Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling

Abstract

Microglia dynamically survey the brain parenchyma. Microglial processes interact with neuronal elements; however, what role neuronal network activity plays in regulating microglial dynamics is not entirely clear. Most studies of microglial dynamics use either slice preparations or in vivo imaging in anesthetized mice. Here we demonstrate that microglia in awake mice have a relatively reduced process area and surveillance territory and that reduced neuronal activity under general anesthesia increases microglial process velocity, extension and territory surveillance. Similarly, reductions in local neuronal activity through sensory deprivation or optogenetic inhibition increase microglial process surveillance. Using pharmacological and chemogenetic approaches, we demonstrate that reduced norepinephrine signaling is necessary for these increases in microglial process surveillance. These findings indicate that under basal physiological conditions, noradrenergic tone in awake mice suppresses microglial process surveillance. Our results emphasize the importance of awake imaging for studying microglia–neuron interactions and demonstrate how neuronal activity influences microglial process dynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Microglial process surveillance is increased after general anesthesia.
Fig. 2: Whisker trimming increases microglial process surveillance in the barrel cortex of awake mice.
Fig. 3: Intracerebral application of muscimol increases microglial process surveillance.
Fig. 4: Optogenetic suppression of neuronal activity through VGAT-ChR2-mediated inhibition increases microglial process surveillance.
Fig. 5: NE signaling, but not P2Y12 or CX3CR1 signaling, contributes to microglial surveillance increases.
Fig. 6: NE administration before whisker trimming or optogenetic inhibition prevents the increase in microglial process surveillance.
Fig. 7: Blocking adrenergic receptors or lowering endogenous NE signaling increases microglial process surveillance.
Fig. 8: NE decreases microglial process surveillance in acute brain slices.

Data availability

Source data for all graphs are available from the corresponding author upon request.

References

  1. 1.

    Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol.27, 119–145 (2009).

    CAS  PubMed  Google Scholar 

  2. 2.

    Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol.79, 619–643 (2017).

    CAS  PubMed  Google Scholar 

  3. 3.

    Kettenmann, H., Hanisch, U. K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol. Rev.91, 461–553 (2011).

    CAS  PubMed  Google Scholar 

  4. 4.

    Wu, Y., Dissing-Olesen, L., MacVicar, B. A. & Stevens, B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol.36, 605–613 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Eyo, U. B. & Wu, L. J. Bi-directional microglia–neuron communication in the healthy brain. Neural Plast.2013, 456857 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med.23, 1018–1027 (2017).

    CAS  Google Scholar 

  7. 7.

    Miyamoto, A. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun.7, 12540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Weinhard, L. et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun.9, 1228 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol.8, e1000527 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Schafer, D. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell155, 1596–1609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Akiyoshi, R. et al. Microglia enhance synapse activity to promote local network synchronization. eNeuro5, ENEURO.0088-18.2018 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science308, 1314–1318 (2005).

    CAS  PubMed  Google Scholar 

  14. 14.

    Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci.8, 752–758 (2005).

    CAS  PubMed  Google Scholar 

  15. 15.

    Eyo, U. B. et al. P2Y12R-dependent translocation mechanisms gate the changing microglial landscape. Cell Rep.23, 959–966 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci.9, 1512–1519 (2006).

    CAS  Google Scholar 

  17. 17.

    Wu, L. J., Vadakkan, K. I. & Zhuo, M. ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia55, 810–821 (2007).

    PubMed  Google Scholar 

  18. 18.

    Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci.29, 3974–3980 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Eyo, U. B. et al. Regulation of physical microglia–neuron interactions by fractalkine signaling after status epilepticus. eNeuro3, ENEURO.0209-16.2016 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Eyo, U. B. et al. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J. Neurosci.34, 10528–10540 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Madry, C. et al. Microglial ramification, surveillance, and interleukin-1beta release are regulated by the two-pore domain K(+) channel THIK-1. Neuron97, 299–312 e296 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Franks, N. P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci.9, 370–386 (2008).

    CAS  PubMed  Google Scholar 

  23. 23.

    Petersen, C. C. The functional organization of the barrel cortex. Neuron56, 339–355 (2007).

    CAS  PubMed  Google Scholar 

  24. 24.

    Zhao, S. et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods8, 745–752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Eyo, U. B., Murugan, M. & Wu, L. J. Microglia–neuron communication in epilepsy. Glia65, 5–18 (2017).

    PubMed  Google Scholar 

  26. 26.

    Dissing-Olesen, L. et al. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci.34, 10511–10527 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Liang, K. J. et al. Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest. Ophthalmol. Vis. Sci.50, 4444–4451 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Wu, L. J. & Zhuo, M. Resting microglial motility is independent of synaptic plasticity in mammalian brain. J. Neurophysiol.99, 2026–2032 (2008).

    PubMed  Google Scholar 

  29. 29.

    Muller, C. P. et al. The in vivo neurochemistry of the brain during general anesthesia. J. Neurochem.119, 419–446 (2011).

    PubMed  Google Scholar 

  30. 30.

    Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci.34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Gyoneva, S. & Traynelis, S. F. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J. Biol. Chem.288, 15291–15302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schwarz, L. A. & Luo, L. Organization of the locus coeruleus–norepinephrine system. Curr. Biol.25, R1051–R1056 (2015).

    CAS  PubMed  Google Scholar 

  33. 33.

    Sipe, G. O. et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun.7, 10905 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Berridge, C. W. & Waterhouse, B. D. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev.42, 33–84 (2003).

    Google Scholar 

  35. 35.

    Audet, M. A., Doucet, G., Oleskevich, S. & Descarries, L. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex. J. Comp. Neurol.274, 307–318 (1988).

    CAS  PubMed  Google Scholar 

  36. 36.

    O’Donnell, J., Zeppenfeld, D., McConnell, E., Pena, S. & Nedergaard, M. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res.37, 2496–2512 (2012).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kohm, A. P. & Sanders, V. M. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharm. Rev.53, 487–525 (2001).

    CAS  PubMed  Google Scholar 

  38. 38.

    Orr, A. G., Orr, A. L., Li, X. J., Gross, R. E. & Traynelis, S. F. Adenosine A2A receptor mediates microglial process retraction. Nat. Neurosci.12, 872–878 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bernier, L. P. et al. Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep.27, 2895–2908.e2894 (2019).

    CAS  PubMed  Google Scholar 

  40. 40.

    Eyo, U. B. et al. Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium. J. Neurosci.35, 2417–2422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Zhao, X., Eyo, U. B., Murugan, M. & Wu, L. J. Microglial interactions with the neurovascular system in physiology and pathology. Dev. Neurobiol.78, 604–617 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Li, Y., Du, X. F., Liu, C. S., Wen, Z. L. & Du, J. L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell23, 1189–1202 (2012).

    CAS  PubMed  Google Scholar 

  43. 43.

    Chan-Palay, V. & Asan, E. Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J. Comp. Neurol.287, 373–392 (1989).

    CAS  PubMed  Google Scholar 

  44. 44.

    Kvetnansky, R., Sabban, E. L. & Palkovits, M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol. Rev.89, 535–606 (2009).

    CAS  PubMed  Google Scholar 

  45. 45.

    Heneka, M. T. et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc. Natl Acad. Sci. USA107, 6058–6063 (2010).

    CAS  PubMed  Google Scholar 

  46. 46.

    Xu, H., Rajsombath, M. M., Weikop, P. & Selkoe, D. J. Enriched environment enhances beta-adrenergic signaling to prevent microglia inflammation by amyloid-beta. EMBO Mol. Med.10, e8931 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science352, 712–716 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mitchell, H. A. & Weinshenker, D. Good night and good luck: norepinephrine in sleep pharmacology. Biochem. Pharm.79, 801–809 (2010).

    CAS  PubMed  Google Scholar 

  49. 49.

    Brown, E. N., Lydic, R. & Schiff, N. D. General anesthesia, sleep, and coma. N. Engl. J. Med.363, 2638–2650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol.20, 4106–4114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health (R01NS088627, R21DE025689 and R01NS112144 to L.-J.W.) and by a postdoctoral fellowship from the Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology (to T.C). The authors thank M. Mattson (National Institute on Aging) for critical reading of the paper and members of the Wu Lab at the Mayo Clinic for insightful discussions.

Author information

Affiliations

Authors

Contributions

Y.U.L., H.D. and L.-J.W. designed the studies. Y.U.L., A.D.U. and L.-J.W. wrote and revised the manuscript. Y.U.L. performed the electrophysiology experiments. Y.U.L., Y.Y., Y.L., U.B.E., T.C., J. Zheng, A.D.U., J .Zhu and D.B.B. performed animal surgery, image collection and data analyses. Y.U.L. and J. Zheng performed the in situ hybridization and immunofluorescence staining experiments.

Corresponding author

Correspondence to Long-Jun Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Reporting Summary

Supplementary Video 1

Microglial process surveillance increases after anesthesia. Time-lapse imaging of microglia (50–64 µm in depth) in the somatosensory cortex before and after isoflurane anesthesia. Experiments were repeated three times independently with similar results.

Supplementary Video 2

Neuronal network activity in the somatosensory cortex immediately decreases after isoflurane anesthesia. Calcium activity in excitatory CamKII-positive soma (150 µm in depth, left) or dendrites (50 µm, right) before and after isoflurane induction. Experiments were repeated three times independently with similar results.

Supplementary Video 3

Neuronal network activity in the barrel cortex decreases after contralateral whisker trimming. Calcium activity in CamKII neuronal dendrites (50 µm in depth, right) of the contralateral barrel cortex before and after whisker trimming. Experiments were repeated three times independently with similar results.

Supplementary Video 4

Microglial process surveillance increases after contralateral whisker trimming. Time-lapse imaging of microglia (50–64 µm in depth) in the contralateral barrel cortex before and after whisker trimming. Experiments were repeated three times independently with similar results.

Supplementary Video 5

Intracerebral administration of muscimol (870 µM) reduces neuronal network activity. Calcium activity of CamKII neuronal somas (150 µm in depth) in the somatosensory cortex before and after muscimol administration. Experiments were repeated three times independently with similar results.

Supplementary Video 6

Microglial process surveillance increases after intracerebral administration of muscimol (870 µM). Time-lapse imaging of microglia (50–64 µm depth) in somatosensory cortex before and after muscimol administration. Experiments were repeated three times independently with similar results.

Supplementary Video 7

Microglial process surveillance increases after optogenetic stimulation of VGAT-positive inhibitory neurons. Time-lapse imaging of microglia (50–64 µm depth) in the somatosensory cortex before and after optogenetic stimulation (10 Hz, 1 ms pulse, 10 min of stimulation) of ChR2-expressing VGAT-positive interneurons. Experiments were repeated three times independently with similar results.

Supplementary Video 8

In vivo imaging dense noradrenergic neuronal projections from the locus coeruleus. Z-stack movie showing td-Tomato-labeled axons, which project from noradrenergic neurons in the LC. The video progresses from the pial surface down to a 100 µm in depth in the somatosensory cortex. Experiments were repeated three times independently with similar results.

Supplementary Video 9

Neuronal network activity in acute brain slices exposed to glutamate. Calcium activity in excitatory CamKII-positive soma in three cortical slices exposed to vehicle, 50 µM glutamate or 1 mM glutamate. Experiments were repeated three times independently with similar results.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.U., Ying, Y., Li, Y. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 22, 1771–1781 (2019). https://doi.org/10.1038/s41593-019-0511-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing