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stowell, R.D., Sipe, G.O., Dawes, R.P. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci 22, 1782–1792 (2019). https://doi.org/10.1038/s41593-019-0514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0514-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing