Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

NEURODEGENERATION

RAN translation down

Repeat-associated non-AUG (RAN) translation generates toxic repeat proteins from pathological repeat expansions found in certain neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal dementia. How to suppress RAN translation has so far been unknown. A new study now reports a selective regulator of RAN translation identified in a genetic screen in yeast.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RPS25 depletion specifically suppresses RAN translation, but not global translation, in yeast and human cells and ameliorates C9orf72-linked neurodegeneration in Drosophila and induced pluripotent stem cell (iPSC)-derived motor neurons.

References

  1. DeJesus-Hernandez, M. et al. Neuron 72, 245–256 (2011).

    Article  CAS  Google Scholar 

  2. Renton, A. E. et al. Neuron 72, 257–268 (2011).

    Article  CAS  Google Scholar 

  3. Gitler, A. D. & Tsuiji, H. Brain Res. 1647, 19–29 (2016).

    Article  CAS  Google Scholar 

  4. Gijselinck, I. et al. Lancet Neurol. 11, 54–65 (2012).

    Article  CAS  Google Scholar 

  5. Lee, Y. B. et al. Cell Rep. 5, 1178–1186 (2013).

    Article  CAS  Google Scholar 

  6. Ash, P. E. et al. Neuron 77, 639–646 (2013).

    Article  CAS  Google Scholar 

  7. Mori, K. et al. Science 339, 1335–1338 (2013).

    Article  CAS  Google Scholar 

  8. Balendra, R. & Isaacs, A. M. Nat. Rev. Neurol. 14, 544–558 (2018).

    Article  CAS  Google Scholar 

  9. Yamada, S.B. et al. Nat. Neurosci. https://doi.org/10.1038/s41593-019-0455-7 (2019).

  10. Hertz, M. I., Landry, D. M., Willis, A. E., Luo, G. & Thompson, S. R. Mol. Cell. Biol. 33, 1016–1026 (2013).

    Article  CAS  Google Scholar 

  11. Mizielinska, S. et al. Science 345, 1192–1194 (2014).

    Article  CAS  Google Scholar 

  12. May, S. et al. Acta Neuropathol. 128, 485–503 (2014).

    Article  CAS  Google Scholar 

  13. Bañez-Coronel, M. et al. Neuron 88, 667–677 (2015).

    Article  Google Scholar 

  14. Scoles, D. R. et al. PLoS One 10, e0128769 (2015).

    Article  Google Scholar 

  15. Armache, J. P. et al. Proc. Natl Acad. Sci. USA 107, 19754–19759 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee Dormann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutten, S., Dormann, D. RAN translation down. Nat Neurosci 22, 1379–1380 (2019). https://doi.org/10.1038/s41593-019-0482-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0482-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing