Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats


Nucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia. Unconventional translation (RAN translation) of C9orf72 repeats generates dipeptide repeat proteins that can cause neurodegeneration. We performed a genetic screen for regulators of RAN translation and identified small ribosomal protein subunit 25 (RPS25), presenting a potential therapeutic target for C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia and other neurodegenerative diseases caused by nucleotide repeat expansions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: RPS25 is required for efficient RAN translation in yeast and human cells.
Fig. 2: RPS25 knockdown reduces poly(GP) levels in C9orf72 ALS patient iPSCs.
Fig. 3: RPS25 knockdown reduces RAN translation products and extends lifespan in a Drosophila C9orf72 model and in ALS patient-derived iMNs.

Data availability

The data that support the findings of the present study are available from the corresponding author upon request.


  1. Renton, A. E. et al. Neuron 72, 257–268 (2011).

    CAS  Article  Google Scholar 

  2. DeJesus-Hernandez, M. et al. Neuron 72, 245–256 (2011).

    CAS  Article  Google Scholar 

  3. Mori, K. et al. Science 339, 1335–1338 (2013).

  4. Ash, P. E. et al. Neuron 77, 639–646 (2013).

    CAS  Article  Google Scholar 

  5. Zu, T. et al. Proc. Natl Acad. Sci. USA 110, E4968–E4977 (2013).

    CAS  Article  Google Scholar 

  6. Gendron, T. F. et al. Acta Neuropathol. 126, 829–844 (2013).

    CAS  Article  Google Scholar 

  7. Gao, F. B., Richter, J. D. & Cleveland, D. W. Cell 171, 994–1000 (2017).

    CAS  Article  Google Scholar 

  8. Cheng, W. et al. Nat. Commun. 9, 51 (2018).

    Article  Google Scholar 

  9. Green, K. M. et al. Nat. Commun. 8, 2005 (2017).

    Article  Google Scholar 

  10. Tabet, R. et al. Nat. Commun. 9, 152 (2018).

    Article  Google Scholar 

  11. Landry, D. M., Hertz, M. I. & Thompson, S. R. Genes Dev. 23, 2753–2764 (2009).

    CAS  Article  Google Scholar 

  12. Fuchs, G. et al. Proc. Natl Acad. Sci. USA 112, 319–325 (2015).

    CAS  Article  Google Scholar 

  13. Hertz, M. I., Landry, D. M., Willis, A. E., Luo, G. & Thompson, S. R. Mol. Cell Biol. 33, 1016–1026 (2013).

    CAS  Article  Google Scholar 

  14. Nishiyama, T., Yamamoto, H., Uchiumi, T. & Nakashima, N. Nucleic Acids Res. 35, 1514–1521 (2007).

    CAS  Article  Google Scholar 

  15. Shi, Y. et al. Oncogene 35, 1015–1024 (2016).

    CAS  Article  Google Scholar 

  16. Thandapani, P., O’Connor, T. R., Bailey, T. L. & Richard, S. Mol. Cell 50, 613–623 (2013).

    CAS  Article  Google Scholar 

  17. Mizielinska, S. et al. Science 345, 1192–1194 (2014).

    CAS  Article  Google Scholar 

  18. Shi, Y. et al. Nat. Med. 24, 313–325 (2018).

    CAS  Article  Google Scholar 

  19. Cleary, J. D. & Ranum, L. P. Curr. Opin. Genet. Dev. 44, 125–134 (2017).

    CAS  Article  Google Scholar 

  20. Green, K. M., Linsalata, A. E. & Todd, P. K. Brain Res. 1647, 30–42 (2016).

    CAS  Article  Google Scholar 

  21. Kramer, N. J. et al. Science 353, 708–712 (2016).

    CAS  Article  Google Scholar 

  22. Alberti, S., Gitler, A. D. & Lindquist, S. Yeast 24, 913–919 (2007).

    CAS  Article  Google Scholar 

  23. Cooper, A. A. et al. Science 313, 324–328 (2006).

    CAS  Article  Google Scholar 

  24. Gietz, R. D. & Schiestl, R. H. Nat. Protoc. 2, 38–41 (2007).

    CAS  Article  Google Scholar 

  25. Gendron, T. F. et al. Sci. Transl. Med. 9, eaai7866 (2017).

    Article  Google Scholar 

  26. Gendron, T. F. et al. Acta Neuropathol. 130, 559–573 (2015).

    CAS  Article  Google Scholar 

  27. Kramer, N. J. et al. Nat. Genet. 50, 603–612 (2018).

    CAS  Article  Google Scholar 

  28. Su, Z. et al. Neuron 83, 1043–1050 (2014).

    CAS  Article  Google Scholar 

  29. Simone, R. et al. EMBO Mol. Med. 10, 22–31 (2017).

    Article  Google Scholar 

  30. Banez-Coronel, M. et al. Neuron 88, 667–677 (2015).

    CAS  Article  Google Scholar 

  31. Osterwalder, T., Yoon, K. S., White, B. H. & Keshishian, H. Proc. Natl Acad. Sci. USA 98, 12596–12601 (2001).

    CAS  Article  Google Scholar 

  32. Son, E. Y. et al. Cell Stem Cell 9, 205–218 (2011).

    CAS  Article  Google Scholar 

Download references


This work was supported by National Institutes of Health (NIH) grants nos. R35NS097263 (A.D.G.), AI099506 (J.D.P), AG064690 (A.D.G. and J.D.P.), R35NS097273 (L.P.), P01NS099114 (T.F.G., L.P) and R01NS097850 (J.K.I.), the Robert Packard Center for ALS Research at Johns Hopkins (L.P., A.D.G.), Target ALS (L.P., A.D.G., T.F.G.), the US Department of Defense (J.D.P., A.D.G., J.K.I.), the Muscular Dystrophy Association (J.K.I.), 2T32HG000044-21 NIHGRI training grant (S.B.Y.), the Brain Rejuvenation Project of the Wu Tsai Neurosciences Institute (A.D.G.), the European Research Council grant no. ERC-2014-CoG-648716 (A.M.I.), Alzheimer’s Research UK (A.M.I.) and the Medical Research Council (A.M.I.). J.K.I. is supported by funding for a New York Stem Cell Foundation-Robertson Investigatorship. We thank Dr. L. Ranum (University of Florida) for sharing the huntingtin poly(alanine) antibody. We thank M. Bassik for the HeLa Cas9–BFP cell lines. We thank H. Tricoire (French National Center for Scientific Research) for the generous gift of the original elavGS 301.2 line.

Author information

Authors and Affiliations



This work was performed and the paper written by S.B.Y. under the mentorship of A.D.G. T.F.G. contributed ELISA assays to detect RAN peptides and analyses under the mentorship of L.P. T.N., I.G. and A.T. contributed Drosophila studies under the mentorship of L.P. and A.M.I. N.R.G. contributed to polysome profiling studies and analyses, under the mentorship of M.B. R.G. contributed to RAN translation studies and analyses, under the mentorship of J.D.P. Y.S. and G.R. contributed induced motor neuron studies and analyses, under the mentorship of J.K.I. N.J.K. contributed to studies of ATXN2 RAN translation. L.N., S.F. and T.J.I.D. contributed to studies of C9orf72 RAN translation.

Corresponding author

Correspondence to Aaron D. Gitler.

Ethics declarations

Competing interests

A.D.G. has served as a consultant for Aquinnah Pharmaceuticals, Prevail Therapeutics and Third Rock Ventures and is a scientific founder of Maze Therapeutics.

Additional information

Peer review information: Nature Neuroscience thanks D. Dormann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamada, S.B., Gendron, T.F., Niccoli, T. et al. RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats. Nat Neurosci 22, 1383–1388 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing