Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model


Neuritic plaques, a pathological hallmark in Alzheimer’s disease (AD) brains, comprise extracellular aggregates of amyloid-beta (Aβ) peptide and degenerating neurites that accumulate autolysosomes. We found that, in the brains of patients with AD and in AD mouse models, Aβ plaque-associated Olig2- and NG2-expressing oligodendrocyte progenitor cells (OPCs), but not astrocytes, microglia, or oligodendrocytes, exhibit a senescence-like phenotype characterized by the upregulation of p21/CDKN1A, p16/INK4/CDKN2A proteins, and senescence-associated β-galactosidase activity. Molecular interrogation of the Aβ plaque environment revealed elevated levels of transcripts encoding proteins involved in OPC function, replicative senescence, and inflammation. Direct exposure of cultured OPCs to aggregating Aβ triggered cell senescence. Senolytic treatment of AD mice selectively removed senescent cells from the plaque environment, reduced neuroinflammation, lessened Aβ load, and ameliorated cognitive deficits. Our findings suggest a role for Aβ-induced OPC cell senescence in neuroinflammation and cognitive deficits in AD, and a potential therapeutic benefit of senolytic treatments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: OPCs exhibiting a senescence phenotype are associated with Aβ plaques in brains of patients with AD.
Fig. 2: Association of cellular senescence and OPC markers with Aβ plaques in the brains of APP/PS1 double-mutant transgenic mice.
Fig. 3: Molecular and ultrastructural features of Aβ-associated OPC senescence.
Fig. 4: Senolytic treatment selectively kills p16- and p21-expressing OPCs from the Aβ plaque environment in AD mice.
Fig. 5: Long-term senolytic treatment prevents Aβ accumulation and hippocampus-dependent cognitive impairment in APP/PS1 AD mice.

Data availability

The data used to generate the figures in this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  2. 2.

    Nixon, R. A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Scheltens, P. et al. Alzheimer’s disease. Lancet 388, 505–517 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Malm, T. M., Jay, T. R. & Landreth, G. E. The evolving biology of microglia in Alzheimer’s disease. Neurotherapeutics 12, 81–93 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article  Google Scholar 

  6. 6.

    Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Baker, D. J. et al. Naturally occurringp16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840 (2018).

    Article  Google Scholar 

  13. 13.

    Geha, S. et al. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol. 20, 399–411 (2010).

    Article  Google Scholar 

  14. 14.

    Kang, S. H., Fukaya, M., Yang, J. K., Rothstein, J. D. & Bergles, D. E. NG2+CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68, 668–681 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Clemente, D., Ortega, M. C., Melero-Jerez, C. & de Castro, F. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases. Front. Cell. Neurosci. 7, 268 (2013).

    Article  Google Scholar 

  16. 16.

    Jennings, A. R. & Carroll, W. M. Oligodendrocyte lineage cells in chronic demyelination of multiple sclerosis optic nerve. Brain Pathol. 25, 517–530 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    CAS  Article  Google Scholar 

  18. 18.

    Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613–3622 (2000).

    CAS  PubMed  Google Scholar 

  19. 19.

    Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Borchelt, D. R. et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939–945 (1997).

    CAS  Article  Google Scholar 

  21. 21.

    Piechota, M. et al. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget 7, 81099–81109 (2016).

    Article  Google Scholar 

  22. 22.

    Zhan, X. et al. Myelin basic protein associates with AβPP, Aβ1–42, and amyloid plaques in cortex of Alzheimer’s disease brain. J. Alzheimers Dis. 44, 1213–1229 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Jiang, P. et al. Generation and characterization of spiking and nonspiking oligodendroglial progenitor cells from embryonic stem cells. Stem Cells 31, 2620–2631 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Meijer, D. H. et al. Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nat. Rev. Neurosci. 13, 819–831 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Condello, C., Yuan, P., Schain, A. & Grutzendler, J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun. 6, 6176 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Gowrishankar, S. et al. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc. Natl Acad. Sci. USA 112, E3699–E3708 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Barrachina, M., Maes, T., Buesa, C. & Ferrer, I. Lysosome-associated membrane protein 1 (LAMP-1) in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 32, 505–516 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    Nixon, R. A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113–122 (2005).

    Article  Google Scholar 

  29. 29.

    Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Bhat, R. et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS One 7, e45069 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Rademakers, R., Neumann, M. & Mackenzie, I. R. Advances in understanding the molecular basis of frontotemporal dementia. Nat. Rev. Neurol. 8, 423–434 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    LeBrasseur, N. K., Tchkonia, T. & Kirkland, J. L. Cellular senescence and the biology of aging, disease, and frailty. Nestle Nutr. Inst. Workshop Ser. 83, 11–18 (2015).

    Article  Google Scholar 

  34. 34.

    Baker, D. J. & Petersen, R. C. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J. Clin. Invest. 128, 1208–1216 (2018).

    Article  Google Scholar 

  35. 35.

    Neumann, B. & Kazanis, I. Oligodendrocyte progenitor cells: the ever mitotic cells of the CNS. Front. Biosci. (Schol. Ed.) 8, 29–43 (2016).

    Article  Google Scholar 

  36. 36.

    Zhang, R., Chopp, M. & Zhang, Z. G. Oligodendrogenesis after cerebral ischemia. Front. Cell. Neurosci. 7, 201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Antel, J. P. et al. Immunology of oligodendrocyte precursor cells in vivo and in vitro. J. Neuroimmunol. (2018).

  38. 38.

    Chinta, S. J. et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep. 22, 930–940 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Mattson, M. P. Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639 (2004).

    CAS  Article  Google Scholar 

  40. 40.

    Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Yang, L. L. et al. Pharmacokinetic comparison between quercetin and quercetin 3-O-β-glucuronide in rats by UHPLC-MS/MS. Sci. Rep. 6, 35460 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Zhang, S. et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 18, 386–392 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Zhang, P. et al. Novel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity. Nat. Commun. 6, 8888 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Stine, W. B. Jr., Dahlgren, K. N., Krafft, G. A. & LaDu, M. J. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J. Biol. Chem. 278, 11612–11622 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    Faucher, P., Mons, N., Micheau, J., Louis, C. & Beracochea, D. J. Hippocampal injections of oligomeric amyloid β-peptide (1–42) induce selective working memory deficits and long-lasting alterations of ERK signaling pathway. Front. Aging Neurosci. 7, 245 (2016).

    Article  Google Scholar 

  46. 46.

    Kashiwaya, Y. et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging 34, 1530–1539 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Sykora, P. et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 43, 943–959 (2015).

    CAS  Article  Google Scholar 

Download references


We thank N. Sah, J. Tian, and R. Munk for technical support. We thank D. Baker at the Mayo Clinic for his valuable advice about the use of senolytic agents in vivo. This research was supported by the Intramural Research Programs of the National Institute on Aging (NIA) and the National Institute on Drug Abuse, and by an NIA grant supporting the University of Kentucky Alzheimer’s Disease Research Center (no. P30-AG0-28383).

Author information




P.Z. designed and performed the experiments, analyzed the data, and wrote the manuscript. Y.K. performed the experiments and analyzed the data. I.G., K.A., S.Z., R.G.C., and J.T. generated the data. K.G. and J.M.S. generated and characterized the p16-ZsGreen reporter and the APP/PS1 and p16-ZsGreen reporter mice. M.P.M., M.G., and V.A.B. contributed to the experimental design and writing of the manuscript.

Corresponding authors

Correspondence to Peisu Zhang or Mark P. Mattson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Neuroscience thanks Valery Krizhanovsky and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


Spatial relationship between senescent cells and Aβ plaques. p16 mRNA is shown in green, Aβ immunoreactivity in red and cell nuclei in blue (DAPI).


Spatial relationship between senescent cells and Aβ plaques. p16 mRNA is shown in green and LAMP1 protein immunoreactivity in pink.


Spatial relationship between senescent cells and Aβ plaques. p16 mRNA is shown in green, LAMP1 protein immunoreactivity in cyan and Aβ immunoreactivity in red.

Supplementary Figs. 1–21 and Supplementary Tables 1 & 2.

Reporting Summary

Supplementary Video 1

Spatial relationship between senescent cells and Aβ plaques. p16 mRNA is shown in green, Aβ immunoreactivity in red and cell nuclei in blue (DAPI).

Supplementary Video 2

Spatial relationship between senescent cells and Aβ plaques. p16 mRNA is shown in green and LAMP1 protein immunoreactivity in pink.

Supplementary Video 3

Spatial relationship between senescent cells and Aβ plaques. p16 mRNA is shown in green, LAMP1 protein immunoreactivity in cyan and Aβ immunoreactivity in red.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Kishimoto, Y., Grammatikakis, I. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 22, 719–728 (2019).

Download citation

Further reading