Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis


Studies of patients afflicted by neurodegenerative diseases suggest that misfolded proteins spread through the brain along anatomically connected networks, prompting progressive decline. Recently, mouse models have recapitulated the cell-to-cell transmission of pathogenic proteins and neuron death observed in patients. However, the factors regulating the spread of pathogenic proteins remain a matter of debate due to an incomplete understanding of how vulnerability functions in the context of spread. Here we use quantitative pathology mapping in the mouse brain, combined with network modeling to understand the spatiotemporal pattern of spread. Patterns of α-synuclein pathology are well described by a network model that is based on two factors: anatomical connectivity and endogenous α-synuclein expression. The map and model allow the assessment of selective vulnerability to α-synuclein pathology development and neuron death. Finally, we use quantitative pathology to understand how the G2019S LRRK2 genetic risk factor affects the spread and toxicity of α-synuclein pathology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Quantitation of α-synuclein pathology allows for brain-wide analysis of pathology spread.
Fig. 2: The spread of α-synuclein occurs in a dynamic spatiotemporal pattern throughout the mouse brain.
Fig. 3: Select quantification of cell body pathology allows for assessment of neuron loss.
Fig. 4: Network diffusion model based on anatomical connectivity explains pathological α-synuclein spread.
Fig. 5: In silico seeding of alternative regions in the mouse brain.
Fig. 6: Quantitative α-synuclein pathology mapping allows a direct comparison between NTG and G2019S LRRK2 mice.
Fig. 7: Enhanced spread and toxicity of α-synuclein pathology in resilient regions in G2019S LRRK2 mice.

Data availability

All primary pathology data are available in Supplementary Table 1 and on GitHub ( Any other data used to generate the figures in this study are available from the corresponding author upon reasonable request.

Code availability

All code is available at See also the Supplementary Software.


  1. 1.

    Spillantini, M. G. et al. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

    CAS  Article  Google Scholar 

  3. 3.

    Baba, M. et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Rodrigues e Silva, A. M. et al. Who was the man who discovered the “Lewy bodies”? Mov. Disord. 25, 1765–1773 (2010).

    Article  Google Scholar 

  5. 5.

    Luna, E. & Luk, K. C. Bent out of shape: alpha-synuclein misfolding and the convergence of pathogenic pathways in Parkinson’s disease. FEBS Lett. 589, 3749–3759 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 18, 101–113 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Elstner, M. et al. Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions. Mol. Brain 4, 43 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Luk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Henderson, M. X. et al. Unbiased proteomics of early Lewy body formation model implicates active microtubule affinity-regulating kinases (MARKs) in synucleinopathies. J. Neurosci. 37, 5870–5884 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Osterberg, V. R. et al. Progressive aggregation of alpha-synuclein and selective degeneration of lewy inclusion-bearing neurons in a mouse model of parkinsonism. Cell Rep. 10, 1252–1260 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Rey, N. L. et al. Spread of aggregates after olfactory bulb injection of alpha-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol. 135, 65–83 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Tran, H. T. et al. Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep. 7, 2054–2065 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Mao, X. et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Li, X. et al. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J. Neurosci. 30, 1788–1797 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Henderson, M. X. et al. LRRK2 inhibition does not impart protection from alpha-synuclein pathology and neuron death in non-transgenic mice. Acta Neuropathol. Commun. 7, 28 (2019).

    Article  Google Scholar 

  16. 16.

    Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Rey, N. L. et al. Widespread transneuronal propagation of alpha-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J. Exp. Med. 213, 1759–1778 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Braak, H. et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J. Neurol. 249 (Suppl. 3), III/1–III/5 (2002).

    Article  Google Scholar 

  20. 20.

    Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  Google Scholar 

  21. 21.

    Beach, T. G. et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. 117, 613–634 (2009).

    Article  Google Scholar 

  22. 22.

    Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case–control study. Lancet Neurol. 7, 583–590 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Saunders-Pullman, R. et al. Progression in the LRRK2-asssociated Parkinson disease population. JAMA Neurol. 75, 312–319 (2018).

    Article  Google Scholar 

  24. 24.

    West, A. B. et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA 102, 16842–16847 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    Greggio, E. et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23, 329–341 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    Sheng, Z. et al. Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci. Transl Med. 4, 164ra161 (2012).

    Article  Google Scholar 

  27. 27.

    Di Maio, R. et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl Med. 10, eaar5429 (2018).

    Article  Google Scholar 

  28. 28.

    Lee, A. J. et al. Penetrance estimate of LRRK2p.G2019S mutation in individuals of non-Ashkenazi Jewish ancestry. Mov. Disord. 32, 1432–1438 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Volta, M. & Melrose, H. LRRK2 mouse models: dissecting the behavior, striatal neurochemistry and neurophysiology of PD pathogenesis. Biochem. Soc. Trans. 45, 113–122 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Pandya, S., Mezias, C. & Raj, A. Predictive model of spread of progressive supranuclear palsy using directional network diffusion. Front. Neurol. 8, 692 (2017).

    Article  Google Scholar 

  31. 31.

    Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Dagher, A. & Zeighami, Y. Testing the protein propagation hypothesis of Parkinson disease. J. Exp. Neurosci. 12, 1179069518786715 (2018).

    Article  Google Scholar 

  33. 33.

    Erskine, D. et al. Regional levels of physiological alpha-synuclein are directly associated with Lewy body pathology. Acta Neuropathol. 135, 153–154 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Tang, E. & Bassett, D. S. Colloquium: control of dynamics in brain networks. Rev. Mod. Phys. 90, 031003 (2018).

    Article  Google Scholar 

  35. 35.

    Lynn, C. W. & Bassett, D. S. The physics of brain network structure, function and control. Nat. Rev. Phys. 1, 318–332 (2019).

    Article  Google Scholar 

  36. 36.

    Pang, S. P., Wang, W. X., Hao, F. & Lai, Y. C. Universal framework for edge controllability of complex networks. Sci. Rep. 7, 4224 (2017).

    Article  Google Scholar 

  37. 37.

    Chen, C. Y. et al. (G2019S) LRRK2 activates MKK4–JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD. Cell Death Differ. 19, 1623–1633 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Ramonet, D. et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6, e18568 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    Xiong, Y. et al. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc. Natl Acad. Sci. USA 115, 1635–1640 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Tong, Y. et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl Acad. Sci. USA 107, 9879–9884 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Giaime, E. et al. Age-dependent dopaminergic neurodegeneration and impairment of the autophagy–lysosomal pathway in LRRK-deficient mice. Neuron 96, 796–807 e796 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Volpicelli-Daley, L. A. et al. G2019S-LRRK2 expression augments alpha-synuclein sequestration into inclusions in neurons. J. Neurosci. 36, 7415–7427 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Bieri, G. et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 137, 961–980 (2019).

    CAS  Article  Google Scholar 

  44. 44.

    Novello, S. et al. G2019S LRRK2 mutation facilitates alpha-synuclein neuropathology in aged mice. Neurobiol. Dis. 120, 21–33 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Benson, D. L., Matikainen-Ankney, B. A., Hussein, A. & Huntley, G. W. Functional and behavioral consequences of Parkinson’s disease-associated LRRK2-G2019S mutation. Biochem. Soc. Trans. 46, 1697–1705 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Volpicelli-Daley, L. A., Luk, K. C. & Lee, V. M. Addition of exogenous alpha-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous alpha-synuclein to Lewy body and Lewy neurite-like aggregates. Nat. Protoc. 9, 2135–2146 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Luk, K. C. et al. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl Acad. Sci. USA 106, 20051–20056 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Volpicelli-Daley, L. A. et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Duda, J. E., Giasson, B. I., Mabon, M. E., Lee, V. M. & Trojanowski, J. Q. Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann. Neurol. 52, 205–210 (2002).

    CAS  Article  Google Scholar 

  50. 50.

    Chan, W. H. R., Wildemeersch, M. & Quek, T. Q. S. Characterization and control of diffusion processes in multi-agent networks. Preprint at arXiv (2015).

  51. 51.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  52. 52.

    Wood, S. N. Generalized Additive Models: An Introduction With R. Vol. 66 (CRC, 2006).

  53. 53.

    Wood, S. N. Stable and efficient mMultiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    Article  Google Scholar 

  54. 54.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

    Article  Google Scholar 

Download references


The authors thank members of the laboratory for their feedback in developing this manuscript. This study was supported by the Michael J. Fox Foundation (9530.01 to M.X.H and V.M.Y.L.) and the following NIH grants: T32-AG000255 (to M.X.H. and V.M.Y.L.), P30-AG010124 (to J.Q.T.) and P50-NS053488 (to V.M.Y.L.). D.S.B. also acknowledges support from the John D. and Catherine T. MacArthur Foundation, the ISI Foundation, the Alfred P. Sloan Foundation, the Paul G. Allen Foundation, the National Institute of Neurological Disorders and Stroke (R01 NS099348), and the National Science Foundation (BCS-1441502, BCS-1430087, NSF PHY-1554488 and BCS-1631550).

Author information




M.X.H. conceived and designed the experiments, performed experiments, analyzed results and wrote the manuscript. E.J.C. conceived and designed the experiments, analyzed results, performed network modeling and wrote the manuscript. A.D., B.Z., H.B., R.J.G. and R.M.S. performed experiments. D.S.B., J.Q.T. and V.M.Y.L. conceived and designed the experiments and wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Michael X. Henderson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Neuroscience thanks Ellen Kuhl, Tiago Outeiro, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henderson, M.X., Cornblath, E.J., Darwich, A. et al. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat Neurosci 22, 1248–1257 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing