Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of systems memory consolidation during sleep

A Publisher Correction to this article was published on 11 September 2019

This article has been updated

Abstract

Long-term memory formation is a major function of sleep. Based on evidence from neurophysiological and behavioral studies mainly in humans and rodents, we consider the formation of long-term memory during sleep as an active systems consolidation process that is embedded in a process of global synaptic downscaling. Repeated neuronal replay of representations originating from the hippocampus during slow-wave sleep leads to a gradual transformation and integration of representations in neocortical networks. We highlight three features of this process: (i) hippocampal replay that, by capturing episodic memory aspects, drives consolidation of both hippocampus-dependent and non-hippocampus-dependent memory; (ii) brain oscillations hallmarking slow-wave and rapid-eye movement sleep that provide mechanisms for regulating both information flow across distant brain networks and local synaptic plasticity; and (iii) qualitative transformations of memories during systems consolidation resulting in abstracted, gist-like representations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Memory reactivations strengthen neocortical representations.
Fig. 2: Sleep oscillations regulating systems consolidation.
Fig. 3: Conditions of facilitated synaptic plasticity in cortical pyramidal cells when spindles couple with slow oscillation.
Fig. 4: Sleep supports the abstraction of object categories in infants.

Similar content being viewed by others

Change history

  • 11 September 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Jenkins, J. G. & Dallenbach, K. M. Obliviscence during sleep and waking. Am. J. Psychol. 35, 605–612 (1924).

    Google Scholar 

  2. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    CAS  PubMed  Google Scholar 

  3. Rasch, B. & Born, J. About sleep’s role in memory. Physiol. Rev. 93, 681–766 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dudai, Y. The restless engram: consolidations never end. Annu. Rev. Neurosci. 35, 227–247 (2012).

    CAS  PubMed  Google Scholar 

  5. Lewis, P. A. & Durrant, S. J. Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn. Sci. 15, 343–351 (2011).

    PubMed  Google Scholar 

  6. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    CAS  PubMed  Google Scholar 

  7. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    PubMed  Google Scholar 

  8. Kumaran, D., Hassabis, D. & McClelland, J. L. What learning systems do intelligent agents need? Complementary Learning Systems Theory updated. Trends Cogn. Sci. 20, 512–534 (2016).

    PubMed  Google Scholar 

  9. Gais, S. et al. Sleep transforms the cerebral trace of declarative memories. Proc. Natl Acad. Sci. USA 104, 18778–18783 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Takashima, A. et al. Shift from hippocampal to neocortical centered retrieval network with consolidation. J. Neurosci. 29, 10087–10093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    CAS  PubMed  Google Scholar 

  12. Sawangjit, A. et al. The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature 564, 109–113 (2018).

    CAS  PubMed  Google Scholar 

  13. King, B. R., Hoedlmoser, K., Hirschauer, F., Dolfen, N. & Albouy, G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci. Biobehav. Rev. 80, 1–22 (2017).

    PubMed  Google Scholar 

  14. O’Neill, J., Pleydell-Bouverie, B., Dupret, D. & Csicsvari, J. Play it again: reactivation of waking experience and memory. Trends Neurosci. 33, 220–229 (2010).

    PubMed  Google Scholar 

  15. Atherton, L. A., Dupret, D. & Mellor, J. R. Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci. 38, 560–570 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pavlides, C. & Winson, J. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J. Neurosci. 9, 2907–2918 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    CAS  PubMed  Google Scholar 

  18. Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

    CAS  PubMed  Google Scholar 

  19. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    CAS  PubMed  Google Scholar 

  20. Kudrimoti, H. S., Barnes, C. A. & McNaughton, B. L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    CAS  PubMed  Google Scholar 

  23. Louie, K. & Wilson, M. A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145–156 (2001).

    CAS  PubMed  Google Scholar 

  24. Piantoni, G., Van Der Werf, Y. D., Jensen, O. & Van Someren, E. J. W. Memory traces of long-range coordinated oscillations in the sleeping human brain. Hum. Brain Mapp. 36, 67–84 (2015).

    PubMed  Google Scholar 

  25. Schönauer, M. et al. Decoding material-specific memory reprocessing during sleep in humans. Nat. Commun. 8, 15404 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Zhang, H., Fell, J. & Axmacher, N. Electrophysiological mechanisms of human memory consolidation. Nat. Commun. 9, 4103 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I. & Battaglia, F. P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 12, 919–926 (2009).

    CAS  PubMed  Google Scholar 

  28. Wilber, A. A., Skelin, I., Wu, W. & McNaughton, B. L. Laminar organization of encoding and memory reactivation in the parietal cortex. Neuron 95, 1406–1419.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gulati, T., Ramanathan, D. S., Wong, C. C. & Ganguly, K. Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning. Nat. Neurosci. 17, 1107–1113 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Neill, J., Boccara, C. N., Stella, F., Schoenenberger, P. & Csicsvari, J. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science 355, 184–188 (2017).

    PubMed  Google Scholar 

  31. Lansink, C. S., Goltstein, P. M., Lankelma, J. V., McNaughton, B. L. & Pennartz, C. M. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol. 7, e1000173 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Valdés, J. L., McNaughton, B. L. & Fellous, J.-M. Offline reactivation of experience-dependent neuronal firing patterns in the rat ventral tegmental area. J. Neurophysiol. 114, 1183–1195 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Gomperts, S. N., Kloosterman, F. & Wilson, M. A. VTA neurons coordinate with the hippocampal reactivation of spatial experience. eLife 4, 1–22 (2015).

    Google Scholar 

  34. Qin, Y.-L., McNaughton, B. L., Skaggs, W. E. & Barnes, C. A. Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1525–1533 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Girardeau, G., Inema, I. & Buzsáki, G. Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat. Neurosci. 20, 1634–1642 (2017).

    CAS  PubMed  Google Scholar 

  36. Hoffman, K. L. & McNaughton, B. L. Coordinated reactivation of distributed memory traces in primate neocortex. Science 297, 2070–2073 (2002).

    CAS  PubMed  Google Scholar 

  37. Hasselmo, M. E. & McGaughy, J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 145, 207–231 (2004).

    CAS  PubMed  Google Scholar 

  38. Rasch, B. H., Born, J. & Gais, S. Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J. Cogn. Neurosci. 18, 793–802 (2006).

    PubMed  Google Scholar 

  39. Buzsáki, G. The hippocampo-neocortical dialogue. Cereb. Cortex 6, 81–92 (1996).

    PubMed  Google Scholar 

  40. Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brodt, S. et al. Fast track to the neocortex: A memory engram in the posterior parietal cortex. Science 362, 1045–1048 (2018).

    CAS  PubMed  Google Scholar 

  42. O’Neill, J., Senior, T. J., Allen, K., Huxter, J. R. & Csicsvari, J. Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nat. Neurosci. 11, 209–215 (2008).

    PubMed  Google Scholar 

  43. Cheng, S. & Frank, L. M. New experiences enhance coordinated neural activity in the hippocampus. Neuron 57, 303–313 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Giri, B., Miyawaki, H., Mizuseki, K., Cheng, S. & Diba, K. Hippocampal reactivation extends for several hours following novel experience. J. Neurosci. 39, 866–875 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Singer, A. C. & Frank, L. M. Rewarded outcomes enhance reactivation of experience in the hippocampus. Neuron 64, 910–921 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen, N. et al. Peri-encoding predictors of memory encoding and consolidation. Neurosci. Biobehav. Rev. 50, 128–142 (2015).

    PubMed  Google Scholar 

  47. Benchenane, K. et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66, 921–936 (2010).

    CAS  PubMed  Google Scholar 

  48. Redondo, R. L. & Morris, R. G. M. Making memories last: the synaptic tagging and capture hypothesis. Nat. Rev. Neurosci. 12, 17–30 (2011).

    CAS  PubMed  Google Scholar 

  49. McNamara, C. G., Tejero-Cantero, Á., Trouche, S., Campo-Urriza, N. & Dupret, D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 17, 1658–1660 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. de Lavilléon, G., Lacroix, M. M., Rondi-Reig, L. & Benchenane, K. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat. Neurosci. 18, 493–495 (2015).

    PubMed  Google Scholar 

  51. Puentes-Mestril, C. & Aton, S. J. Linking network activity to synaptic plasticity during sleep: hypotheses and recent data. Front. Neural Circuits 11, 61 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. de Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).

    CAS  PubMed  Google Scholar 

  55. Diering, G. H. et al. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355, 511–515 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vyazovskiy, V. V. et al. Cortical firing and sleep homeostasis. Neuron 63, 865–878 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Grosmark, A. D., Mizuseki, K., Pastalkova, E., Diba, K. & Buzsáki, G. REM sleep reorganizes hippocampal excitability. Neuron 75, 1001–1007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Miyawaki, H. & Diba, K. Regulation of hippocampal firing by network oscillations during sleep. Curr. Biol. 26, 893–902 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Huber, R. et al. Human cortical excitability increases with time awake. Cereb. Cortex 23, 332–338 (2013).

    PubMed  Google Scholar 

  60. Kuhn, M. et al. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex. Nat. Commun. 7, 12455 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Niethard, N. et al. Sleep-stage-specific regulation of cortical excitation and inhibition. Curr. Biol. 26, 2739–2749 (2016).

    CAS  PubMed  Google Scholar 

  62. Yang, G. et al. Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173–1178 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, W., Ma, L., Yang, G. & Gan, W.-B. REM sleep selectively prunes and maintains new synapses in development and learning. Nat. Neurosci. 20, 427–437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Frank, M. G. Sleep and plasticity in the visual cortex: more than meets the eye. Curr. Opin. Neurobiol. 44, 8–12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Huber, R. et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat. Neurosci. 9, 1169–1176 (2006).

    CAS  PubMed  Google Scholar 

  66. Chauvette, S., Seigneur, J. & Timofeev, I. Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75, 1105–1113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Watson, B. O., Levenstein, D., Greene, J. P., Gelinas, J. N. & Buzsáki, G. Network homeostasis and state dynamics of neocortical sleep. Neuron 90, 839–852 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kastellakis, G., Cai, D. J., Mednick, S. C., Silva, A. J. & Poirazi, P. Synaptic clustering within dendrites: an emerging theory of memory formation. Prog. Neurobiol. 126, 19–35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Siegel, M., Donner, T. H. & Engel, A. K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134 (2012).

    CAS  PubMed  Google Scholar 

  70. Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T. & Walker, M. P. Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 97, 221–230.e4 (2018).

    CAS  PubMed  Google Scholar 

  71. Latchoumane, C. V., Ngo, H.-V. V., Born, J. & Shin, H.-S. Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 95, 424–435.e6 (2017).

    CAS  PubMed  Google Scholar 

  72. Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wierzynski, C. M., Lubenov, E. V., Gu, M. & Siapas, A. G. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron 61, 587–596 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Marshall, L., Helgadóttir, H., Mölle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).

    CAS  PubMed  Google Scholar 

  76. Ngo, H.-V. V., Martinetz, T., Born, J. & Mölle, M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78, 545–553 (2013).

    CAS  PubMed  Google Scholar 

  77. Perrault, A. A. et al. Whole-night continuous rocking entrains spontaneous neural oscillations with benefits for sleep and memory. Curr. Biol. 29, 402–411.e3 (2019).

    CAS  PubMed  Google Scholar 

  78. Varela, C., Kumar, S., Yang, J. Y. & Wilson, M. A. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct. Funct. 219, 911–929 (2014).

    CAS  PubMed  Google Scholar 

  79. Gais, S., Mölle, M., Helms, K. & Born, J. Learning-dependent increases in sleep spindle density. J. Neurosci. 22, 6830–6834 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Friedrich, M., Wilhelm, I., Born, J. & Friederici, A. D. Generalization of word meanings during infant sleep. Nat. Commun. 6, 6004 (2015).

    CAS  PubMed  Google Scholar 

  81. Bergmann, T. O., Mölle, M., Diedrichs, J., Born, J. & Siebner, H. R. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage 59, 2733–2742 (2012).

    PubMed  Google Scholar 

  82. Rosanova, M. & Ulrich, D. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J. Neurosci. 25, 9398–9405 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Seibt, J. et al. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat. Commun. 8, 684 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Almeida-Filho, D. G., Queiroz, C. M. & Ribeiro, S. Memory corticalization triggered by REM sleep: mechanisms of cellular and systems consolidation. Cell. Mol. Life Sci. 75, 3715–3740 (2018).

    CAS  PubMed  Google Scholar 

  85. Steriade, M. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137, 1087–1106 (2006).

    CAS  PubMed  Google Scholar 

  86. Staresina, B. P. et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat. Neurosci. 18, 1679–1686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mölle, M., Bergmann, T. O., Marshall, L. & Born, J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep 34, 1411–1421 (2011).

    PubMed  PubMed Central  Google Scholar 

  88. Niethard, N., Ngo, H.-V. V., Ehrlich, I. & Born, J. Cortical circuit activity underlying sleep slow oscillations and spindles. Proc. Natl Acad. Sci. USA 115, E9220–E9229 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Ngo, H.-V. et al. Driving sleep slow oscillations by auditory closed-loop stimulation-a self-limiting process. J. Neurosci. 35, 6630–6638 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. González-Rueda, A., Pedrosa, V., Feord, R. C., Clopath, C. & Paulsen, O. Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron 97, 1244–1252.e5 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Ladenbauer, J. et al. Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J. Neurosci. 37, 7111–7124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Norimoto, H. et al. Hippocampal ripples down-regulate synapses. Science 359, 1524–1527 (2018).

    CAS  PubMed  Google Scholar 

  94. Khodagholy, D., Gelinas, J. N. & Buzsáki, G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358, 369–372 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 2065–2069 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maingret, N., Girardeau, G., Todorova, R., Goutierre, M. & Zugaro, M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19, 959–964 (2016).

    CAS  PubMed  Google Scholar 

  97. Ngo, H.-V. V., Claussen, J. C., Born, J. & Mölle, M. Induction of slow oscillations by rhythmic acoustic stimulation. J. Sleep. Res. 22, 22–31 (2013).

    PubMed  Google Scholar 

  98. Bal, T. & McCormick, D. A. What stops synchronized thalamocortical oscillations? Neuron 17, 297–308 (1996).

    CAS  PubMed  Google Scholar 

  99. Rothschild, G., Eban, E. & Frank, L. M. A cortical-hippocampal-cortical loop of information processing during memory consolidation. Nat. Neurosci. 20, 251–259 (2017).

    CAS  PubMed  Google Scholar 

  100. Bendor, D. & Wilson, M. A. Biasing the content of hippocampal replay during sleep. Nat. Neurosci. 15, 1439–1444 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, D. V. & Ikemoto, S. Coordinated interaction between hippocampal sharp-wave ripples and anterior cingulate unit activity. J. Neurosci. 36, 10663–10672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cantero, J. L. et al. Sleep-dependent theta oscillations in the human hippocampus and neocortex. J. Neurosci. 23, 10897–10903 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nishida, M., Pearsall, J., Buckner, R. L. & Walker, M. P. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb. Cortex 19, 1158–1166 (2009).

    PubMed  Google Scholar 

  104. Sopp, M. R., Michael, T., Weeß, H.-G. & Mecklinger, A. Remembering specific features of emotional events across time: The role of REM sleep and prefrontal theta oscillations. Cogn. Affect. Behav. Neurosci. 17, 1186–1209 (2017).

    PubMed  Google Scholar 

  105. Popa, D., Duvarci, S., Popescu, A. T., Léna, C. & Paré, D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc. Natl Acad. Sci. USA 107, 6516–6519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ognjanovski, N., Broussard, C., Zochowski, M. & Aton, S. J. Hippocampal network oscillations rescue memory consolidation deficits caused by sleep loss. Cereb. Cortex 28, 3711–3723 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Poe, G. R., Nitz, D. A., McNaughton, B. L. & Barnes, C. A. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res. 855, 176–180 (2000).

    CAS  PubMed  Google Scholar 

  108. Boyce, R., Glasgow, S. D., Williams, S. & Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352, 812–816 (2016).

    CAS  PubMed  Google Scholar 

  109. Giuditta, A. et al. The sequential hypothesis of the function of sleep. Behav. Brain Res. 69, 157–166 (1995).

    CAS  PubMed  Google Scholar 

  110. Ribeiro, S. et al. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front. Neurosci. 1, 43–55 (2007).

    PubMed  PubMed Central  Google Scholar 

  111. Crunelli, V. et al. Dual function of thalamic low-vigilance state oscillations: rhythm-regulation and plasticity. Nat. Rev. Neurosci. 19, 107–118 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Scholle, S., Zwacka, G. & Scholle, H. C. Sleep spindle evolution from infancy to adolescence. Clin. Neurophysiol. 118, 1525–1531 (2007).

    CAS  PubMed  Google Scholar 

  113. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758–761 (2004).

    CAS  PubMed  Google Scholar 

  114. Wei, Y., Krishnan, G. P., Komarov, M. & Bazhenov, M. Differential roles of sleep spindles and sleep slow oscillations in memory consolidation. PLOS Comput. Biol. 14, e1006322 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    CAS  PubMed  Google Scholar 

  116. Klinzing, J. G. et al. Spindle activity phase-locked to sleep slow oscillations. Neuroimage 134, 607–616 (2016).

    PubMed  Google Scholar 

  117. Durkin, J. et al. Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity. Proc. Natl Acad. Sci. USA 114, 10485–10490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, Z., Wimmer, R. D., Wilson, M. A. & Halassa, M. M. Thalamic circuit mechanisms link sensory processing in sleep and attention. Front. Neural Circuits 9, 83 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Halassa, M. M. et al. State-dependent architecture of thalamic reticular subnetworks. Cell 158, 808–821 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705–709 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Clemente-Perez, A. et al. Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep. 19, 2130–2142 (2017).

    CAS  PubMed  Google Scholar 

  122. Ahissar, M. & Hochstein, S. The reverse hierarchy theory of visual perceptual learning. Trends Cogn. Sci. 8, 457–464 (2004).

    PubMed  Google Scholar 

  123. Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 20, 1669–1679 (2017).

    CAS  PubMed  Google Scholar 

  124. Winocur, G., Moscovitch, M. & Bontempi, B. Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia 48, 2339–2356 (2010).

    PubMed  Google Scholar 

  125. Tempesta, D., Socci, V., De Gennaro, L. & Ferrara, M. Sleep and emotional processing. Sleep. Med. Rev. 40, 183–195 (2018).

    PubMed  Google Scholar 

  126. Friedrich, M., Wilhelm, I., Mölle, M., Born, J. & Friederici, A. D. The sleeping infant brain anticipates development. Curr. Biol. 27, 2374–2380.e3 (2017).

    CAS  PubMed  Google Scholar 

  127. Gómez, R. L., Bootzin, R. R. & Nadel, L. Naps promote abstraction in language-learning infants. Psychol. Sci. 17, 670–674 (2006).

    PubMed  Google Scholar 

  128. Schapiro, A. C. et al. Sleep benefits memory for semantic category structure while preserving exemplar-specific information. Sci. Rep. 7, 14869 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Batterink, L. J., Oudiette, D., Reber, P. J. & Paller, K. A. Sleep facilitates learning a new linguistic rule. Neuropsychologia 65, 169–179 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Wilhelm, I. et al. The sleeping child outplays the adult’s capacity to convert implicit into explicit knowledge. Nat. Neurosci. 16, 391–393 (2013).

    CAS  PubMed  Google Scholar 

  131. Lutz, N. D., Wolf, I., Hübner, S., Born, J. & Rauss, K. Sleep strengthens predictive sequence coding. J. Neurosci. 38, 8989–9000 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wagner, U., Gais, S., Haider, H., Verleger, R. & Born, J. Sleep inspires insight. Nature 427, 352–355 (2004).

    CAS  PubMed  Google Scholar 

  133. Cai, D. J., Mednick, S. A., Harrison, E. M., Kanady, J. C. & Mednick, S. C. REM, not incubation, improves creativity by priming associative networks. Proc. Natl Acad. Sci. USA 106, 10130–10134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ellenbogen, J. M., Hu, P. T., Payne, J. D., Titone, D. & Walker, M. P. Human relational memory requires time and sleep. Proc. Natl Acad. Sci. USA 104, 7723–7728 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Schönauer, M. et al. Sleep does not promote solving classical insight problems and magic tricks. Front. Hum. Neurosci. 12, 72 (2018).

    PubMed  PubMed Central  Google Scholar 

  136. Brodt, S., Pöhlchen, D., Täumer, E., Gais, S. & Schönauer, M. Incubation, not sleep, aids problem-solving. Sleep 41, 1–11 (2018).

    Google Scholar 

  137. Pardilla-Delgado, E. & Payne, J. D. The impact of sleep on true and false memory across long delays. Neurobiol. Learn. Mem. 137, 123–133 (2017).

    PubMed  Google Scholar 

  138. Shaw, J. J. & Monaghan, P. Lateralised sleep spindles relate to false memory generation. Neuropsychologia 107, 60–67 (2017).

    PubMed  Google Scholar 

  139. Fenn, K. M., Gallo, D. A., Margoliash, D., Roediger, H. L. III & Nusbaum, H. C. Reduced false memory after sleep. Learn. Mem. 16, 509–513 (2009).

    PubMed  Google Scholar 

  140. Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007).

    CAS  PubMed  Google Scholar 

  141. Inostroza, M., Binder, S. & Born, J. Sleep-dependency of episodic-like memory consolidation in rats. Behav. Brain Res. 237, 15–22 (2013).

    PubMed  Google Scholar 

  142. Weber, F. D., Wang, J.-Y., Born, J. & Inostroza, M. Sleep benefits in parallel implicit and explicit measures of episodic memory. Learn. Mem. 21, 190–198 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. Cairney, S. A., Durrant, S. J., Musgrove, H. & Lewis, P. A. Sleep and environmental context: interactive effects for memory. Exp. Brain Res. 214, 83–92 (2011).

    PubMed  Google Scholar 

  144. Deliens, G. & Peigneux, P. One night of sleep is insufficient to achieve sleep-to-forget emotional decontextualisation processes. Cogn. Emot. 28, 698–706 (2014).

    PubMed  Google Scholar 

  145. Chen, S. X., Kim, A. N., Peters, A. J. & Komiyama, T. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18, 1109–1115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Cichon, J. & Gan, W.-B. Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature 520, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang, G., Pan, F. & Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Lisman, J. & Morris, R. G. M. Memory. Why is the cortex a slow learner? Nature 411, 248–249 (2001).

    CAS  PubMed  Google Scholar 

  149. Marr, D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    CAS  Google Scholar 

  150. Squire, L.R., Cohen, N.J. & Nadel, L. The medial temporal region and memory consolidation: a new hypothesis. in Memory Consolidation: Psychobiology of Cognition. (eds. Weingartner, H. & Parder, E. S.) 185–210 (1984).

Download references

Acknowledgements

We thank E. Bolinger for proof-reading a previous version of the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Tr-SFB 654 “Sleep and Plasticity”, SFB 1233 “Robust Vision”). We apologize to all authors whose work, although relevant, we did not mention due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Born.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information: Nature Neuroscience thanks Ken Paller, Vladyslav Vyazovskiy, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinzing, J.G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci 22, 1598–1610 (2019). https://doi.org/10.1038/s41593-019-0467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0467-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing