Functions of adult-born neurons in hippocampal memory interference and indexing

Abstract

The dentate gyrus–CA3 circuit of the hippocampus is continuously modified by the integration of adult-born dentate granule cells (abDGCs). All abDGCs undergo a prolonged period of maturation, during which they exhibit heightened synaptic plasticity and refinement of electrophysiological properties and connectivity. Consistent with theoretical models and the known functions of the dentate gyrus–CA3 circuit, acute or chronic manipulations of abDGCs support a role for abDGCs in the regulation of memory interference. In this Review, we integrate insights from studies that examine the maturation of abDGCs and their integration into the circuit with network mechanisms that support memory discrimination, consolidation and clearance. We propose that adult hippocampal neurogenesis enables the generation of a library of experiences, each registered in mature abDGC physiology and connectivity. Mature abDGCs recruit inhibitory microcircuits to support pattern separation and memory indexing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Development, experience and maturation of adult-born DGCs.
Fig. 2: Adult-born DGCs reduce memory interference and promote consolidation through inhibitory microcircuits.
Fig. 3: Proposed role of adult-born DGCs in indexing and pattern separation.

References

  1. 1.

    Marr, D. Philos. Trans. R. Soc. Lond. B Biol Sci. 262, 23–81 (1971).

  2. 2.

    Treves, A. & Rolls, E. T. Hippocampus 2, 189–199 (1992).

  3. 3.

    O’Reilly, R. C. & McClelland, J. L. Hippocampus 4, 661–682 (1994).

  4. 4.

    Berron, D. et al. J. Neurosci. 36, 7569–7579 (2016).

  5. 5.

    Bakker, A., Kirwan, C. B., Miller, M. & Stark, C. E. Science 319, 1640–1642 (2008). Using an incidental encoding task, the authors showed that the DG–CA3 circuit in humans is preferentially recruited under conditions of high mnemonic interference.

  6. 6.

    Leutgeb, J. K., Leutgeb, S., Moser, M. B. & Moser, E. I. Science 315, 961–966 (2007).

  7. 7.

    Neunuebel, J. P. & Knierim, J. J. Neuron 81, 416–427 (2014). Recordings from EC, DG and CA3 demonstrated input–output transformation functions in DG and retrieval dynamics in CA3 consistent with their proposed functions in pattern separation and completion.

  8. 8.

    van Dijk, M. T. & Fenton, A. A. Neuron 98, 832–845.e5 (2018).

  9. 9.

    Sakon, J. J. & Suzuki, W. A. Proc. Natl. Acad. Sci. USA 116, 9634–9643 (2019).

  10. 10.

    McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Psychol. Rev. 102, 419–457 (1995).

  11. 11.

    Teyler, T. J. & DiScenna, P. Behav. Neurosci. 100, 147–154 (1986).

  12. 12.

    Tanaka, K. Z. et al. Science 361, 392–397 (2018). Activity of c-Fos-expressing engram-bearing cells in CA1 is distinct from that of place cells and reliably predicts contextual identity.

  13. 13.

    Liu, X. et al. Nature 484, 381–385 (2012).

  14. 14.

    Guo, N. et al. Nat. Med. 24, 438–449 (2018). Engram-bearing DGCs recruit PV + INs to convey feedforward inhibition onto CA3, stabilize the engram and modulate memory interference and consolidation in hippocampal–cortical–basolateral amygdala networks.

  15. 15.

    Kitamura, T. et al. Science 356, 73–78 (2017).

  16. 16.

    Altman, J. & Das, G. D. J. Comp. Neurol. 124, 319–335 (1965).

  17. 17.

    Besnard, A. & Sahay, A. Neuropsychopharmacology 41, 24–44 (2016).

  18. 18.

    McAvoy, K. M. & Sahay, A. Neurotherapeutics 14, 630–645 (2017).

  19. 19.

    Espósito, M. S. et al. J. Neurosci. 25, 10074–10086 (2005).

  20. 20.

    Ge, S. et al. Nature 439, 589–593 (2006).

  21. 21.

    Overstreet-Wadiche, L. S., Bensen, A. L. & Westbrook, G. L. J. Neurosci. 26, 2326–2334 (2006).

  22. 22.

    Jagasia, R. et al. J. Neurosci. 29, 7966–7977 (2009).

  23. 23.

    Chancey, J. H. et al. J. Neurosci. 33, 6614–6622 (2013).

  24. 24.

    Marín-Burgin, A., Mongiat, L. A., Pardi, M. B. & Schinder, A. F. Science 335, 1238–1242 (2012). Ex vivo study showing that immature abDGCs, unlike mature DGCs, respond to a wide range of inputs due to delayed recruitment of feedforward inhibition in the EC–DG circuit.

  25. 25.

    Dieni, C. V. et al. Nat. Commun. 7, 11313 (2016). Ex vivo study showing that sparse functional EC connectivity and excitatory drive onto immature abDGCs limits their recruitment in response to a broad range of cortical inputs.

  26. 26.

    Zhao, C., Teng, E. M., Summers, R. G. Jr., Ming, G. L. & Gage, F. H. J. Neurosci. 26, 3–11 (2006).

  27. 27.

    Toni, N. et al. Nat. Neurosci. 11, 901–907 (2008).

  28. 28.

    Toni, N. et al. Nat. Neurosci. 10, 727–734 (2007). Electron microscopy analysis of EC–abDGC synapse formation.

  29. 29.

    Sun, G. J. et al. J. Neurosci. 33, 11400–11411 (2013).

  30. 30.

    Gonçalves, J. T. et al. Nat. Neurosci. 19, 788–791 (2016).

  31. 31.

    Lemaire, V. et al. J. Neurosci. 32, 3101–3108 (2012).

  32. 32.

    Tashiro, A., Sandler, V. M., Toni, N., Zhao, C. & Gage, F. H. Nature 442, 929–933 (2006).

  33. 33.

    Adlaf, E. W. et al. eLife 6, e19886 (2017). Genetically enhancing or ablating abDGCs decreases or enhances excitatory synaptic inputs onto mature DGCs by altering synaptic competition dynamics.

  34. 34.

    Krzisch, M. et al. Cereb. Cortex 27, 4048–4059 (2016).

  35. 35.

    McAvoy, K. M. et al. Neuron 91, 1356–1373 (2016). Genetic elimination of dendritic spines in mature DGCs enhances functional integration of abDGCs and promotes context discrimination and population-based coding.

  36. 36.

    Faulkner, R. L. et al. Proc. Natl. Acad. Sci. USA 105, 14157–14162 (2008).

  37. 37.

    Lopez, C. M. et al. Front. Neural Circuits 6, 85 (2012).

  38. 38.

    Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Nature 429, 184–187 (2004).

  39. 39.

    Mongiat, L. A., Espósito, M. S., Lombardi, G. & Schinder, A. F. PLoS One 4, e5320 (2009).

  40. 40.

    Overstreet Wadiche, L., Bromberg, D. A., Bensen, A. L. & Westbrook, G. L. J. Neurophysiol. 94, 4528–4532 (2005).

  41. 41.

    Li, Y., Aimone, J. B., Xu, X., Callaway, E. M. & Gage, F. H. Proc. Natl. Acad. Sci. USA 109, 4290–4295 (2012).

  42. 42.

    Gu, Y. et al. Nat. Neurosci. 15, 1700–1706 (2012).

  43. 43.

    Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L. & Song, H. Neuron 54, 559–566 (2007). Immature abDGCs exhibit heightened synaptic plasticity at EC–DG synapses during a sensitive period in their maturation.

  44. 44.

    Snyder, J. S., Kee, N. & Wojtowicz, J. M. J. Neurophysiol. 85, 2423–2431 (2001).

  45. 45.

    Sahay, A. et al. Nature 472, 466–470 (2011). First study to demonstrate that genetically enhancing adult hippocampal neurogenesis is sufficient to improve memory processing specifically, decreasing contextual memory interference.

  46. 46.

    Bartos, M., Alle, H. & Vida, I. Neuropharmacology 60, 730–739 (2011).

  47. 47.

    Overstreet-Wadiche, L. & McBain, C. J. Nat. Rev. Neurosci. 16, 458–468 (2015).

  48. 48.

    Dieni, C. V., Nietz, A. K., Panichi, R., Wadiche, J. I. & Overstreet-Wadiche, L. J. Neurosci. 33, 19131–19142 (2013).

  49. 49.

    Li, L. et al. eLife 6, e23612 (2017). Ex vivo study showing that immature abDGCs, like mDGCs, exhibit sparse patterns of activity.

  50. 50.

    Scharfman, H. E. & Myers, C. E. Front. Neural Circuits 6, 106 (2013).

  51. 51.

    Stone, S. S. et al. Hippocampus 21, 1348–1362 (2011).

  52. 52.

    Tronel, S., Lemaire, V., Charrier, V., Montaron, M. F. & Abrous, D. N. Brain Struct. Funct. 220, 645–661 (2015).

  53. 53.

    Danielson, N. B. et al. Neuron 90, 101–112 (2016). Immature abDGCs are more active and more broadly tuned than mature DGCs in vivo, and their activity permits decoding of contextual information.

  54. 54.

    Danielson, N. B. et al. Neuron 93, 552–559.e4 (2017).

  55. 55.

    GoodSmith, D. et al. Neuron 93, 677–690.e5 (2017).

  56. 56.

    Senzai, Y. & Buzsáki, G. Neuron 93, 691–704.e5 (2017).

  57. 57.

    Neunuebel, J. P. & Knierim, J. J. J. Neurosci. 32, 3848–3858 (2012).

  58. 58.

    Deshpande, A. et al. Proc. Natl. Acad. Sci. USA 110, E1152–E1161 (2013).

  59. 59.

    Vivar, C. et al. Nat. Commun. 3, 1107 (2012).

  60. 60.

    Li, Y. et al. Proc. Natl. Acad. Sci. USA 110, 9106–9111 (2013).

  61. 61.

    Woods, N. I. et al. J. Neurosci. 38, 5843–5853 (2018).

  62. 62.

    Luna, V. M. et al. Science 364, 578–583 (2019). Adult-born DGCs establish monosynaptic excitatory contacts with mature DGCs.

  63. 63.

    Bergami, M. et al. Neuron 85, 710–717 (2015). Experience sculpts presynaptic connectome of abDGCs during a sensitive period.

  64. 64.

    Vivar, C., Peterson, B. D. & van Praag, H. Neuroimage 131, 29–41 (2016).

  65. 65.

    Acsády, L., Kamondi, A., Sík, A., Freund, T. & Buzsáki, G. J. Neurosci. 18, 3386–3403 (1998).

  66. 66.

    Pelkey, K. A. et al. Physiol. Rev. 97, 1619–1747 (2017).

  67. 67.

    Ruediger, S. et al. Nature 473, 514–518 (2011).

  68. 68.

    Restivo, L., Niibori, Y., Mercaldo, V., Josselyn, S. A. & Frankland, P. W. J. Neurosci. 35, 10600–10612 (2015).

  69. 69.

    Aimone, J. B., Deng, W. & Gage, F. H. Neuron 70, 589–596 (2011).

  70. 70.

    Temprana, S. G. et al. Neuron 85, 116–130 (2015).

  71. 71.

    McNaughton, B. & Morris, R. Trends Neurosci. 10, 408–415 (1987).

  72. 72.

    Gilbert, P. E., Kesner, R. P. & Lee, I. Hippocampus 11, 626–636 (2001).

  73. 73.

    McHugh, T. J. et al. Science 317, 94–99 (2007).

  74. 74.

    Wiskott, L., Rasch, M. J. & Kempermann, G. Hippocampus 16, 329–343 (2006).

  75. 75.

    Clelland, C. D. et al. Science 325, 210–213 (2009). The first study to implicate abDGCs in resolution of memory interference in a behavioral task.

  76. 76.

    Pan, Y. W., Chan, G. C., Kuo, C. T., Storm, D. R. & Xia, Z. J. Neurosci. 32, 6444–6455 (2012).

  77. 77.

    Zhang, J. et al. J. Neurosci. 34, 5184–5199 (2014).

  78. 78.

    Zhuo, J. M. et al. eLife 5, e22429 (2016).

  79. 79.

    Wojtowicz, J. M., Askew, M. L. & Winocur, G. Eur. J. Neurosci. 27, 1494–1502 (2008).

  80. 80.

    Burghardt, N. S., Park, E. H., Hen, R. & Fenton, A. A. Hippocampus 22, 1795–1808 (2012).

  81. 81.

    Garthe, A., Behr, J. & Kempermann, G. PLoS One 4, e5464 (2009).

  82. 82.

    Swan, A. A. et al. Hippocampus 24, 1581–1591 (2014).

  83. 83.

    Tronel, S. et al. Hippocampus 22, 292–298 (2012).

  84. 84.

    Niibori, Y. et al. Nat. Commun. 3, 1253 (2012).

  85. 85.

    Nakashiba, T. et al. Cell 149, 188–201 (2012).

  86. 86.

    Kheirbek, M. A., Tannenholz, L. & Hen, R. J. Neurosci. 32, 8696–8702 (2012).

  87. 87.

    Huckleberry, K. A. et al. Neuropsychopharmacology 43, 2487–2496 (2018).

  88. 88.

    Deng, W., Saxe, M. D., Gallina, I. S. & Gage, F. H. J. Neurosci. 29, 13532–13542 (2009).

  89. 89.

    Arruda-Carvalho, M., Sakaguchi, M., Akers, K. G., Josselyn, S. A. & Frankland, P. W. J. Neurosci. 31, 15113–15127 (2011).

  90. 90.

    Snyder, J. S. et al. J. Neurosci. 29, 14484–14495 (2009).

  91. 91.

    Park, S. et al. Neuropsychopharmacology 41, 2987–2993 (2016).

  92. 92.

    Lacagnina, A. F. et al. Nat. Neurosci. 22, 753–761 (2019).

  93. 93.

    Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. Neuroscience 130, 843–852 (2005).

  94. 94.

    Wang, W. et al. J. Neurosci. 34, 2130–2147 (2014).

  95. 95.

    Kitamura, T. et al. Cell 139, 814–827 (2009).

  96. 96.

    Akers, K. G. et al. Science 344, 598–602 (2014).

  97. 97.

    Epp, J. R., Silva Mera, R., Köhler, S., Josselyn, S. A. & Frankland, P. W. Nat. Commun. 7, 10838 (2016). Post-training ablation of abDGCs decreases forgetting of previously learned spatial information.

  98. 98.

    Gao, A. et al. J. Neurosci. 38, 3190–3198 (2018).

  99. 99.

    Leal, S. L. & Yassa, M. A. Nat. Neurosci. 21, 163–173 (2018).

  100. 100.

    Knierim, J. J. & Neunuebel, J. P. Neurobiol. Learn. Mem. 129, 38–49 (2016).

  101. 101.

    Deng, W., Mayford, M. & Gage, F. H. eLife 2, e00312 (2013).

  102. 102.

    McClelland, J. L. & Goddard, N. H. Hippocampus 6, 654–665 (1996).

  103. 103.

    Barak, O., Rigotti, M. & Fusi, S. J. Neurosci. 33, 3844–3856 (2013).

  104. 104.

    Chavlis, S., Petrantonakis, P. C. & Poirazi, P. Hippocampus 27, 89–110 (2017).

  105. 105.

    Cayco-Gajic, N. A. & Silver, R. A. Neuron 101, 584–602 (2019).

  106. 106.

    Jung, M. W. & McNaughton, B. L. Hippocampus 3, 165–182 (1993).

  107. 107.

    Chawla, M. K. et al. Hippocampus 15, 579–586 (2005).

  108. 108.

    Engin, E. et al. J. Neurosci. 35, 13698–13712 (2015).

  109. 109.

    Espinoza, C., Guzman, S. J., Zhang, X. & Jonas, P. Nat. Commun. 9, 4605 (2018). Simultaneous octuple recordings in DG ex vivo demonstrate that lateral inhibition predominates over feedback inhibition and is primarily mediated by PV + INs.

  110. 110.

    de Almeida, L., Idiart, M. & Lisman, J. E. J. Neurosci. 29, 7504–7512 (2009).

  111. 111.

    Jung, M. W., Wiener, S. I. & McNaughton, B. L. J. Neurosci. 14, 7347–7356 (1994).

  112. 112.

    Rangel, L. M. et al. Nat. Commun. 5, 3181 (2014).

  113. 113.

    Freund, T. F. & Buzsáki, G. Hippocampus 6, 347–470 (1996).

  114. 114.

    Szabo, G. G. et al. Cell Reports 20, 1262–1268 (2017).

  115. 115.

    Jinde, S. et al. Neuron 76, 1189–1200 (2012).

  116. 116.

    Lacefield, C. O., Itskov, V., Reardon, T., Hen, R. & Gordon, J. A. Hippocampus 22, 106–116 (2010).

  117. 117.

    Bartos, M., Vida, I. & Jonas, P. Nat. Rev. Neurosci. 8, 45–56 (2007).

  118. 118.

    Singer, B. H. et al. Proc. Natl. Acad. Sci. USA 108, 5437–5442 (2011).

  119. 119.

    Ikrar, T. et al. Front. Neural Circuits 7, 204 (2013).

  120. 120.

    Park, E. H., Burghardt, N. S., Dvorak, D., Hen, R. & Fenton, A. A. J. Neurosci. 35, 11656–11666 (2015).

  121. 121.

    Ewell, L. A. & Jones, M. V. J. Neurosci. 30, 12597–12607 (2010).

  122. 122.

    Liu, Y. C., Cheng, J. K. & Lien, C. C. J. Neurosci. 34, 1344–1357 (2014).

  123. 123.

    Heigele, S., Sultan, S., Toni, N. & Bischofberger, J. Nat. Neurosci. 19, 263–270 (2016).

  124. 124.

    Ferrante, M., Migliore, M. & Ascoli, G. A. Proc. Natl. Acad. Sci. USA 106, 18004–18009 (2009).

  125. 125.

    Nitz, D. & McNaughton, B. J. Neurophysiol. 91, 863–872 (2004).

  126. 126.

    Stefanelli, T., Bertollini, C., Lüscher, C., Muller, D. & Mendez, P. Neuron 89, 1074–1085 (2016).

  127. 127.

    Drew, L. J. et al. Hippocampus 26, 763–778 (2016).

  128. 128.

    Chamberland, S., Evstratova, A. & Tóth, K. J. Neurosci. 37, 4913–4927 (2017).

  129. 129.

    Neubrandt, M., Oláh, V. J., Brunner, J. & Szabadics, J. Hippocampus 27, 1034–1039 (2017).

  130. 130.

    Gan, J., Weng, S. M., Pernia-Andrade, A. J., Csicsvari, J. & Jonas, P. Neuron 93, 308–314 (2016).

  131. 131.

    Sun, Q. et al. Neuron 95, 656–672.e3 (2017).

  132. 132.

    Lee, H., Wang, C., Deshmukh, S. S. & Knierim, J. J. Neuron 87, 1093–1105 (2015).

  133. 133.

    Denny, C. A. et al. Neuron 83, 189–201 (2014).

  134. 134.

    Bergami, M. & Berninger, B. Dev. Neurobiol. 72, 1016–1031 (2012).

  135. 135.

    Sun, Y. et al. Neuron 92, 160–173 (2016).

  136. 136.

    Sahay, A., Wilson, D. A. & Hen, R. Neuron 70, 582–588 (2011).

  137. 137.

    McAvoy, K., Besnard, A. & Sahay, A. Front. Syst. Neurosci. 9, 120 (2015).

  138. 138.

    Tanaka, K. Z. et al. Neuron 84, 347–354 (2014).

  139. 139.

    Wang, C. et al. Science 362, 945–949 (2018).

  140. 140.

    Myers, C. E. & Scharfman, H. E. Hippocampus 19, 321–337 (2008).

  141. 141.

    Spalding, K. L. et al. Cell 153, 1219–1227 (2013).

  142. 142.

    Eriksson, P. S. et al. Nat. Med. 4, 1313–1317 (1998).

  143. 143.

    Boldrini, M. et al. Cell Stem Cell 22, 589–599.e5 (2018).

  144. 144.

    Moreno-Jiménez, E. P. et al. Nat. Med. 25, 554–560 (2019). Analysis of postmortem human tissue documenting DGCs across different stages of maturation in adulthood, aging and Alzheimer’s disease.

  145. 145.

    Knoth, R. et al. PLoS One 5, e8809 (2010).

  146. 146.

    Gould, E. et al. Proc. Natl. Acad. Sci. USA 96, 5263–5267 (1999).

  147. 147.

    Sorrells, S. F. et al. Nature 555, 377–381 (2018).

  148. 148.

    Kohler, S. J., Williams, N. I., Stanton, G. B., Cameron, J. L. & Greenough, W. T. Proc. Natl. Acad. Sci. USA 108, 10326–10331 (2011).

  149. 149.

    Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Nat. Rev. Neurosci. 15, 655–669 (2014).

  150. 150.

    Anacker, C. & Hen, R. Nat. Rev. Neurosci. 18, 335–346 (2017).

Download references

Acknowledgements

We thank members of Sahay lab for discussions and L.M.S. Sahay for help with manuscript editing. A.S. acknowledges support from NIH-R01MH104175, NIH–R01AG048908, NIH-1R01MH111729, the James and Audrey Foster MGH Research Scholar Award, the Ellison Medical Foundation New Scholar in Aging, the Whitehall Foundation, an Inscopix Decode award, a NARSAD Independent Investigator Award, Ellison Family Philanthropic support, the Blue Guitar Fund, a Harvard Neurodiscovery Center–MADRC Center Pilot Grant award, Alzheimer’s Association Research Grant, a Harvard Stem Cell Institute Development grant, and an HSCI seed grant. The authors apologize to scientists whose works could not be cited due to limits on the number of references.

Author information

Correspondence to Amar Sahay.

Ethics declarations

Competing interests

The authors declare no competing financial or non-financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark